1
|
Frankel TE, Crowell C, Orledge S, Giancarlo L, Odhiambo BK. Identifying potential trace metal contamination impacts of a coal ash landfill on the largest Chesapeake Bay tributary (Chester, VA, USA). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025; 44:802-811. [PMID: 39937624 DOI: 10.1093/etojnl/vgae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 02/14/2025]
Abstract
Coal fly ash is a highly heterogeneous waste product that becomes concentrated with metals after combustion that have been shown to act as neurotoxins and/or carcinogens in both wildlife and humans. As such, increased understanding of the presence, concentrations, and potential ecosystem impacts is needed. The Chesterfield power station contains more than 15 million tons of ash and is located adjacent to the James River, which serves as a tributary to the Chesapeake Bay. Our study investigated (1) the presence and concentrations of aluminum (Al), aresnic (As), cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), magnesium (Mg), manganese (Mn), lead (Pb), selenium (Se), and zinc (Zn) in surface water, deep water, and sediment samples obtained from the surrounding area and (2) the presence of various teleost species, using environmental DNA (eDNA) sampling. Universal cokriging was used to estimate the spatial variability of metals in sediments and the extent of pollution interpreted using enrichment factors (EF). Little contamination was observed in water samples compared to sediment samples. Elevated concentrations of Al, As, Cd, Cr, Fe, Pb, and Zn were observed in areas immediately adjacent to the coal ash landfills. Arsenic, Cd, and Pb showed increased EF in sites adjacent to the landfills, suggesting that the contamination observed is due to anthropogenic factors. Environmental DNA analyses revealed the presence of 22 teleost species, several of which have been identified as threatened, endangered, diadromous, and/or consumed by anglers who use the James River. Collectively, our results provide novel insight regarding the impacts of coal ash on an important Chesapeake Bay watershed and guidance for future risk assessment.
Collapse
Affiliation(s)
- Tyler E Frankel
- Department of Earth and Environmental Sciences, University of Mary Washington, Fredericksburg, VA, United States
| | - Catherine Crowell
- Department of Earth and Environmental Sciences, University of Mary Washington, Fredericksburg, VA, United States
| | - Summer Orledge
- Department of Earth and Environmental Sciences, University of Mary Washington, Fredericksburg, VA, United States
| | - Leanna Giancarlo
- Department of Chemistry and Physics, University of Mary Washington, Fredericksburg, VA, United States
| | - Ben Kisila Odhiambo
- Department of Earth and Environmental Sciences, University of Mary Washington, Fredericksburg, VA, United States
| |
Collapse
|
2
|
Liang H, Wang G, Guo H, Niu L, Yang Q. Evaluation of heavy metal accumulation and sources in surface sediments of the Pearl River Estuary (China). MARINE ENVIRONMENTAL RESEARCH 2025; 204:106948. [PMID: 39778254 DOI: 10.1016/j.marenvres.2025.106948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 12/21/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025]
Abstract
The Pearl River Estuary (PRE) has experienced an influx of metals and nutrients, predominantly from the Pearl River, which has led to a potential threat to the estuarine ecosystem. In this study, sediment samples were densely collected to clarify the accumulation, and source contributions of heavy metals (namely Hg, Zn, Cu, As, Pb, Cd, and Cr) in the PRE. The spatial distributions of these metals exhibited significant differences, with higher values detected in the offshore areas and lower values further away. The metal values along the western coast tended to be significantly elevated compared to that of the eastern seaboard, which may relate to anthropogenic pollution, the discharge of industrial and domestic effluents in the region. The geological accumulation index (Igeo) was utilized to evaluate the pollution status, categorized as ranging from light to moderate pollution levels. The homology of metal elements was determined through Pearson correlation analysis and principal component analysis (PCA). A receptor model of positive matrix factorization (PMF) was developed to quantify the contributions of various sources to the accumulation of metal elements in the PRE. Industrial sources contributed the most to sediment metals (37.07%), followed by agricultural and natural sources, with transportation sources contributing the least (11.17%).
Collapse
Affiliation(s)
- Haihan Liang
- School of Ocean Engineering and Technology, Sun Yat-sen University, (Guangzhou)/Southern Laboratory of Ocean Science and Engineering (Zhuhai), China
| | - Guojuan Wang
- School of Ocean Engineering and Technology, Sun Yat-sen University, (Guangzhou)/Southern Laboratory of Ocean Science and Engineering (Zhuhai), China
| | - Hongying Guo
- School of Ocean Engineering and Technology, Sun Yat-sen University, (Guangzhou)/Southern Laboratory of Ocean Science and Engineering (Zhuhai), China
| | - Lixia Niu
- School of Ocean Engineering and Technology, Sun Yat-sen University, (Guangzhou)/Southern Laboratory of Ocean Science and Engineering (Zhuhai), China; Institute of Estuarine and Coastal Research, Guangdong Provincial Engineering Research Center of Coasts, Islands and Reefs, Guangzhou, China.
| | - Qingshu Yang
- School of Ocean Engineering and Technology, Sun Yat-sen University, (Guangzhou)/Southern Laboratory of Ocean Science and Engineering (Zhuhai), China; Institute of Estuarine and Coastal Research, Guangdong Provincial Engineering Research Center of Coasts, Islands and Reefs, Guangzhou, China
| |
Collapse
|
3
|
Hadikhani R, Karbassi A, Tajziehchi S, Mehdizadeh Y. Mechanisms and controlling factors of heavy metals removal by electroflocculation in estuarine environments. MARINE POLLUTION BULLETIN 2024; 206:116699. [PMID: 38991606 DOI: 10.1016/j.marpolbul.2024.116699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/22/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024]
Abstract
Estuaries play a crucial role in preventing the influx of metals from rivers into seas, thereby offering potential insights for the water purification industry. This study seeks to identify the key parameters (including pH, electricity conductivity (EC), and Eh) influencing the removal efficiency of Mn, Zn, Cu, Co, and Ni during natural and electro-flocculation processes in the Siahroud River estuary. The experiments were conducted in three stages, each representing varying salinity levels and voltage conditions, to determine the most effective parameters for metal removal. The findings revealed that heavy metal flocculation rates were highest at lower salinities (0.5 to 1.5 PSU), with no significant improvement in contaminant removal observed with increasing voltage. Electro-flocculation efficiency was found to be more dependent on Eh. Overall, the flocculation processes reduced the annual total dissolved metal content from 14.84 to 6.46 tons, underscoring the potential of this method in water quality management.
Collapse
Affiliation(s)
- Rezvan Hadikhani
- Department of Environmental Engineering, School of Environment, University of Tehran, P. O. Box 14155-6135, Tehran, Iran
| | - Abdolreza Karbassi
- Department of Environmental Engineering, School of Environment, University of Tehran, P. O. Box 14155-6135, Tehran, Iran
| | - Sanaz Tajziehchi
- Department of Environmental Engineering, School of Environment, University of Tehran, P. O. Box 14155-6135, Tehran, Iran
| | - Yusef Mehdizadeh
- Department of Environmental Engineering, School of Environment, University of Tehran, P. O. Box 14155-6135, Tehran, Iran; Department of Building, Civil and Environmental Engineering, Concordia University, Montreal H3G 1M8, Canada.
| |
Collapse
|
4
|
Zhang L, Wu Y, Li J, Ni Z, Ren Y, Lin J, Huang X. Hydrodynamics and dissolved organic matter components shaped the fate of dissolved heavy metals in an intensely anthropogenically disturbed estuary. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173293. [PMID: 38759925 DOI: 10.1016/j.scitotenv.2024.173293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/31/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
Anthropogenic activities and natural erosion caused abundant influx of heavy metals (HMs) and organic matter (OM) into estuaries characterized by the dynamic environments governed by tidal action and river flow. Similarities and differences in the fate of HM and OM as well as the influences of OM on HMs remain incomplete in estuaries with seasonal human activity and hydrodynamic force. To address this gap, dissolved HMs (dHMs) and fluorescence dissolved OM (FDOM) were investigated in the Pearl River Estuary, a highly seasonally anthropogenic and dynamic estuary. It aimed to elucidate the effects of hydrodynamic conditions and DOM on the seasonal fate of dHMs via the multivariate statistical methods. Our findings indicated dHMs and FDOM exhibited consistently higher levels in the upper estuarine and coastal waters in both seasons, predominantly controlled by the terrestrial/anthropogenic discharge. In the wet season, dHMs and humic-like substances (HULIS) were positively correlated, showing that dHMs readily combined with HULIS. This association led to a synchronous decrease offshore along the axis of the estuary and the transport following the river plume in the surface affected by the salt wedge. Contrarily, dHMs were prone to complex with protein-like components impacted by the hydrodynamics during the dry season. Principal component analysis (PCA) results revealed the terrestrial/anthropogenic inputs and the fresh-seawater mixing process were the most crucial factors responsible for the fate of dHM in wet and dry seasons, respectively, with DOM identified as a secondary but significant influencing factor in both seasons. This study holds significance in providing valuable insights into the migration, transformation, the ultimate fate of dHMs in anthropogenically influenced estuaries, as well as the intricate dynamics governing coastal ecosystems.
Collapse
Affiliation(s)
- Ling Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, Guangzhou 510301, China
| | - Yunchao Wu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, Guangzhou 510301, China
| | - Jinlong Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhixin Ni
- Guangdong Provincial Key Laboratory of Applied Marine Biology, Guangzhou 510301, China; South China Sea Environmental Monitoring Center, South China Sea Bureau, Ministry of Natural Resources, Guangzhou 510300, China
| | - Yuzheng Ren
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jizhen Lin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoping Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Yang J, Ren L, Hua C, Tian Y, Yong X, Fang S. Identification of toxic metal contamination in surface sediments of the Xiaoqing River under a long-term perspective (1996-2020): Risks, sources and driving factors. ENVIRONMENTAL RESEARCH 2024; 251:118613. [PMID: 38432570 DOI: 10.1016/j.envres.2024.118613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/22/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
The contamination of sediments by toxic metals poses a significant threat to both river ecosystems and human health. In this study, the geo-accumulation index (Igeo), biotoxicity evaluation method, and potential ecological risk index (RI) were employed to analyze the contamination level, biotoxicity risk, and potential ecological risk of toxic metals in surface sediments of the Xiaoqing River. To identify toxic metal sources, Spearman correlation and principal component analysis with multiple linear regression analysis (PCA-MLR) were employed. Additionally, redundancy analysis (RDA) was utilized to investigate potential driving factors affecting toxic metal accumulation in sediments. The results revealed that the levels of the five investigated metals (Cr, Pb, As, Hg, and Cd) showed constant fluctuations during the period 1996-2020. The midstream was found to be more polluted than the upstream and downstream. In the research area, Hg was identified as the primary contaminant with high levels of contamination, posing a biotoxicity risk and potential ecological risk. Pollution sources were identified for two periods: A (1996-2010) and B (2011-2020), with industrial, agricultural, traffic, and natural sources being the main contributors. During period A, industrial sources accounted for the highest proportion (40.8%), followed by agricultural sources (36.6%), and geological natural sources (22.6%). During period B, agricultural sources accounted for the highest proportion (42%), followed by industrial and traffic sources (32.4%), and geological natural sources (25.6%). The distribution of toxic metals in the basin was significantly influenced by water pH, sediment organic matter, population density, and per capita GDP. The study results provide fundamental data for preventing pollution and managing water resources contaminated with toxic metals in the sediments of the Xiaoqing River in Jinan. Additionally, it serves as a reference for analyzing related ecological and environmental issues in the basin.
Collapse
Affiliation(s)
- Jiaying Yang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Lijun Ren
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China.
| | - Chunyu Hua
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Yueru Tian
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Xian Yong
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Shumin Fang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| |
Collapse
|
6
|
Li J, Yang S, Wang F, Gao M, He L, Zhao G, Ye S, Liu Y, Hu K. Ecological risk assessment of heavy metal(loid)s in riverine sediments along the East China Sea: A large-scale integrated analysis. MARINE POLLUTION BULLETIN 2024; 203:116382. [PMID: 38678739 DOI: 10.1016/j.marpolbul.2024.116382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/10/2024] [Accepted: 04/13/2024] [Indexed: 05/01/2024]
Abstract
This study comprehensively assesses spatial distribution, pollution levels, and potential sources of heavy metal(loid)s in surface sediments across multiple river systems along the coastal area of the East China Sea. Copper in Qiantang River and Xiangshan Bay showed higher concentations and exceeded the threshold effect value, while the higher content of Lead was mainly found in the Saijiang River, Oujiang River, and Minjiang River. Heavy metal(loid)s in the alluvium of Qiantang River, Jiaojiang River, and Yangtze River showed low to moderate pollution levels, with Cd posing the highest ecological risk, followed by Hg. Meanwhile, Qiantang River, Jiaojiang River, Yangtze River, and Oujiang River exhibited considerable to moderate ecological risks and low toxic risk. PMF model analysis results reveal that concentrations of Cr, Ni, and As were closely related with natural geogenic input (36.56 %), while industrial and traffic activities (48.77 %) were primary source of Cu, Pb, Zn, and Hg, and main source of Cd was agricultural emissions (14.67 %).
Collapse
Affiliation(s)
- Jie Li
- Key Laboratory of Coastal Wetland Biogeosciences, Qingdao Institute of Marine Geology, China Geological Survey, 266273 Qingdao, China
| | - Shixiong Yang
- Key Laboratory of Coastal Wetland Biogeosciences, Qingdao Institute of Marine Geology, China Geological Survey, 266273 Qingdao, China; Laboratory for Marine Geology, Qingdao Marine Science and Technology Center, 266237 Qingdao, China; Chinese Academy of Geological Sciences, 100037 Beijing, China; School of Earth Sciences, China University of Geosciences, Wuhan 430074, China.
| | - Feifei Wang
- Key Laboratory of Coastal Wetland Biogeosciences, Qingdao Institute of Marine Geology, China Geological Survey, 266273 Qingdao, China.
| | - Maosheng Gao
- Key Laboratory of Coastal Wetland Biogeosciences, Qingdao Institute of Marine Geology, China Geological Survey, 266273 Qingdao, China
| | - Lei He
- Key Laboratory of Coastal Wetland Biogeosciences, Qingdao Institute of Marine Geology, China Geological Survey, 266273 Qingdao, China
| | - Guangming Zhao
- Key Laboratory of Coastal Wetland Biogeosciences, Qingdao Institute of Marine Geology, China Geological Survey, 266273 Qingdao, China; Laboratory for Marine Geology, Qingdao Marine Science and Technology Center, 266237 Qingdao, China
| | - Siyuan Ye
- Key Laboratory of Coastal Wetland Biogeosciences, Qingdao Institute of Marine Geology, China Geological Survey, 266273 Qingdao, China; Laboratory for Marine Geology, Qingdao Marine Science and Technology Center, 266237 Qingdao, China
| | - Yang Liu
- Key Laboratory of Coastal Wetland Biogeosciences, Qingdao Institute of Marine Geology, China Geological Survey, 266273 Qingdao, China; Chinese Academy of Geological Sciences, 100037 Beijing, China
| | - Kaichun Hu
- Key Laboratory of Coastal Wetland Biogeosciences, Qingdao Institute of Marine Geology, China Geological Survey, 266273 Qingdao, China; School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
7
|
Carvalho MDAR, Rosa LMT, Godinho JPM, Afonso M, Botero WG, de Oliveira LC. Comparative analysis of sediment quality indices using different reference values in an environmental protection area in Southeastern Brazil. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:154. [PMID: 38592573 DOI: 10.1007/s10653-024-01938-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/23/2024] [Indexed: 04/10/2024]
Abstract
Contamination of aquatic ecosystems by potentially toxic elements (PTEs) is a concerning environmental issue, given their persistence, toxicity potential, and ability to accumulate in living organisms. Several studies have been conducted to assess the contamination of aquatic ecosystems by PTEs, using pollution and ecological risk indices that rely on the concentration of these elements in aquatic sediments. However, many of these studies use global reference values for calculating the indices, which can lead to misleading interpretations due to substantial variations in PTEs concentrations influenced by the geological characteristics of each region. Therefore, the use of regional reference values is more appropriate when available. This study aimed to investigate variations in the results of five indices, employing global, regional, and quality reference values, based on sediment samples collected from rivers in the Ipanema National Forest, a protected area in Brazil exposed to various anthropogenic pressures. The results revealed that elements such as Al, Fe, and Mn exceeded the limits allowed by legislation in water samples, while As and Cr surpassed the limits in sediment samples. Comparative analysis highlighted significant discrepancies in the results of the indices when global reference values were used compared to regional and quality reference values, especially for As and Ba. Thus, this study underscores the importance of establishing specific regional values for an accurate assessment of sediment quality and the risks associated with contamination by PTEs in different regions worldwide.
Collapse
Affiliation(s)
- Mayara de Almeida Ribeiro Carvalho
- Federal University of Sao Carlos, Sorocaba Campus, Graduate Program in Biotechnology and Environmental Monitoring, Sao Paulo, 18052-780, Brazil
| | - Luana Maria Tavares Rosa
- Federal University of Sao Carlos, Sorocaba Campus, Graduate Program in Biotechnology and Environmental Monitoring, Sao Paulo, 18052-780, Brazil
| | - João Paulo Mariano Godinho
- Federal University of Sao Carlos, Sorocaba Campus, Graduate Program in Biotechnology and Environmental Monitoring, Sao Paulo, 18052-780, Brazil
| | - Marcelo Afonso
- Ipanema National Forest, The Chico Mendes Institute for Biodiversity Conservation, Sao Paulo, 18190-000, Brazil
| | - Wander Gustavo Botero
- Graduate Program in Chemistry and Biotechnology, Federal University of Alagoas, Alagoas, 57072-900, Brazil
| | - Luciana Camargo de Oliveira
- Federal University of Sao Carlos, Sorocaba Campus, Graduate Program in Biotechnology and Environmental Monitoring, Sao Paulo, 18052-780, Brazil.
| |
Collapse
|
8
|
Zhang L, Bai J, Zhai Y, Zhang K, Wang Y, Tang R, Xiao R, Jorquera MA. Multimedia distribution, partitioning, sources, comprehensive toxicity risk and co-occurrence network characteristics of trace elements in a typical Chinese shallow lake with high antibiotic risk. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133436. [PMID: 38190795 DOI: 10.1016/j.jhazmat.2024.133436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/10/2024]
Abstract
Although the combined pollution of trace elements and antibiotics has received extensive attention, the fate and toxicity risk of trace elements with high antibiotic risk are still unclear. The multimedia distributions, partitioning, sources, toxicity risks and co-occurrence network characteristics of trace elements in surface water (SW), overlying water (OW), pore water (PW) and sediment (Sedi) samples of 61 sites from Baiyangdian (BYD) Lake were investigated. The trace elements in the SW and OW are derived mainly from traffic and agricultural sources, and those in PW and Sedi samples are primarily from lithogenic and industrial sources. The total toxicity risk index (TRI) of nine trace elements (ΣTRI) in Sedi samples showed a very high toxicity risk (18.35 ± 8.84), and a high combined pollution toxicity risk (ΣΣTRI) was observed in PW (149.17 ± 97.52) and Sedi samples (46.37 ± 24.00). The co-occurrence network from SW to PW became more vulnerable. Generally, total antibiotics and TP may be keystones of trace elements in water and sediment. The high antibiotic risk significantly influenced ΣΣTRI in water samples but not in Sedi samples. The findings provide new implications for the monitoring and control of combined antibiotic-trace element pollution in shallow lakes.
Collapse
Affiliation(s)
- Ling Zhang
- School of Environment, Beijing Normal University, Beijing 100875, China; School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining 810008, China
| | - Junhong Bai
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yujia Zhai
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Kegang Zhang
- Department of Environmental Engineering and Science, North China Electric Power University, Baoding, China
| | - Yaqi Wang
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Ruoxuan Tang
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Rong Xiao
- College of Environment & Safety Engineering, FuZhou University, Fuzhou, China
| | - Milko A Jorquera
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
9
|
Hu C, Liu Y, Fang X, Zhou Z, Yu Y, Sun Y, Shui B. Assessing heavy metal pollution in sediments from the northern margin of Chinese mangrove areas: Sources, ecological risks, and health impacts. MARINE POLLUTION BULLETIN 2024; 200:116069. [PMID: 38335629 DOI: 10.1016/j.marpolbul.2024.116069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024]
Abstract
With the rapid economic development of coastal cities, the discharge of substantial amounts of heavy metal pollutants poses a serious hazard to mangroves; however, the potential sources of heavy metals and the resulting health risks are not fully understood. In this study, we analyzed the contents, sources, and ecological and health risks of heavy metal contamination in mangrove sediments from the northern margin of China. The accumulation of heavy metals in mangroves was primarily driven by five potential sources, namely agricultural (33.5 %), natural sources (21.3 %), industrial (19.1 %), aquaculture (14.3 %), and traffic (11.8 %). The assessment of health risks using a probabilistic approach demonstrated that noncarcinogenic risks were within acceptable limits for all populations. It was worth noting that both noncarcinogenic and carcinogenic risks were greater in children than in adults. Analysis of source-oriented health risks revealed that agricultural sources and As and Cd were priority sources and elements of pollution requiring attention.
Collapse
Affiliation(s)
- Chengye Hu
- Fisheries College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yongtian Liu
- Fisheries College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Xuehe Fang
- Fisheries College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Zeyu Zhou
- Fisheries College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yang Yu
- Fisheries College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yiyi Sun
- Fisheries College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Bonian Shui
- Fisheries College, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
10
|
Guo Z, Ma L, Dai Q, Liu Y, Zhang D, Ao R. Behavior of heavy metals in municipal sludge during dewatering: The role of conditioners and extracellular polymeric substances. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118287. [PMID: 37269725 DOI: 10.1016/j.jenvman.2023.118287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/05/2023]
Abstract
Heavy metals, the main harmful substances in the sludge, are easily enriched, have adverse effects on the treatment and disposal of the sludge. In this study, two conditioners (modified corn-core powder, MCCP, and sludge-based biochar, SBB) were separately added and jointly added into municipal sludge to enhance sludge dewaterability. Meanwhile, diverse organics, such as extracellular polymeric substances (EPS), were released under pretreatment. The different organics had different effects on each heavy metal fraction and changed the toxicity and bioavailability of the treated sludge. The exchangeable fraction (F4) and carbonate fraction (F5) of heavy metal were nontoxic and nonbioavailable. When MCCP/SBB was used to pretreat the sludge, the ratio of metal-F4 and -F5 decreased, indicating that MCCP/SBB reduced the biological availability and ecological toxicity of the heavy metals in the sludge. These results were consistent with the calculation of the modified potential ecological risk index (MRI). To understand the detailed function of organics in the sludge network, the relationship between EPS, the secondary structure of the protein, and heavy metals was analyzed. The analyses revealed that the increasing proportion of β-sheet in soluble EPS (S-EPS) generated more active sites in the sludge system, which enhanced the chelate or complex function among organics and heavy metals, thus reducing the migration risks.
Collapse
Affiliation(s)
- Zhiying Guo
- College of Biological and Agricultural Sciences, Honghe University, Mengzi, 661199, Yunnan, China
| | - Liping Ma
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China.
| | - Quxiu Dai
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China.
| | - Yanhong Liu
- College of Biological and Agricultural Sciences, Honghe University, Mengzi, 661199, Yunnan, China
| | - Degang Zhang
- College of Biological and Agricultural Sciences, Honghe University, Mengzi, 661199, Yunnan, China
| | - Ran Ao
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang, 550025, China
| |
Collapse
|
11
|
Proshad R, Dey HC, Khan MSU, Baroi A, Kumar S, Idris AM. Source-oriented risks apportionment of toxic metals in river sediments of Bangladesh: a national wide application of PMF model and pollution indices. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:6769-6792. [PMID: 36633753 DOI: 10.1007/s10653-022-01455-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Intense human activities, particularly industrial and agricultural output, has enriched metal(loid)s in riverine sediment and endangered aquatic ecosystems and human health. Promoting proper river management requires an assessment of the possible ecological hazards and pollution posed by metal(loid)s in sediments. However, there are limited large-scale risk assessments of metal(loid)s contamination in riverine sediment in heavily populated nations like Bangladesh. This study compiled data on sediment metal(loid)s, for example, Cd, As, Cu, Ni, Cr, Pb, Mn, and Zn, from 24 major rivers located across Bangladesh between 2011 and 2022 and applied positive matrix factorization (PMF) to identify the critical metal(loid)s sources and PMF model-based ecological risks. Based on studied metal(loid)s, 12-78% of rivers posed higher contents than the upper continental crust and 8% of the river sediments for Cr and Ni, whereas 4% for Cd and As exceeded probable effect concentration. Cr and Ni in the sum of toxic units (STU), whereas Mn, As and Cd in potential ecological risk (PER) posed the highest contribution to contaminate sediments. In the studied rivers, sediment contaminant Mn derived from natural sources; Zn and Ni originated from mixed sources; Cr and Cu were released from the tannery and industrial emissions and Cd originated from agricultural practices. Source-based PER and NIRI indicated that mixed source (4% rivers) and tannery and industrial emission (4% rivers) posed very high risks in sediments. For the creation of macroscale policies and the restoration of contaminated rivers, our national-scale comprehensive study offers helpful references.
Collapse
Affiliation(s)
- Ram Proshad
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Hridoy Chandra Dey
- Faculty of Agriculture, Patuakhali Science and Technology University, Dumki Patuakhali, 8602, Bangladesh
| | - Md Shihab Uddine Khan
- Department of Crop Botany, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Artho Baroi
- Department of Crop Botany, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Sazal Kumar
- University of Newcastle, NSW, 2308, Australia
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha, 62529, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, 62529, Saudi Arabia
| |
Collapse
|
12
|
Conrad SR, Santos IR, White SA, Holloway CJ, Brown DR, Wadnerkar PD, Correa RE, Woodrow RL, Sanders CJ. Land use change increases contaminant sequestration in blue carbon sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162175. [PMID: 36801407 DOI: 10.1016/j.scitotenv.2023.162175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/24/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Coastal blue carbon habitats perform many important environmental functions, including long-term carbon and anthropogenic contaminant storage. Here, we analysed twenty-five 210Pb-dated mangrove, saltmarsh, and seagrass sediment cores from six estuaries across a land-use gradient to determine metal, metalloid, and phosphorous sedimentary fluxes. Cadmium, arsenic, iron, and manganese had linear to exponential positive correlations between concentrations, sediment flux, geoaccumulation index, and catchment development. Increases in anthropogenic development (agricultural or urban land uses) from >30 % of the total catchment area enhanced mean concentrations of arsenic, copper, iron, manganese, and zinc between 1.5 and 4.3-fold. A ~ 30 % anthropogenic land-use was the threshold in which blue carbon sediment quality begins to be detrimentally impacted on an entire estuary scale. Fluxes of phosphorous, cadmium, lead, and aluminium responded similarly, increasing 1.2 to 2.5-fold when anthropogenic land-use increased by at least 5 %. Exponential increases in phosphorus flux to estuary sediments seem to precede eutrophication as observed in more developed estuaries. Overall, multiple lines of evidence revealed how catchment development drives blue carbon sediment quality across a regional scale.
Collapse
Affiliation(s)
- Stephen R Conrad
- National Marine Science Centre, School of Environment, Science and Engineering, Southern Cross University, P.O. Box 157, Coffs Harbour, NSW 2540, Australia
| | - Isaac R Santos
- National Marine Science Centre, School of Environment, Science and Engineering, Southern Cross University, P.O. Box 157, Coffs Harbour, NSW 2540, Australia; Department of Marine Sciences, University of Gothenburg, P.O. Box 461, 40530 Gothenburg, Sweden
| | - Shane A White
- National Marine Science Centre, School of Environment, Science and Engineering, Southern Cross University, P.O. Box 157, Coffs Harbour, NSW 2540, Australia
| | - Ceylena J Holloway
- National Marine Science Centre, School of Environment, Science and Engineering, Southern Cross University, P.O. Box 157, Coffs Harbour, NSW 2540, Australia
| | - Dylan R Brown
- National Marine Science Centre, School of Environment, Science and Engineering, Southern Cross University, P.O. Box 157, Coffs Harbour, NSW 2540, Australia
| | - Praktan D Wadnerkar
- National Marine Science Centre, School of Environment, Science and Engineering, Southern Cross University, P.O. Box 157, Coffs Harbour, NSW 2540, Australia
| | - Rogger E Correa
- National Marine Science Centre, School of Environment, Science and Engineering, Southern Cross University, P.O. Box 157, Coffs Harbour, NSW 2540, Australia; Corporacion Merceditas - Merceditas Corporation, Medellín, Colombia
| | - Rebecca L Woodrow
- National Marine Science Centre, School of Environment, Science and Engineering, Southern Cross University, P.O. Box 157, Coffs Harbour, NSW 2540, Australia
| | - Christian J Sanders
- National Marine Science Centre, School of Environment, Science and Engineering, Southern Cross University, P.O. Box 157, Coffs Harbour, NSW 2540, Australia.
| |
Collapse
|
13
|
Wan J, Song H, Liu J, Yin P, Cao K, Qiu J, Wang S, Wu Z, Song W. Distribution, contamination and provenance of heavy metals in sediments from the nearshore area of Weihai City, eastern Shandong Peninsula, China. MARINE POLLUTION BULLETIN 2023; 190:114877. [PMID: 37002969 DOI: 10.1016/j.marpolbul.2023.114877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
We analyzed eight heavy metals (Cu, Pb, Zn, Cr, Cd, Hg, As, and Ni) in 85 seabed sediments off the coast of Weihai City, eastern Shandong Peninsula, China, to reveal their distributions, enrichment status, and pollutant sources. Cu, Pb, Zn, Cr, As, and Ni were enriched in all bays in both the inner and outer waters. However, Cd and Hg were more abundant in Weihai Bay, followed by Rongcheng Bay and Chaoyang Port, with denser populations and more developed industries near the coast. Most areas exhibited slight contamination with As and Pb, with relatively severe contamination in localized areas. Moreover, Weihai Bay showed slight contamination with Cd, Zn, and Hg. Heavy metals are largely influenced by the discharge of anthropogenic pollutants along the coast. It is recommended to implement strict control measures on the discharge of waste into the sea, and ensure the sustainable development of the marine ecological environment.
Collapse
Affiliation(s)
- Jie Wan
- College of Economics and Management, Qingdao University of Science and Technology, Qingdao 266061, China
| | - Hongying Song
- Center for Isotope Geochemistry and Geochronology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| | - Jinqing Liu
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Ping Yin
- Qingdao Institute of Marine Geology, China Geological Survey, Qingdao 266237, China
| | - Ke Cao
- Qingdao Institute of Marine Geology, China Geological Survey, Qingdao 266237, China
| | - Jiandong Qiu
- Qingdao Institute of Marine Geology, China Geological Survey, Qingdao 266237, China
| | - Songtao Wang
- Shandong Provincial No.4 Institute of Geological and Mineral Survey, Weifang 261021, China
| | - Zhen Wu
- Shandong Provincial No.4 Institute of Geological and Mineral Survey, Weifang 261021, China
| | - Wei Song
- Shandong Provincial No.4 Institute of Geological and Mineral Survey, Weifang 261021, China
| |
Collapse
|
14
|
Zhang L, Wu Y, Ni Z, Li J, Ren Y, Lin J, Huang X. Saltwater intrusion regulates the distribution and partitioning of heavy metals in water in a dynamic estuary, South China. MARINE ENVIRONMENTAL RESEARCH 2023; 186:105943. [PMID: 36907080 DOI: 10.1016/j.marenvres.2023.105943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/11/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
The mixing processes of fresh-salt water in estuarine and coastal regions have a substantial impact on the characteristics of heavy metals. A study was conducted in the Pearl River Estuary (PRE), located in South China, to examine the distribution and partitioning of heavy metals and the factors that influence their presence. Results showed that the hydrodynamic force, caused by the landward intrusion of the salt wedge, was the major contributor to the aggregation of heavy metals in the northern and western PRE. Conversely, metals were diffused seaward at lower concentrations along the plume flow in surface water. The study found that some metals, including Fe, Mn, Zn and Pb, were significantly higher in surface water than in bottom water in eastern waters, but the reverse was true in the southern offshore area, where limited mixing hindered the vertical transfer of metals in the water column. The partitioning coefficients (KD) of metals varied, with Fe exhibiting the highest KD (1038 ± 1093 L/g), followed by Zn (579 ± 482 L/g) and Mn (216 ± 224). The highest KD values of metals in surface water were observed in the west coast, while the highest KD in bottom water was found in eastern areas. Furthermore, re-suspension of sediment and the mixing of seawater and freshwater offshore, caused by seawater intrusion, resulted in the partitioning of Cu, Ni and Zn towards particulate phases in offshore waters. This study provides valuable insights into the migration and transformation of heavy metals in dynamic estuaries influenced by the interaction of freshwater and saltwater and highlights the importance of continued research in this field.
Collapse
Affiliation(s)
- Ling Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, Guangzhou, 510301, China
| | - Yunchao Wu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, Guangzhou, 510301, China
| | - Zhixin Ni
- Guangdong Provincial Key Laboratory of Applied Marine Biology, Guangzhou, 510301, China; South China Sea Environmental Monitoring Center, South China Sea Bureau, Ministry of Natural Resources, Guangzhou, 510300, China
| | - Jinlong Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuzheng Ren
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jizhen Lin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoping Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
15
|
Wang W, Lin C, Wang L, Jiang R, Huang H, Liu Y, Lin H. Contamination, sources and health risks of potentially toxic elements in the coastal multimedia environment of South China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160735. [PMID: 36493820 DOI: 10.1016/j.scitotenv.2022.160735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Coastal ecosystems are vulnerable to the accumulation of potentially toxic elements (PTEs), which pose a threat to marine ecosystems and human health. In this study, the concentrations of eight PTEs in a typical area of South China were analysed, and their distributions, seasonal variations, pollution degrees, potential health risks and sources in seawater, sediment and organisms were evaluated. The comprehensive pollution index (CPI), pollution load index (PLI), potential ecological risk index (PERI) and target hazard quotient (THQ) were applied to assess seawater, sediment and organism quality, respectively. The annual mean concentrations of Zn, Hg, Cr and As in the bottom seawater were higher than those in the surface water while those of Pb, Mn and Cu were higher in the surface seawater. The mean content of Hg was higher than the corresponding background value of that in China Shelf Sea sediment. Marine organisms have a high enrichment capacity for Cu, Zn, Cr, Hg, As and Mn in seawater. Based on CPI, the seawater was generally not polluted by PTEs. The PLI and PERI results demonstrated that Hg was the main contamination element in surface sediment. The total target hazard quotient (TTHQ) analysis illustrated that long-term consumption of some fish by children poses a noncarcinogenic health risk, while that risk to adults is negligible. Natural sources, agricultural activity sources, coal burning and industrial emission sources were the main sources of the PTEs in surface sediments according to positive matrix factorization (PMF) model.
Collapse
Affiliation(s)
- Weili Wang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Cai Lin
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China.
| | - Lingqing Wang
- Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Ronggen Jiang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Haining Huang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Yang Liu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Hui Lin
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| |
Collapse
|
16
|
Cai P, Cai G, Yang J, Li X, Lin J, Li S, Zhao L. Distribution, risk assessment, and quantitative source apportionment of heavy metals in surface sediments from the shelf of the northern South China Sea. MARINE POLLUTION BULLETIN 2023; 187:114589. [PMID: 36646001 DOI: 10.1016/j.marpolbul.2023.114589] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/08/2022] [Accepted: 01/04/2023] [Indexed: 05/15/2023]
Abstract
The concentration of heavy metals (Cu, Pb, Zn, Cr, Co, and Ni) from 421 sediment samples from the shelf of the northern margin of the South China Sea (SNSCS) was analyzed. The heavy metal content and calculated potential ecological indicators (Eri < 40 and RI < 160) indicate that there is low potential ecological risk of heavy metal pollution in the SNSCS. The mean effects range-median quotient (M-ERM-Q) and hazard quotient (HQ) values of sediment toxicological characteristics indicate that heavy metals are a potential toxicological risk. The high-risk area is mainly distributed in the southwest of the nearshore SNSCS. The positive matrix factorization (PMF) analysis results showed that major contributors to heavy metal pollution were natural sources and anthropogenic activities in the SNSCS. The government should pay particular attention to the monitoring of heavy metals in the nearshore southwest of the SNSCS.
Collapse
Affiliation(s)
- Pengjie Cai
- Guangzhou Marine Geological Survey, China Geological Survey, 510760 Guangzhou, China; State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, 210023 Nanjing, China.
| | - Guanqiang Cai
- Guangzhou Marine Geological Survey, China Geological Survey, 510760 Guangzhou, China; Southern Marine Science and Engineering Guangdong Laboratory (Guang Zhou), 511458 Guangzhou, China.
| | - Jingsui Yang
- Guangzhou Marine Geological Survey, China Geological Survey, 510760 Guangzhou, China; State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, 210023 Nanjing, China; Southern Marine Science and Engineering Guangdong Laboratory (Guang Zhou), 511458 Guangzhou, China
| | - Xuejie Li
- Guangzhou Marine Geological Survey, China Geological Survey, 510760 Guangzhou, China; Southern Marine Science and Engineering Guangdong Laboratory (Guang Zhou), 511458 Guangzhou, China
| | - Jie Lin
- Guangzhou Marine Geological Survey, China Geological Survey, 510760 Guangzhou, China
| | - Shun Li
- Guangzhou Marine Geological Survey, China Geological Survey, 510760 Guangzhou, China
| | - Li Zhao
- Guangzhou Marine Geological Survey, China Geological Survey, 510760 Guangzhou, China
| |
Collapse
|
17
|
Xie S, Jiang W, Sun Y, Yu K, Feng C, Han Y, Xiao Y, Wei C. Interannual variation and sources identification of heavy metals in seawater near shipping lanes: Evidence from a coral record from the northern South China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158755. [PMID: 36108824 DOI: 10.1016/j.scitotenv.2022.158755] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/19/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Heavy metal pollution is a serious environmental problem in the marine ecosystem. Thereinto, marine transportation activities have gradually become an important source of heavy metals in seawater. However, the lack of studies on the temporal dynamics of seawater heavy metals in marine shipping areas has hindered our understanding of the sources and transport mechanisms of heavy metals in seawater of hectic shipping waters. Therefore, we investigated the interannual resolution variation of heavy metals in Porites lutea skeletons during the past 32 years under the rapid development of the shipping sector near Weizhou Island from the northern South China Sea. Results show that most heavy metal concentrations with higher coefficients of variation (≥100 %) in the Porites coral skeletons were higher than those in the uncontaminated or less anthropogenic waters. The results of principal component analysis and multiple linear regression showed that the interannual variations of Ni, V, Cr, Co, Zn, Cu, Mn, Fe and Mo were mainly impacted by marine oil extraction and oil spills generated by shipping activities, accounting for 51.58 %. The effect of sea surface temperature accounts for 13.44 %, and controls the interannual variations of Ba and Sr. The effect of industrial pollution accounts for 13.27 %, and explains the interannual variations of Cd and Y. The fuel consumption of marine shipping accounted for 8.76 %, explaining the interannual variations of Pb. The total contribution of anthropogenic activities reached 73.61 %. The interannual variation of heavy metals indicates that hectic marine shipping activities are the dominant cause of Ni, V, Pb, Cr, Co, Zn, Cu, Mn, Fe and Mo input to surface seawater around Weizhou Island. This provided valuable data for understanding the temporal dynamics and potential sources of heavy metals in the marine environment by using coral skeletons as a high-resolution recording vehicle.
Collapse
Affiliation(s)
- Sirong Xie
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, PR China; School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
| | - Wei Jiang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, PR China.
| | - Yinan Sun
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, PR China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, PR China.
| | - Chunmei Feng
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, PR China
| | - Yansong Han
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, PR China
| | - Yuwen Xiao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, PR China
| | - Chaoshuai Wei
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, PR China
| |
Collapse
|
18
|
Jin DR, Lee M, Yang HJ, Kim S, Lee JS, Moon SD. Evaluation of metal contamination in brackish area sediments South Korea, using receiver operation characteristic curve. MARINE POLLUTION BULLETIN 2022; 184:114175. [PMID: 36215759 DOI: 10.1016/j.marpolbul.2022.114175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Brackish areas are where freshwater and seawater meet and possess high geographical and biological importance. However, no unified evaluation method exists for brackish sediments. Therefore, this study applies both the fresh water-sediment quality guidelines (F-SQGs) and the marine-sediment quality guidelines (M-SQGs) to evaluate metal contamination in brackish areas of Korea. The predicted reliability was examined using a receiver operation characteristic (ROC) curve. In the threshold effect level (TEL) evaluation of F-SQGs and M-SQGs, some metals (Cu, Zn, Hg, and Cd) showed significant differences according to guideline characteristics. The ROC curve showed that the predicted reliability of F-SQGs was 97.8 %, which was higher than M-SQGs (91.7 %). From the results of TEL evaluation and ROC curve prediction, F-SQGs are more suitable for the evaluation of brackish sediments in South Korea than M-SQGs.
Collapse
Affiliation(s)
- Dal Rae Jin
- Water Environmental Engineering Research Division, National Institute of Environmental Research (NIER), Incheon 22689, Republic of Korea
| | - Mikyung Lee
- Water Environmental Engineering Research Division, National Institute of Environmental Research (NIER), Incheon 22689, Republic of Korea
| | - Hae Jong Yang
- Yeongsan River Environment Research Center, NIER, Gwangju 61011, Republic of Korea
| | - Shin Kim
- Nakdong River Environment Research Center, NIER, Daegu 43008, Republic of Korea
| | - Jung-Suk Lee
- NeoEnBiz Co., Institute of Environmental Safety and Protection, Bucheon 14523, Republic of Korea
| | - Seong-Dae Moon
- NeoEnBiz Co., Institute of Environmental Safety and Protection, Bucheon 14523, Republic of Korea.
| |
Collapse
|
19
|
Qin J, Yang Y, Xu N, Wang Q, Sun X. Occurrence, partition, and risk of four adjacent transition metals in seawater, sediments and demersal fish from the Pearl River Estuary, South China Sea. MARINE POLLUTION BULLETIN 2022; 184:114159. [PMID: 36166857 DOI: 10.1016/j.marpolbul.2022.114159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
The spatio-seasonal variation, bioaccumulation and potential ecological risk of four metals (Co, Ni, Cu and Zn) in the multi-media of the Pearl River Estuary (PRE) were assessed. The degree of contamination and ecological risk of the four metals followed this pattern: Cu > Zn > Ni > Co, upstream > downstream, wet season > dry season. There were non-linear and linear correlations for Co, linear and non-linear correlations for Ni, and non-linear and no correlation for both Cu and Zn, between metals in bottom water or bioavailable concentrations in sediment and fish muscle. Co and Ni showed lightly polluted levels; Cu and Zn showed heavily polluted levels. This study demonstrates a tendency of cross-accumulation in fish of these four transition metals within specific habitats of the PRE.
Collapse
Affiliation(s)
- Junlian Qin
- Institute of Hydrobiology, Jinan University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou 510632, China
| | - Yufeng Yang
- Institute of Hydrobiology, Jinan University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou 510632, China.
| | - Ning Xu
- Institute of Hydrobiology, Jinan University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou 510632, China
| | - Qing Wang
- Institute of Hydrobiology, Jinan University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou 510632, China
| | - Xian Sun
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial, Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Zhuhai 519082, China.
| |
Collapse
|
20
|
Wen C, Zhu S, Li N, Luo X. Source apportionment and risk assessment of metal pollution in natural biofilms and surface water along the Lancang River, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:156977. [PMID: 35772562 DOI: 10.1016/j.scitotenv.2022.156977] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 06/10/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Herein, surface water and periphytic biofilm samples were collected from 16 sites along the Lancang River, China, to assess the spatial distribution, enrichment factor (EF), potential ecological risk index (RI), and associated source-oriented health risks of heavy metal elements (As, Cd, Co, Cr, Cu, Ni, Pb, V, and Zn) in the samples. Results showed that the levels of heavy metals were significantly lower in the surface water samples than in the biofilm samples (one-way analysis of variance, p < 0.001). Moreover, 37.50 % of the biofilm samples were significantly polluted by these heavy metals with a mean EF of >5. As and V were the highest polluting metals, and the enrichment of Co and Ni were attributed to natural sources. RI assessment results showed a consistent ecological risk of As. Based on principal component analysis with multiple linear regression (PCA-MLR) and positive matrix factorization (PMF) models, the presence of heavy metal ions in the biofilm samples was largely attributed to industrial activities (PCA-MLR: 68.89 %; PMF: 76.39 %), followed by a mixed source of natural and agricultural activities (PCA-MLR: 18.12 %; PMF: 13.56 %), and traffic emissions (PCA-MLR: 12.99 %; PMF: 10.05 %). Both carcinogenic and noncarcinogenic risks for adults were negligible even though adults tended to be exposed to greater risk through ingestion. Source-specific risk evaluations indicated that industrial pollution was the most important source of health risks. Our findings highlight the potential threat of biofilms to the ecological and human health.
Collapse
Affiliation(s)
- Chen Wen
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming 650500, China
| | - Shijun Zhu
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming 650500, China
| | - Nihong Li
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming 650500, China
| | - Xia Luo
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming 650500, China.
| |
Collapse
|
21
|
Wang W, Jiang R, Lin C, Wang L, Liu Y, Lin H. Multivariate statistical analysis of potentially toxic elements in the sediments of Quanzhou Bay, China: Spatial relationships, ecological toxicity and sources identification. ENVIRONMENTAL RESEARCH 2022; 213:113750. [PMID: 35753378 DOI: 10.1016/j.envres.2022.113750] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
In this paper, the spatial distribution, pollution degree, ecological toxicity and possible sources of seven potentially toxic elements (PTEs) collected from the surface sediments of Quanzhou Bay (QZB) were analyzed by obtaining concentration measurements. The results indicated that the areas with high Cu, Pb, Zn and Hg concentrations were mainly located in the Luoyang River estuary, while the areas with high contents of Cd and As appeared in the Luoyang River estuary area and in the southern part of QZB, respectively. The contamination indices showed that the Cd pollution degree was slight to serious, while other elements were slightly enriched. The calculation results of the potential ecological risk index (RI) and toxic risk index (TRI) indicated that Cd was the main element posing ecological risk among the PTEs of sediments in QZB, followed by Hg. Moreover, in approximately 30% of the surveyed sites, PTEs exhibited low toxicity to aquatic ecosystems. Finally, the self-organizing map (SOM) and positive matrix factorization (PMF) model were used to determine the PTEs sources. Natural sources, industrial emissions, and the combustion of fossil fuels were three main sources for PTEs in the surface sediments of QZB. This study provides a reference for assessing sediment pollution and managing marine pollution in QZB.
Collapse
Affiliation(s)
- Weili Wang
- Key Laboratory of Global Change and Marine Atmospheric Chemistry, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Ronggen Jiang
- Key Laboratory of Global Change and Marine Atmospheric Chemistry, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Cai Lin
- Key Laboratory of Global Change and Marine Atmospheric Chemistry, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China.
| | - Lingqing Wang
- Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yang Liu
- Key Laboratory of Global Change and Marine Atmospheric Chemistry, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Hui Lin
- Key Laboratory of Global Change and Marine Atmospheric Chemistry, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| |
Collapse
|
22
|
Sun X, Guo L, Luo D, Yu RQ, Yu X, Liang Y, Liu Z, Wu Y. Long-term increase in mortality of Indo-Pacific humpback dolphins (Sousa chinensis) in the Pearl River Estuary following anthropic activities: Evidence from the stranded dolphin mortality analysis from 2003 to 2017. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119526. [PMID: 35623568 DOI: 10.1016/j.envpol.2022.119526] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/22/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
With the dramatic increase in anthropogenic threats to the Pearl River Estuary (PRE), the population size of the Indo-Pacific humpback dolphins (Sousa chinensis) has significantly decreased over the past decade. To understand the impact and potential risks of intense human activities on these dolphins, factors related to the mortality of humpback dolphins in the PRE were investigated by a detailed examination of 343 dolphin specimens stranded during 2003-2017. There was a significant (p < 0.01) increasing trend for humpback dolphin stranding, reflecting the accelerating rate of the population decline. A large proportion of strandings (35.88%) were neonates. A low recruitment rate implies slow population growth, and hence, limited capacity to resist anthropogenic stress. The most commonly diagnosed causes of death were vessel collision and net entanglement. The concentrations of trace metals, polychlorinated biphenyl (PCB) congeners, dichlorodiphenyltrichloroethane, polycyclic aromatic hydrocarbons, and most of per- and polyfluoroalkyl substances (PFASs) in the dolphin samples were greater than those previously reported in cetaceans globally. Furthermore, Cu, PCB77, PCB169, PCB81, PCB37, and PFASs (excluding PFBA, PFPeA, PFHxA, PFHxDA, and PFODA) were the major pollutants accumulated in neonates. 67% of PCB, 78% of Cu, and 100% of perfluorooctane sulfonate concentrations in the neonates exceeded the threshold for toxicological effects in marine mammals, suggesting that these compounds could be important factors contributing to the low survival rate of calves in this area. This study revealed that vessel transportation, fishing activities, and pollutant bioaccumulation are the three major causes of humpback dolphin mortality in the PRE. These results highlight the need for more efforts to restrict anthropogenic activities, especially vessel traffic, the catching of these marine animals and fishing, and pollutant discharge, in order to prevent vulnerable species from continuous population decline and further extinction.
Collapse
Affiliation(s)
- Xian Sun
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-Sen University; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Lang Guo
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-Sen University; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Dingyu Luo
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-Sen University; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Ri-Qing Yu
- Department of Biology, Center for Environment, Biodiversity and Conservation, The University of Texas at Tyler, Tyler, TX, United States
| | - Xinjian Yu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-Sen University; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Yuqin Liang
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-Sen University; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Zhiwei Liu
- School of Ecology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yuping Wu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-Sen University; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China.
| |
Collapse
|
23
|
Environmental Assessment of Potentially Toxic Elements Using Pollution Indices and Data-Driven Modeling in Surface Sediment of the Littoral Shelf of the Mediterranean Sea Coast and Gamasa Estuary, Egypt. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10060816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Coastal environmental assessment techniques have evolved into one of the most important fields for the long-term development and management of coastal zones. So, the overall aim of the present investigation was to provide effective approaches for making informed decisions about the Gamasa coast sediment quality. Over a two-year investigation, sediment samples were meticulously collected from the Gamasa estuary and littoral shelf. The inductively coupled plasma mass spectra (ICP-MS) was used to the total concentrations of Al, Fe, Ti, Mg, Mn, Cu, P, V, Ba, Cr, Sr, Co, Ni, Zn, Pb, Zr, and Ce. Single elements environmental pollution indices including the geoaccumulation index (Igeo), contamination factor (CF), and enrichment factor (EF), as well as multi-elements pollution indices comprising the potential ecological risk index (RI), degree of contamination (Dc), and pollution load index (PLI) were used to assess the sediment and the various geo-environmental variables affecting the Mediterranean coastal system. Furthermore, the Dc, PLI, and RI were estimated using the random forest (RF) and Back-Propagation Neural Network (BPNN) depending on the selected elements. According to the Dc results, all the investigated sediment samples categories were considerably contaminated. Cr, Co, Ni, Cu, Zr, V, Zn, P, and Mn showed remarkable enrichment in sediment samples and were originated from anthropogenic sources based on the CF, EF, and Igeo data. Moreover, the RI findings revealed that all the samples tested pose a low ecologically risk. Meanwhile, based on PLI, 70% of the Gamasa estuary samples were polluted, while 93.75% of littoral shelf sediment was unpolluted. The BPNNs -PCs-CD-17 model performed the best and demonstrated a better association between exceptional qualities and CD. With R2 values of 1.00 for calibration (Cal.) and 1.00 for validation (Val.). The BPNNs -PCs-PLI-17 models performed the best in terms of measuring PLI with respective R2 values of 1.00 and 0.98 for the Cal. and Val. datasets. The findings showed that the RF and BPNN models may be used to precisely quantify the pollution indices (Dc, PLI, and RI) in calibration (Cal.) and validation (Val.) datasets utilizing potentially toxic elements of surface sediment.
Collapse
|
24
|
Liu J, Wang H, Ma N, Zhou B, Chen H, Yuan R. Optimization of the raw materials of biochars for the adsorption of heavy metal ions from aqueous solution. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:2869-2881. [PMID: 35638793 DOI: 10.2166/wst.2022.158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this paper, the material types were preferentially selected for different kinds of heavy metals, the effect of calcination temperatures on metal adsorption was investigated, and the adsorption mechanism was explored and summarized. The results show that the pseudo-first-order kinetic was better to fit the adsorption of heavy metals. The biomass type and pyrolysis temperature had an effect on the rate at which heavy metals were absorbed. Based on their adsorbed capacity, 350 °C pyrolyzed corn stalk char, 550 °C pyrolyzed peanut shell char, 450 °C pyrolyzed peanut shell char, 450 °C pyrolyzed peanut shell char, and 500 °C pyrolyzed wheat stalk char were shown to be the best adsorbents for Cr2O72-, Cd2+, Cu2+, Zn2+ and Pb2+, respectively. The largest adsorption rate were in the order of Cr6+ (Cr2O72-, 0.5380 /min) > Pb2+ (0.2276 /min) > Cd2+ (0.1354 /min) > Cu2+ (0.1273 /min) > Zn2+ (0.1000 /min), which might be positively related to the ion radius. Meanwhile, the yield of biomass decreased from 43.9% to 29.0% with the increase of pyrolysis temperature from 350 °C to 550 °C. In addition, the specific surface area and functional groups of the biochar, as well as the ionic radius and initial concentration of heavy metals affect the adsorption rate.
Collapse
Affiliation(s)
- Jia Liu
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China E-mail:
| | - Hao Wang
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China E-mail:
| | - Nan Ma
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China E-mail:
| | - Beihai Zhou
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China E-mail:
| | - Huilun Chen
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China E-mail:
| | - Rongfang Yuan
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China E-mail:
| |
Collapse
|