1
|
Zheng X, Zhang W, Wu Y, Wu J, Chen Y, Long M. Biodegradation of organosulfur with extra carbon source: Insights into biofilm formation and bacterial metabolic processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175758. [PMID: 39182787 DOI: 10.1016/j.scitotenv.2024.175758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/11/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Organosulfur compounds are prevalent in wastewater, presenting challenges for biodegradation, particularly in low-carbon environments. Supplementing additional carbon sources not only provides essential nutrients for microbial growth but also serves as regulators, influencing adaptive changes in biofilm and enhancing the survival of microorganisms in organosulfur-induced stress bioreactors. This study aims to elucidate the biodegradation of organosulfur under varying carbon source levels, placing specific emphasis on functional bacteria and metabolic processes. It has been observed that higher levels of carbon supplementation led to significantly improved total sulfur (TS) removal efficiencies, exceeding 83 %, and achieve a high organosulfur CH3SH removal efficiency of ~100 %. However, in the reactor with no external carbon source added, the oxidation end-product SO42- accumulated significantly, surpassing 120 mEq/m2-day. Furthermore, the TB-EPS concentration consistently increasedwith the ascending glucose concentration. The analysis of bacterial community reveals the enrichment of functional bacteria involved in sulfur metabolism and biofilm formation (e.g. Ferruginibacter, Rhodopeudomonas, Gordonia, and Thiobacillus). Correspondingly, the gene expressions related to the pathway of organosulfur to SO42- were notably enhanced (e.g. MTO increased by 27.7 %). In contrast, extra carbon source facilitated the transfer of organosulfur into amino acids in sulfur metabolism and promoted assimilation. These metabolic insights, coupled with kinetic transformation results, further validate distinct sulfur pathways under different carbon source conditions. The intricate interplay between bacteria growth regulation, pollutant biodegradation, and microbial metabolites underscores a complex network relationship that significantly contributes to efficient operation of bioreactors.
Collapse
Affiliation(s)
- Xiong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Wei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Min Long
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
2
|
Shahi PB, Manandhar S, Angove MJ, Paudel SR. Performance evaluation of species varied fixed bed biofilm reactor for wastewater treatment of Dhobi Khola outfall, Setopul, Kathmandu, Nepal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 942:173752. [PMID: 38851334 DOI: 10.1016/j.scitotenv.2024.173752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/09/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
The sustainability of wastewater treatment plants poses significant challenges for developing countries, necessitating substantial investment for operation and maintenance. Biofilm reactors seeded with specific species of microorganisms were investigated under controlled environmental conditions. However, the performance evaluation of such reactors under natural conditions remains largely underexplored. This study investigated wastewater treatment capabilities of bench-scale fixed bed biofilm reactors, employing various species (Wastewater Microbes, Pseudomonas, Algae, and a co-culture of Algae and Pseudomonas). The reactors (Treatments and Control) were filled with 28 mm nominal-size local aggregates as packing media, operated under different contact times, and subjected to varying concentrations of heavy metals (Zn, Cd). To assess the reactor performances, the Bland-Altman Plot and Chemical Oxygen Demand (COD) removal kinetics were evaluated. The results revealed that the reactor initiated with a co-culture exhibited the optimal COD removal efficiency, reaching 84 ± 1 %. The reactor initially seeded with wastewater microbes exhibited the highest heavy metal elimination, achieving 94 ± 1 % and 88 ± 1 % removal for Zn and Cd respectively. The wastewater-seeded reactor demonstrated the zero-order COD removal kinetic coefficient (k) of 46.41 mg/L/h at an average influent COD concentration of 558 mg/L at 10 h contact time. While Pseudomonas-seeded reactor demonstrated k = 0.73 mg/L/h at 20 h contact time with 69 mg/L influent COD and heavy metal concentrations Zn = 26 mg/L and Cd = 3.57 mg/L. The findings of this study suggest that variations in environmental conditions, contact time, and heavy metal concentration have minimal impact on the pollutant removal efficacy of the reactors, and provide robust evidence for their viability as a sustainable alternative in municipal wastewater treatment. The study also identifies the possibility of treating specific wastewater characteristics by altering the dominant species in the reactors, paving the way for further research on the efficacy of other microbial genomes in fixed bed biofilm reactors.
Collapse
Affiliation(s)
- Pratap Bikram Shahi
- Department of Civil Engineering, Pulchowk Campus, Institute of Engineering, Tribhuvan University, Nepal; Aastha Scientific Research Service Pvt. Ltd., Maitidevi, Kathmandu, Nepal
| | - Sarita Manandhar
- Department of Microbiology, Tri-Chandra Multiple Campus, Tribhuvan University, Nepal
| | - Michael J Angove
- Department of Rural Clinical Sciences, La Trobe Rural Health School, La Trobe University, Australia
| | - Shukra Raj Paudel
- Department of Civil Engineering, Pulchowk Campus, Institute of Engineering, Tribhuvan University, Nepal; Department of Environmental Engineering, College of Science and Technology, Korea University, Sejong, Republic of Korea.
| |
Collapse
|
3
|
Tomczak W, Woźniak P, Gryta M, Grzechulska-Damszel J, Daniluk M. Cleaning of Ultrafiltration Membranes: Long-Term Treatment of Car Wash Wastewater as a Case Study. MEMBRANES 2024; 14:159. [PMID: 39057667 PMCID: PMC11278524 DOI: 10.3390/membranes14070159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
Car wash wastewaters (CWWs) contain various pollutants with different contents. Hence, selecting an appropriate process for their treatment is a great challenge. Undoubtedly, the ultrafiltration (UF) process is one of the most interesting and reliable choices. Therefore, the main aim of the current study was to investigate the performance of the UF membranes used for the long-term treatment of real CWWs. For this purpose, two polyethersulfone (PES) membranes with molecular weight cut-off (MWCO) values equal to 10 and 100 kDa were applied. As expected, a significant decrease in the permeate flux during the UF run was observed. However, it was immediately demonstrated that the systematic cleaning of membranes (every day) with Insect agent (pH = 11.5) prevented a further decline in the process's performance. In addition, this study focused on the relative flux during the process run with breaks lasting a few days when the UF installation was filled with distilled water. The results of this research indicated that aqueous media favor microorganism adherence to the surface which leads to the formation of biofilms inside processing installations. As a consequence, many attempts have been made to restore the initial membrane performance. It has been found that the application of several chemical agents is required. More precisely, the use of an Insect solution, P3 Ultrasil 11 agent, and phosphoric acid increases the relative flux to a value of 0.8. Finally, it has been indicated that the membranes used in this work are resistant to the long-term exposure to bacteria and chemical agents. However, during the separation of CWWs for the membrane with an MWCO of 10 kDa, a lesser fouling influence and higher effectiveness of cleaning were obtained. Finally, the present study demonstrates a novel analysis and innovative implications towards applying the UF process for the CWW treatment.
Collapse
Affiliation(s)
- Wirginia Tomczak
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, 3 Seminaryjna Street, 85-326 Bydgoszcz, Poland;
| | - Piotr Woźniak
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, 10 Pułaskiego Street, 70-322 Szczecin, Poland; (P.W.); (J.G.-D.)
| | - Marek Gryta
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, 10 Pułaskiego Street, 70-322 Szczecin, Poland; (P.W.); (J.G.-D.)
| | - Joanna Grzechulska-Damszel
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, 10 Pułaskiego Street, 70-322 Szczecin, Poland; (P.W.); (J.G.-D.)
| | - Monika Daniluk
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, 3 Seminaryjna Street, 85-326 Bydgoszcz, Poland;
| |
Collapse
|
4
|
Li L, Chai W, Sun C, Huang L, Sheng T, Song Z, Ma F. Role of microalgae-bacterial consortium in wastewater treatment: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121226. [PMID: 38795468 DOI: 10.1016/j.jenvman.2024.121226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/17/2024] [Accepted: 05/21/2024] [Indexed: 05/28/2024]
Abstract
In the global effort to reduce CO2 emissions, the concurrent enhancement of pollutant degradation and reductions in fossil fuel consumption are pivotal aspects of microalgae-mediated wastewater treatment. Clarifying the degradation mechanisms of bacteria and microalgae during pollutant treatment, as well as regulatory biolipid production, could enhance process sustainability. The synergistic and inhibitory relationships between microalgae and bacteria are introduced in this paper. The different stimulators that can regulate microalgal biolipid accumulation are also reviewed. Wastewater treatment technologies that utilize microalgae and bacteria in laboratories and open ponds are described to outline their application in treating heavy metal-containing wastewater, animal husbandry wastewater, pharmaceutical wastewater, and textile dye wastewater. Finally, the major requirements to scale up the cascade utilization of biomass and energy recovery are summarized to improve the development of biological wastewater treatment.
Collapse
Affiliation(s)
- Lixin Li
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, 150022, China.
| | - Wei Chai
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, 150022, China
| | - Caiyu Sun
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, 150022, China
| | - Linlin Huang
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, 150022, China
| | - Tao Sheng
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, 150022, China
| | - Zhiwei Song
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, 150022, China
| | - Fang Ma
- State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
5
|
Hong JK, Lee TK, Kim I, Park S. Determinants of microbial colonization on microplastics through wastewater treatment processes: The role of polymer type and sequential treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:170072. [PMID: 38218474 DOI: 10.1016/j.scitotenv.2024.170072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/27/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
This study examines the microbial colonization characteristics of microplastics (MPs) in wastewater treatment plants (WWTPs), focusing on polymer types (High-Density Polyethylene (HDPE) and Polyethylene Terephthalate (PET)) and various stages of wastewater treatments. Through individual and sequential deployment approaches, the research aimed to identify the determinants of bacterial colonization on MPs, whether they were introduced at each stage of treatment individually or in sequence from primary to tertiary stages. The study revealed that the stage of wastewater treatment profoundly influenced bacterial colonization on the polymer types MPs, with bacterial attachment being largely niche-specific. HDPE showed increased sensitivity to wastewater composition, leading to selective biofilm formation. For instance, in HDPE, Firmicutes accounted for 25.1 ± 0.04 % during primary treatment, while Alphaproteobacteria increased significantly in the tertiary treatment to 19.8 ± 0.1 %. Conversely, PET exhibited a stochastic pattern of bacterial colonization due to differences in surface hydrophilicity. Additionally, in sequential deployments, a notable shift towards stochastic bacterial attachment on MPs, particularly with HDPE was observed. The Shannon diversity values for MP biofilms were consistently higher than those for wastewater across all stages, with PET showing an increase in diversity in sequential deployments (Shannon diversity: 5.01 ± 0.03 for tertiary stage). These findings highlight the critical role of MPs as carriers of diverse bacteria, emphasizing the necessity for strategies to mitigate their impact in WWTPs. This study presents a significant advancement in our understanding of the interactions between MPs and microbial populations in WWTP environments.
Collapse
Affiliation(s)
- Jin-Kyung Hong
- Department of Environmental and Energy Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Tae Kwon Lee
- Department of Environmental and Energy Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Ilho Kim
- Department of Environmental research, Korea Institute of Civil engineering and building Technology (KICT), Gyeonggi-Do 10223, Republic of Korea; Department of Civil and Environmental Engineering, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Saerom Park
- Department of Environmental research, Korea Institute of Civil engineering and building Technology (KICT), Gyeonggi-Do 10223, Republic of Korea; Department of Civil and Environmental Engineering, University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
6
|
Mazioti AA, Vyrides I. Treatment of high-strength saline bilge wastewater by four pilot-scale aerobic moving bed biofilm reactors and comparison of the microbial communities. ENVIRONMENTAL TECHNOLOGY 2024; 45:1066-1080. [PMID: 36315853 DOI: 10.1080/09593330.2022.2137436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Four Pilot-scale Moving Bed Biofilm Reactors (MBBRs) were operated for the treatment of real, saline, bilge wastewater. The MBBRs were connected in pairs to create two system configurations with different filling ratios (20%, 40%) and were operated in parallel. The inflow organic loading rate (OLR) varied from 3.6 ± 0.2 to 7.8 ± 0.6 g COD L-1 d-1, salinity was >15 ppt and three hydraulic residence times (HRTs) were tested 48, 30 and 24 h. In both systems, the first-stage bioreactors (R1 and R3) eliminated the higher part of the organic load (57%-65%). The second-stage bioreactors (R2 and R4) removed an additional fraction (18%-31%) of the organic load received by the effluent of R1 and R3, respectively. The microbial communities of the influent wastewater, suspended, and attached biomass were determined using 16S rRNA gene amplicon sequencing analysis. The evolution of the microbial communities was investigated and compared over the different operational phases. The microbial communities of the biofilm presented higher diversity and greater stability in composition over time, while the suspended biomass exhibited intense and rapid changes in the dominance of genera. Proteobacteria, Bacteroidetes and Firmicutes were highly present in the biofilm. The genera Celeribacter, Novispirillum, Roseovarius (class: Alphaproteobacteria) and Formosa (class: Flavobacteriia) were highly present during all operational phases. Principal Component Analysis (PCA) was used to identify similarities between samples, exhibiting high relation of samples according to the series of the bioreactor (1st, 2nd).
Collapse
Affiliation(s)
- Aikaterini A Mazioti
- Department of Chemical Engineering, Cyprus University of Technology, Limassol, Cyprus
- Department of Marine Sciences, University of the Aegean, Mytilene, Greece
| | - Ioannis Vyrides
- Department of Chemical Engineering, Cyprus University of Technology, Limassol, Cyprus
| |
Collapse
|
7
|
Osama A, Kinnawy MA, Moussa MS, Riechelmann C, Hosney H. Mathematical modelling and comparative analysis of treatment technologies for upgrading wastewater treatment plants: A case study of biofilm reactors in El-Gouna, Egypt. ENVIRONMENTAL RESEARCH 2023; 238:117008. [PMID: 37669734 DOI: 10.1016/j.envres.2023.117008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/23/2023] [Accepted: 08/26/2023] [Indexed: 09/07/2023]
Abstract
In recent years, Moving Bed Biofilm Reactors (MBBRs) have been preferred to conventional processes with suspended biomass. The main reason for this preference is that it can achieve better removal efficiencies than conventional systems with smaller footprints. However, unlocking the full potential of MBBRs in large-scale WWTPs remains challenging in real life. In this study, the performance of three different treatment technologies, Extended Aeration Activated Sludge (EAAS), Hybrid Fixed Bed Biofilm Reactor (HFBBR), and Hybrid Moving Bed Biofilm Reactor (HMBBR), was investigated over a year in a WWTP located in El-Gouna, Egypt. The COD removal efficiencies of the three systems were comparable, with the EAAS achieving 93.5%, HFBBR 94%, and HMBRR 95%. Nevertheless, the NH4 removal efficiency of the EAAS was slightly lower (97.5%) than that of the HFBBR and the HMBBR, that achieved a removal efficiency of 98%. BioWin Software was able to mimic the real case of the WWTP of El-Gouna and critically defined all plant limitations and operational data. Different simulations were modeled to test the hydraulic and organic loading capacities of the three systems under different scenarios and operating conditions. The HMBBR system failed to withstand the increase in organic load because of the biomass sloughing effect and subsequently high TSS loads in the settlers. Biomass sloughing overloaded the settlers and lead to biomass loss in the effluent. As the settleability of the HMBBR sludge was significantly lower than for the HFBBR the TSS loss in the effluent happened that much earlier that the moving carrier application had an adverse effect contradicting with the primary purpose of adding media carriers. Model simulations and data analysis findings were used to recommend the most suitable configuration for upgrading an existing system using the attached growth technique with all kinetic parameters and operational conditions. The recommended configuration focuses mainly on the separation of plastic media in a compartment with a very low hydraulic retention time to absorb the incoming shock load.
Collapse
Affiliation(s)
- Ashrakat Osama
- Environmental Engineering Program, Zewail City of Science and Technology, 12578, Giza, Egypt
| | - Mohab A Kinnawy
- Sustainable Development Center, Zewail City of Science and Technology, 12578, Giza, Egypt
| | - Moustafa S Moussa
- Sustainable Development Center, Zewail City of Science and Technology, 12578, Giza, Egypt; Faculty of Engineering Mataria, Helwan University, 11795, Cairo, Egypt
| | - Carsten Riechelmann
- Department of Urban Water Management, Faculty of Civil Engineering, Technische Universität Berlin, 10623, Berlin, Germany
| | - Hadeel Hosney
- Water Supply, Sanitation and Environmental Engineering Department, IHE Delft Institute for Water Education, 2601, DA, Delft, the Netherlands.
| |
Collapse
|
8
|
Mishra S, Cheng L, Lian Y. Response of biofilm-based systems for antibiotics removal from wastewater: Resource efficiency and process resiliency. CHEMOSPHERE 2023; 340:139878. [PMID: 37604340 DOI: 10.1016/j.chemosphere.2023.139878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/23/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023]
Abstract
Biofilm-based systems have efficient stability to cope-up influent shock loading with protective and abundant microbial assemblage, which are extensively exploited for biodegradation of recalcitrant antibiotics from wastewater. The system performance is subject to biofilm types, chemical composition, growth and thickness maintenance. The present study elaborates discussion on different type of biofilms and their formation mechanism involving extracellular polymeric substances secreted by microbes when exposed to antibiotics-laden wastewater. The biofilm models applied for estimation/prediction of biofilm-based systems performance are explored to classify the application feasibility. Further, the critical review of antibiotics removal efficiency, design and operation of different biofilm-based systems (e.g. rotating biological contactor, membrane biofilm bioreactor etc.) is performed. Extending the information on effect of various process parameters (e.g. hydraulic retention time, pH, biocarrier filling ratio etc.), the microbial community dynamics responsible of antibiotics biodegradation in biofilms, the technological problems, related prospective and key future research directions are demonstrated. The biofilm-based system with biocarriers filling ratio of ∼50-70% and predominantly enriched with bacterial species of phylum Proteobacteria protected under biofilm thickness of ∼1600 μm is effectively utilized for antibiotic biodegradation (>90%) when operated at DO concentration ≥3 mg/L. The C/N ratio ≥1 is best suitable condition to eliminate antibiotic pollution from biofilm-based systems. Considering the significance of biofilm-based systems, this review study could be beneficial for the researchers targeting to develop sustainable biofilm-based technologies with feasible regulatory strategies for treatment of mixed antibiotics-laden real wastewater.
Collapse
Affiliation(s)
- Saurabh Mishra
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, Jiangsu, China; Institute of Water Science and Technology, Hohai University, Nanjing, Jiangsu, 210098, China; State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, Jiangsu, China.
| | - Liu Cheng
- College of Environment, Hohai University, Nanjing, Jiangsu Province, 210098, China
| | - Yanqing Lian
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, Jiangsu, China; State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, Jiangsu, China.
| |
Collapse
|
9
|
Zhang S, Su J, Liu S, Ren Y, Cao S. Regulating mechanism of denitrifier Comamonas sp. YSF15 in response to carbon deficiency: Based on carbon/nitrogen functions and bioaggregation. ENVIRONMENTAL RESEARCH 2023; 235:116661. [PMID: 37451570 DOI: 10.1016/j.envres.2023.116661] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
There is an urgent demand to investigate mechanisms for the improvement of denitrification in carbon-deficient environment, which will effectively reduce the eutrophication in water bodies polluted by nitrate. In this study, denitrifying bacterium Comamonas sp. YSF15 was used to explore the differences in different carbon source concentrations, with the complete genome, metabolomics, and other detecting methods. Results showed that strain YSF15 was able to achieve efficient denitrification, with complete pathways for denitrification and central carbon metabolism. The carbon deficiency prompted the bacteria to use extracellular amino acid-like metabolites initially, to alleviate inhibition and maintain bioactivity, which also facilitated glycogen storage. The biogenic inhibitors (tautomycin, navitoclax, and glufosinate) at extremely low level potentially favored the competitiveness and intraspecific utilization of extracellular polysaccharides (PS). Optimal solutions for bioaggregation in carbon-deficient condition are achieved by regulating the hydrophobicity, and hydrogen bond in extracellular metabolites. The strategy contributes to the maintenance of bioactivity and adaptation to carbon deficiency. Overall, this study provides a new perspective on understanding the denitrification strategies in carbon-deficient environment, and helps to improve the nitrate removal in low-carbon wastewater treatment.
Collapse
Affiliation(s)
- Shuai Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Shuyu Liu
- School of Environment and Chemistry Engineering, Shanghai University, Shanghai, 200444, China.
| | - Yi Ren
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Shumiao Cao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
10
|
Guo M, Yang G, Meng X, Zhang T, Li C, Bai S, Zhao X. Illuminating plant-microbe interaction: How photoperiod affects rhizosphere and pollutant removal in constructed wetland? ENVIRONMENT INTERNATIONAL 2023; 179:108144. [PMID: 37586276 DOI: 10.1016/j.envint.2023.108144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/18/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023]
Abstract
Rhizosphere is a crucial area in comprehending the interaction between plants and microorganisms in constructed wetlands (CWs). However, influence of photoperiod, a key factor that regulates photosynthesis and rhizosphere microbial activity, remains largely unknown. This study investigated the effect of photoperiod (9, 12, 15 h/day) on pollutant removal and underlying mechanisms. Results showed that 15-hour photoperiod treatment exhibited the highest removal efficiencies for COD (87.26%), TN (63.32%), and NO3--N (97.79%). This treatment enhanced photosynthetic pigmentation and root activity, which increased transport of oxygen and soluble organic carbon to rhizosphere, thus promoting microbial nitrification and denitrification. Microbial community analysis revealed a more stable co-occurrence network due to increased complexity and aggregation in the 15-hour photoperiod treatment. Phaselicystis was identified as a key connector, which was responsible for transferring necessary carbon sources, ATP, and electron donors that supported and optimized nitrogen metabolism in the CWs. Structural equation model analysis emphasized the importance of plant-microbe interactions in pollutant removal through increased substance, information, and energy exchange. These findings offer valuable insights for CWs design and operation in various latitudes and rural areas for small-scale decentralized systems.
Collapse
Affiliation(s)
- Mengran Guo
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Genji Yang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xiangwei Meng
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Tuoshi Zhang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Chunyan Li
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Shunwen Bai
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xinyue Zhao
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
11
|
Ali A, Zahra A, Kamthan M, Husain FM, Albalawi T, Zubair M, Alatawy R, Abid M, Noorani MS. Microbial Biofilms: Applications, Clinical Consequences, and Alternative Therapies. Microorganisms 2023; 11:1934. [PMID: 37630494 PMCID: PMC10459820 DOI: 10.3390/microorganisms11081934] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/05/2023] [Accepted: 07/08/2023] [Indexed: 08/27/2023] Open
Abstract
Biofilms are complex communities of microorganisms that grow on surfaces and are embedded in a matrix of extracellular polymeric substances. These are prevalent in various natural and man-made environments, ranging from industrial settings to medical devices, where they can have both positive and negative impacts. This review explores the diverse applications of microbial biofilms, their clinical consequences, and alternative therapies targeting these resilient structures. We have discussed beneficial applications of microbial biofilms, including their role in wastewater treatment, bioremediation, food industries, agriculture, and biotechnology. Additionally, we have highlighted the mechanisms of biofilm formation and clinical consequences of biofilms in the context of human health. We have also focused on the association of biofilms with antibiotic resistance, chronic infections, and medical device-related infections. To overcome these challenges, alternative therapeutic strategies are explored. The review examines the potential of various antimicrobial agents, such as antimicrobial peptides, quorum-sensing inhibitors, phytoextracts, and nanoparticles, in targeting biofilms. Furthermore, we highlight the future directions for research in this area and the potential of phytotherapy for the prevention and treatment of biofilm-related infections in clinical settings.
Collapse
Affiliation(s)
- Asghar Ali
- Clinical Biochemistry Lab, D/O Biochemistry, School of Chemical and Lifesciences, Jamia Hamdard, New Delhi 110062, India;
| | - Andaleeb Zahra
- Department of Botany, School of Chemical and Lifesciences, Jamia Hamdard, New Delhi 110062, India;
| | - Mohan Kamthan
- Clinical Biochemistry Lab, D/O Biochemistry, School of Chemical and Lifesciences, Jamia Hamdard, New Delhi 110062, India;
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Thamer Albalawi
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Mohammad Zubair
- Department of Medical Microbiology, Faculty of Medicine, University of Tabuk, Tabuk 71491, Saudi Arabia; (M.Z.); (R.A.)
| | - Roba Alatawy
- Department of Medical Microbiology, Faculty of Medicine, University of Tabuk, Tabuk 71491, Saudi Arabia; (M.Z.); (R.A.)
| | - Mohammad Abid
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India;
| | - Md Salik Noorani
- Department of Botany, School of Chemical and Lifesciences, Jamia Hamdard, New Delhi 110062, India;
| |
Collapse
|
12
|
Zhao X, Zhang T, Dang B, Guo M, Jin M, Li C, Hou N, Bai S. Microalgae-based constructed wetland system enhances nitrogen removal and reduce carbon emissions: Performance and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162883. [PMID: 36934950 DOI: 10.1016/j.scitotenv.2023.162883] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/11/2023] [Accepted: 03/11/2023] [Indexed: 05/06/2023]
Abstract
Combination of constructed wetlands (CWs) and microalgae-based technologies has been proved as effective wastewater treatment option; however, little attention was paid to investigate the optimal combination ways. This study showed that the integrated system (IS) connecting microalgal pond with CWs exhibited improved pollutant-removal efficiencies and preferred carbon reduction effects compared to other alternatives such as coupled system or independent CWs. Microbial analysis demonstrated that core microorganisms (e.g., Acinetobacter and Thermomonas) of the IS were mostly associated with carbon, nitrogen, and energy metabolism. Based on co-occurrence networks, microbial quantity with denitrification function in the IS accounted for 71.01 % of the microorganism related to nitrogen metabolism, which was higher than that of 48.84 % in the independent CWs, indicating that the presence of microalgae in IS played important role in promoting biological denitrification. These findings provide insights into the microbial mechanism and highlights the complementary effects between microalgae and CWs.
Collapse
Affiliation(s)
- Xinyue Zhao
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Tuoshi Zhang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Bin Dang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Mengran Guo
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ming Jin
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Chunyan Li
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ning Hou
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Shunwen Bai
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
13
|
Wei S, Li F, Zhu N, Wei X, Wu P, Dang Z. Biomass production of Chlorella pyrenoidosa by filled sphere carrier reactor: Performance and mechanism. BIORESOURCE TECHNOLOGY 2023:129195. [PMID: 37207699 DOI: 10.1016/j.biortech.2023.129195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 05/21/2023]
Abstract
Microalgae-based Carbon Capture, Utilization and Storage is vital for mitigating global climate change. A filled sphere carrier reactor was developed to achieve high biomass production and carbon sequestration rate of Chlorella pyrenoidosa. By introducing air (0.04% CO2) into the reactor, the dry biomass production achieved 8.26 g/L with the optimized parameters of polyester carrier, 80% packing density, 5-fold concentrated nutrient combining 0.2 mol/L phosphate buffer. At simulated flue gas CO2 concentration of 7%, the dry biomass yield and carbon sequestration rate reached up to 9.98 g/L and 18.32 g/L/d in one day, which were as high as 249.5 and 79.65 times comparing with those of suspension culture at day 1, respectively. The mechanism was mainly attributed to the obvious intensification of electron transfer rate and remarkable increase of RuBisCO enzyme activity in the photosynthetic chloroplast matrix. This work provided a novel approach for potential microalgae-based carbon capture and storage.
Collapse
Affiliation(s)
- Sijing Wei
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Fei Li
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Nengwu Zhu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters of Ministry of Education, Guangzhou 510006, PR China; Guangdong Environmental Protection Key Laboratory of Solid Waste Treatment and Recycling, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, PR China.
| | - Xiaorong Wei
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Pingxiao Wu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters of Ministry of Education, Guangzhou 510006, PR China; Guangdong Environmental Protection Key Laboratory of Solid Waste Treatment and Recycling, Guangzhou 510006, PR China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters of Ministry of Education, Guangzhou 510006, PR China; Guangdong Environmental Protection Key Laboratory of Solid Waste Treatment and Recycling, Guangzhou 510006, PR China
| |
Collapse
|
14
|
Li L, Lv Y, Jia C, Yin D, Dong Z, Zhan Z, Han J, Zhang J. Preparation of sludge-cyanobacteria composite carbon for synergistically enhanced co-removal of Cu(II) and Cr(VI). CHEMOSPHERE 2023; 320:138043. [PMID: 36738939 DOI: 10.1016/j.chemosphere.2023.138043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/19/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Traditional sludge disposal is currently restricted by the risk of secondary pollution. Sludge carbon material has gained widespread attention because of its low cost and environmentally sustainable properties. However, owing to the high ash content and low-energy density of sludge, sludge pyrolysis alone has certain limitations, and the performance of carbon materials needs to be improved. Herein, a sludge-cyanobacteria composite carbon (SCC) was easily synthesized, and the adsorption process of Cu(II) and Cr(VI) by SCC was examined. SCC-700-2-50% exhibited a high SBET (1047.54 m2/g) and developed pore structure rich in functional groups (such as -NH, -OH, and C-O). The combination of pore structure and functional groups improved the adsorption performance of SCC. The adsorption processes exhibited a synergistic effect in a binary system: the qm of Cu(II) and Cr(VI) were 386 mg/g and 341 mg/g, respectively, and the selectivity of Cu(II) adsorption by SCC was greater than Cr(VI). The adsorption process, examined by SEM-EDS, FTIR, and XPS analysis, indicated that Cu(II) as a cationic interface strengthens Cr(VI) adsorption through electrostatic interaction, and the anion Cr(VI) created a valid electrostatic shield against the electrostatic repulsion between H+ and Cu(II), facilitating Cu(II) adsorption. SCC had great reusability: Cu(II) and Cr(VI) adsorption capacity were 90% and 84%, of the initial adsorption capacity, respectively, after six cycles. This study demonstrates the prospect of SCC as a valid adsorbent for multiple heavy metal contaminations removal.
Collapse
Affiliation(s)
- Lixin Li
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, 150022, China.
| | - Ying Lv
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, 150022, China
| | - Chao Jia
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Dawei Yin
- College of Agricultural Science, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Zilong Dong
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, 150022, China
| | - Zhaoshun Zhan
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, 150022, China
| | - Jiazhen Han
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, 150022, China
| | - Jun Zhang
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
15
|
Xing Y, Liu S, Tan S, Jiang Y, Luo X, Hao X, Huang Q, Chen W. Core Species Derived from Multispecies Interactions Facilitate the Immobilization of Cadmium. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4905-4914. [PMID: 36917516 DOI: 10.1021/acs.est.3c00486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Microbial consortia have opened new avenues for heavy-metal remediation. However, the limited understanding of the overall effect of interspecific interactions on remediation efficacy hinders its application. Here, the effects of multispecies growth and biofilm formation on Cd immobilization were explored from direct and multiple interactions through random combinations of two or three rhizosphere bacteria. In monocultures, Cd stress resulted in an average decrease in planktonic biomass of 26%, but through cooperation, the decrease was attenuated in dual (21%) and triple cultures (13%), possibly involving an increase in surface polysaccharides. More than 65% of the co-cultures exhibited induction of biofilm formation under Cd stress, which further enhanced the role of biofilms in Cd immobilization. Notably, excellent biofilm-forming ability or extensive social induction makes Pseudomonas putida and Brevundimonas diminuta stand out in multispecies biofilm formation and Cd immobilization. These two core species significantly increase the colonization of soil microorganisms on rice roots compared to the control, resulting in a 40% decrease in Cd uptake by rice. Our study enhances the understanding of bacterial interactions under Cd stress and provides a novel strategy for adjusting beneficial soil consortia for heavy-metal remediation.
Collapse
Affiliation(s)
- Yonghui Xing
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Song Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Shuxin Tan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Yi Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Xuesong Luo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P. R. China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Xiuli Hao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P. R. China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P. R. China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| |
Collapse
|
16
|
Biofilm-based technology for industrial wastewater treatment: current technology, applications and future perspectives. World J Microbiol Biotechnol 2023; 39:112. [PMID: 36907929 DOI: 10.1007/s11274-023-03567-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/03/2023] [Indexed: 03/14/2023]
Abstract
The microbial community in biofilm is safeguarded from the action of toxic chemicals, antimicrobial compounds, and harsh/stressful environmental circumstances. Therefore, biofilm-based technology has nowadays become a successful alternative for treating industrial wastewater as compared to suspended growth-based technologies. In biofilm reactors, microbial cells are attached to static or free-moving materials to form a biofilm which facilitates the process of liquid and solid separation in biofilm-mediated operations. This paper aims to review the state-of-the-art of recent research on bacterial biofilm in industrial wastewater treatment including biofilm fundamentals, possible applications and problems, and factors to regulate biofilm formation. We discussed in detail the treatment efficiencies of fluidized bed biofilm reactor (FBBR), trickling filter reactor (TFR), rotating biological contactor (RBC), membrane biofilm reactor (MBfR), and moving bed biofilm reactor (MBBR) for different types of industrial wastewater treatment. Besides, biofilms have many applications in food and agriculture, biofuel and bioenergy production, power generation, and plastic degradation. Furthermore, key factors for regulating biofilm formation were also emphasized. In conclusion, industrial applications make evident that biofilm-based treatment technology is impactful for pollutant removal. Future research to address and improve the limitations of biofilm-based technology in wastewater treatment is also discussed.
Collapse
|
17
|
Zhao X, Meng X, Dang B, Zhang T, Shi W, Hou N, Yan Q, Li C. Succession dynamics of microbial communities responding to the exogenous microalgae ZM-5 and analysis of the environmental sustainability of a constructed wetland system. BIORESOURCE TECHNOLOGY 2023; 371:128642. [PMID: 36681352 DOI: 10.1016/j.biortech.2023.128642] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/11/2023] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
Constructed wetlands (CWs) are economical and effective swine tailwater treatment systems. However, nitrogen removal in CWs is limited by the lack of carbon source for denitrification. In this study, we studied the feasibility of dosing the microalgae ZM-5 to improve the nitrogen removal ability in CWs. Compared to the control CW, a 20 % higher removal capacity of COD and TN was observed for the coupled system (EG). The microalgae ZM-5 could interact with denitrifying bacteria to compensate for the deficiency of denitrifying stage in CWs. HT-qPCR chip analysis also provided evidence that denitrification genes significantly increased (p < 0.05). According to the life cycle assessment (LCA), ultrasonic extraction had the best environmental sustainability among four lipid extraction processes. As an improvement strategy, clean energy could be utilized to optimize the electricity source to reduce environmental load (45 %-60 %). These findings offer new insights into the feasibility of EG for environmentally sustainable wastewater treatment.
Collapse
Affiliation(s)
- Xinyue Zhao
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xiangwei Meng
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Bin Dang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Tuoshi Zhang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Wen Shi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Ning Hou
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Qingsheng Yan
- Dana Farber Cancer Institute, Harvard Medical School, Boston, Ma 02215, USA
| | - Chunyan Li
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
18
|
Characterization of Biofilm Microbiome Formation Developed on Novel 3D-Printed Zeolite Biocarriers during Aerobic and Anaerobic Digestion Processes. FERMENTATION 2022. [DOI: 10.3390/fermentation8120746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background: Aerobic or anaerobic digestion is involved in treating agricultural and municipal waste, and the addition of biocarriers has been proven to improve them further. We synthesized novel biocarriers utilizing zeolites and different inorganic binders and compared their efficiency with commercially available biocarriers in aerobic and anaerobic digestion systems. Methods: We examined BMP and several physicochemical parameters to characterize the efficiency of novel biocarriers on both systems. We also determined the SMP and EPS content of synthesized biofilm and measured the adherence and size of the forming biofilm. Finally, we characterized the samples by 16S rRNA sequencing to determine the crucial microbial communities involved. Results: Evaluating BMP results, ZSM-5 zeolite with bentonite binder emerged, whereas ZSM-5 zeolite with halloysite nanotubes binder stood out in the wastewater treatment experiment. Twice the relative frequencies of archaea were found on novel biocarriers after being placed in AD batch reactors, and >50% frequencies of Proteobacteria after being placed in WWT reactors, compared to commercial ones. Conclusions: The newly synthesized biocarriers were not only equally efficient with the commercially available ones, but some were even superior as they greatly enhanced aerobic or anaerobic digestion and showed strong biofilm formation and unique microbiome signatures.
Collapse
|
19
|
Zhang S, Su J, Ali A, Huang T, Sun Y, Ren Y. Hydrophilic spongy biochar crosslinked with starch and polyvinyl alcohol biocarrier for nitrate, phosphorus, and cadmium removal in low carbon wastewater: Enhanced performance mechanism and detoxification. BIORESOURCE TECHNOLOGY 2022; 362:127875. [PMID: 36049713 DOI: 10.1016/j.biortech.2022.127875] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
This study aims to develop a functional biocarrier with hydrophilic spongy biochar crosslinked with starch and polyvinyl alcohol (WSB/starch-PVA) for simultaneous removal of NO3--N, total phosphorus (TP) and Cd2+ in low carbon wastewater. Results showed that the WSB/starch-PVA bioreactor achieved the maximum NO3--N removal efficiency in subphase 1.2 with 98.07 % (3.64 mg L-1h-1) versus control (75.30 %, 2.81 mg L-1h-1), and removed 54.84 % and 73.97 % of TP and Cd2+. Material characterization suggested that functional groups (related to C, N and O) on biocarrier and biofilm, and biogenic co-precipitation facilitated TP and Cd2+ removal. The WSB made the biocarrier pores larger and regular, and decreased fluorescent soluble microbial products. The predicted metagenome further suggested that central citrate cycle, oxidative phosphorylation of bio-community, and NO3--N removal were enhanced. Functions for microbial induced co-precipitation, Cd2+ transport/efflux, antioxidants, and enhanced biofilm formation favored the NO3--N/TP removal and Cd2+ detoxification.
Collapse
Affiliation(s)
- Shuai Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yi Sun
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yi Ren
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
20
|
Maksimova Y, Bykova Y, Maksimov A. Functionalization of Multi-Walled Carbon Nanotubes Changes Their Antibiofilm and Probiofilm Effects on Environmental Bacteria. Microorganisms 2022; 10:microorganisms10081627. [PMID: 36014045 PMCID: PMC9412586 DOI: 10.3390/microorganisms10081627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Releasing multi-walled carbon nanotubes (MWCNTs) into ecosystems affects the biofilm formation and metabolic activity of bacteria in aquatic and soil environments. Pristine (pMWCNTs), oleophilic (oMWCNTs), hydrophilic (hMWCNTs), and carboxylated (cMWCNTs) carbon nanotubes were used to investigate their effects on bacterial biofilm. A pronounced probiofilm effect of modified MWCNTs was observed on the Gram-negative bacteria of Pseudomonas fluorescens C2, Acinetobacter guillouiae 11 h, and Alcaligenes faecalis 2. None of the studied nanomaterials resulted in the complete inhibition of biofilm formation. The complete eradication of biofilms exposed to MWCNTs was not observed. The functionalization of carbon nanotubes was shown to change their probiofilm and antibiofilm effects. Gram-negative bacteria were the most susceptible to destruction, and among the modified MWCNTs, oMWCNTs had the greatest effect on biofilm destruction. The number of living cells in the biofilms was assessed by the reduction of XTT, and metabolic activity was assessed by the reduction of resazurin to fluorescent resorufin. The biofilms formed in the presence of MWCNTs reduced tetrozolium to formazan more actively than the control biofilms. When mature biofilms were exposed to MWCNTs, dehydrogenase activity decreased in Rhodococcus erythropolis 4-1, A. guillouiae 11 h, and A. faecalis 2 in the presence of pMWCNTs and hMWCNTs, as well as in A. guillouiae 11 h exposed to cMWCNTs. When mature biofilms were exposed to pMWCNTs, hMWCNTs, and cMWCNTs, the metabolism of cells decreased in most strains, and oMWCNTs did not have a pronounced inhibitory effect. The antibiofilm and probiofilm effects of MWCNTs were strain-dependent.
Collapse
Affiliation(s)
- Yuliya Maksimova
- Laboratory of Molecular Biotechnology, Institute of Ecology and Genetics of Microorganisms UB RAS, Perm 614081, Russia
- Department of Microbiology and Immunology, Perm State University, Perm 614990, Russia
- Correspondence:
| | - Yana Bykova
- Laboratory of Molecular Biotechnology, Institute of Ecology and Genetics of Microorganisms UB RAS, Perm 614081, Russia
| | - Aleksandr Maksimov
- Laboratory of Molecular Biotechnology, Institute of Ecology and Genetics of Microorganisms UB RAS, Perm 614081, Russia
- Department of Microbiology and Immunology, Perm State University, Perm 614990, Russia
| |
Collapse
|
21
|
Carvalho FM, Azevedo A, Ferreira MM, Mergulhão FJM, Gomes LC. Advances on Bacterial and Fungal Biofilms for the Production of Added-Value Compounds. BIOLOGY 2022; 11:biology11081126. [PMID: 36009752 PMCID: PMC9405441 DOI: 10.3390/biology11081126] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/24/2022]
Abstract
Simple Summary The production of bio-based materials, including organic acids, antibiotics, enzymes, ethanol, and hydrogen, is generally done by the cultivation of suspended cells rather than using immobilized cells. However, several studies suggest the application of productive biofilms as a reliable alternative for biocatalysis, with many advantages over suspended-growth systems. This review gives an overview of the breakthrough in the application of biofilm platforms for the sustainable production of valuable compounds, with particular insight into the latest advances in the production of recombinant proteins. Productive biofilms are shown to improve production rates and product yields, demonstrating great potential for industrial applications. Abstract In recent years, abundant research has been performed on biofilms for the production of compounds with biotechnological and industrial relevance. The use of biofilm platforms has been seen as a compelling approach to producing fine and bulk chemicals such as organic acids, alcohols, and solvents. However, the production of recombinant proteins using this system is still scarce. Biofilm reactors are known to have higher biomass density, operational stability, and potential for long-term operation than suspended cell reactors. In addition, there is an increasing demand to harness industrial and agricultural wastes and biorefinery residues to improve process sustainability and reduce production costs. The synthesis of recombinant proteins and other high-value compounds is mainly achieved using suspended cultures of bacteria, yeasts, and fungi. This review discusses the use of biofilm reactors for the production of recombinant proteins and other added-value compounds using bacteria and fungi.
Collapse
Affiliation(s)
- Fábio M. Carvalho
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (F.M.C.); (A.A.); (M.M.F.); (F.J.M.M.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Ana Azevedo
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (F.M.C.); (A.A.); (M.M.F.); (F.J.M.M.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Marta M. Ferreira
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (F.M.C.); (A.A.); (M.M.F.); (F.J.M.M.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Filipe J. M. Mergulhão
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (F.M.C.); (A.A.); (M.M.F.); (F.J.M.M.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Luciana C. Gomes
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (F.M.C.); (A.A.); (M.M.F.); (F.J.M.M.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- Correspondence:
| |
Collapse
|
22
|
Exploiting Biofilm Characteristics to Enhance Biological Nutrient Removal in Wastewater Treatment Plants. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Biological treatments are integral processes in wastewater treatment plants (WWTPs). They can be carried out using sludge or biofilm processes. Although the sludge process is effective for biological wastewater systems, it has some drawbacks that make it undesirable. Hence, biofilm processes have gained popularity, since they address the drawbacks of sludge treatments, such as the high rates of sludge production. Although biofilms have been reported to be essential for wastewater, few studies have reviewed the different ways in which the biofilm properties can be explored, especially for the benefit of wastewater treatment. Thus, this review explores the properties of biofilms that can be exploited to enhance biological wastewater systems. In this review, it is revealed that various biofilm properties, such as the extracellular polymeric substances (EPS), quorum sensing (Qs), and acylated homoserine lactones (AHLs), can be enhanced as a sustainable and cost-effective strategy to enhance the biofilm. Moreover, the exploitation of other biofilm properties such as the SOS, which is only reported in the medical field, with no literature reporting it in the context of wastewater treatment, is also recommended to improve the biofilm technology for wastewater treatment processes. Additionally, this review further elaborates on ways that these properties can be exploited to advance biofilm wastewater treatment systems. A special emphasis is placed on exploiting these properties in simultaneous nitrification and denitrification and biological phosphorus removal processes, which have been reported to be the most sensitive processes in biological wastewater treatment.
Collapse
|