1
|
Gong Y, Zhou H, Chun X, Wan Z, Wang J, Liu C. Response of PM 2.5 chemical composition to the emission reduction and meteorological variation during the COVID-19 lockdown. CHEMOSPHERE 2024; 363:142844. [PMID: 39004145 DOI: 10.1016/j.chemosphere.2024.142844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/11/2024] [Accepted: 07/12/2024] [Indexed: 07/16/2024]
Abstract
PM2.5 is a main atmospheric pollutant with various sources and complex chemical compositions, which are influenced by various factors, such as anthropogenic emissions (AE) and meteorological conditions (MC). MC have a significant impacts on variations in atmospheric pollutant; therefore, emission reduction policies and ambient air quality are non-linearly correlated, which hinders the accurate assessment of the effectiveness of control measures. In this study, we conducted online observations of PM2.5 and its chemical composition in Hohhot, China, from December 1, 2019, to February 29, 2020, to investigate how the chemical compositions of PM2.5 respond to the variations in AE and MC. Moreover, the random forest (RF) model was used to quantify the contributions of AE and MC to PM2.5 and its chemical composition during severe hazes and the COVID-19 pandemic lockdown period. During the clean period, MC reduced PM2.5 concentrations by 124%, while MC incresed PM2.5 concentrations by 49% during severe pollution episode. Inorganic aerosols (SO42-, NO3-, and NH4+) showed the strongest response to MC. MC significantly contributed to PM2.5 (36%), SO42- (32%), NO3- (29%), NH4+ (28%), OC (22%), and SOC (17%) levels during pollution episodes. From the pre-lockdown to lockdown period, AE (MC) contributed 52% (48%), 81% (19%), 48% (52%), 68% (32%), 59% (41%), and 288% (-188%) to the PM2.5, SO42-, NO3-, NH4+, OC, and SOC reductions, respectively. The variations in MC (especially the increase in relative humidity) rapidly generated meteorologically sensitive species (SO42-, NO3-, and NH4+), which led to severe winter pollution. This study provides a reference for assessing the net benefits of emission reduction measures for PM2.5 and its chemical compositions.
Collapse
Affiliation(s)
- Yitian Gong
- College of Geographical Sciences, Inner Mongolia Normal University, Hohhot, 010022, China; Key Laboratory of Mongolian Plateau's Climate System at Universities of Inner Mongolia Autonomous Region, Inner Mongolia Normal University, Hohhot, 010022, China
| | - Haijun Zhou
- College of Geographical Sciences, Inner Mongolia Normal University, Hohhot, 010022, China; Key Laboratory of Mongolian Plateau's Climate System at Universities of Inner Mongolia Autonomous Region, Inner Mongolia Normal University, Hohhot, 010022, China; Inner Mongolia Repair Engineering Laboratory of Wetland Eco-environment System, Inner Mongolia Normal University, Hohhot, 010022, China.
| | - Xi Chun
- College of Geographical Sciences, Inner Mongolia Normal University, Hohhot, 010022, China; Key Laboratory of Mongolian Plateau's Climate System at Universities of Inner Mongolia Autonomous Region, Inner Mongolia Normal University, Hohhot, 010022, China; Inner Mongolia Repair Engineering Laboratory of Wetland Eco-environment System, Inner Mongolia Normal University, Hohhot, 010022, China
| | - Zhiqiang Wan
- College of Geographical Sciences, Inner Mongolia Normal University, Hohhot, 010022, China; Key Laboratory of Mongolian Plateau's Climate System at Universities of Inner Mongolia Autonomous Region, Inner Mongolia Normal University, Hohhot, 010022, China; Inner Mongolia Repair Engineering Laboratory of Wetland Eco-environment System, Inner Mongolia Normal University, Hohhot, 010022, China
| | - Jingwen Wang
- College of Geographical Sciences, Inner Mongolia Normal University, Hohhot, 010022, China; Key Laboratory of Mongolian Plateau's Climate System at Universities of Inner Mongolia Autonomous Region, Inner Mongolia Normal University, Hohhot, 010022, China
| | - Chun Liu
- College of Geographical Sciences, Inner Mongolia Normal University, Hohhot, 010022, China; Key Laboratory of Mongolian Plateau's Climate System at Universities of Inner Mongolia Autonomous Region, Inner Mongolia Normal University, Hohhot, 010022, China
| |
Collapse
|
2
|
Luo Y, Wei H, Yang K. The impact of biomass burning occurred in the Indo-China Peninsula on PM2.5 and its spatiotemporal characteristics over Yunnan Province. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168185. [PMID: 37907099 DOI: 10.1016/j.scitotenv.2023.168185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/02/2023]
Abstract
Being one of the most serious biomass burning regions in the world, the air pollution caused by spring combustion in the Indo-China Peninsula (ICP) has already had an impact on Yunnan Province's beautiful environment and excellent air quality to some extent. In this study, considering the differences in geographical location and topography of Yunnan, we used the K-Means algorithm to divide it into five clustering zones according to the spatiotemporal variation characteristics of PM2.5. Then this study explored the spatial and temporal characteristics of pollution in Yunnan Province and biomass combustion in ICP based on the multi-source data such as MOD14A1, GDAS1, and ground-based PM2.5 data, and used HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory) pollution tracer analysis and other data statistical methods. The results show that the spatiotemporal variation characteristics of PM2.5 in Yunnan Province show large differences within each clustering zone (CZ). Spatially, CZ 2 has better air quality throughout the year, and the areas with higher PM2.5 are mainly in CZ 1 and CZ 3. Temporally, the months with higher concentration values were mainly from February to April, and also this period owed high biomass burning activities in the ICP, which resulted in pollution values exceeding 60 μg/m3 within certain CZs. Finally, the results of the pollution tracer analysis showed that within CZs other than CZ 2, the contribution due to the burning in the ICP was variable, and that the countries with a high contribution of pollution to Yunnan Province were Myanmar, and the other sources of pollution are mainly caused by local and neighbouring anthropogenic activities. Therefore, based on overall improvement of air quality, Yunnan Province is necessary to prevent and control not only the pollutants from the ICP from February to April, but also the pollution caused by the emissions from rapid economic development.
Collapse
Affiliation(s)
- Yi Luo
- Faculty of Geography, Yunnan Normal University, Kunming 650500, China; GIS Technology Research Center of Resource and Environment in Western China, Ministry of Education, Yunnan Normal University, Kunming 650500, China
| | - Hong Wei
- Faculty of Geography, Yunnan Normal University, Kunming 650500, China.
| | - Kun Yang
- Faculty of Geography, Yunnan Normal University, Kunming 650500, China; GIS Technology Research Center of Resource and Environment in Western China, Ministry of Education, Yunnan Normal University, Kunming 650500, China.
| |
Collapse
|
3
|
Wang L, Zhao W, Luo P, He Q, Zhang W, Dong C, Zhang Y. Environmentally persistent free radicals in PM 2.5 from a typical Chinese industrial city during COVID-19 lockdown: The unexpected contamination level variation. J Environ Sci (China) 2024; 135:424-432. [PMID: 37778816 PMCID: PMC9418963 DOI: 10.1016/j.jes.2022.08.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 05/16/2023]
Abstract
The outbreak of COVID-19 has caused concerns globally. To reduce the rapid transmission of the virus, strict city lockdown measures were conducted in different regions. China is the country that takes the earliest home-based quarantine for people. Although normal industrial and social activities were suspended, the spread of virus was efficiently controlled. Simultaneously, another merit of the city lockdown measure was noticed, which is the improvement of the air quality. Contamination levels of multiple atmospheric pollutants were decreased. However, in this work, 24 and 14 air fine particulate matter (PM2.5) samples were continuously collected before and during COVID-19 city lockdown in Linfen (a typical heavy industrial city in China), and intriguingly, the unreduced concentration was found for environmentally persistent free radicals (EPFRs) in PM2.5 after normal life suspension. The primary non-stopped coal combustion source and secondary Cu-related atmospheric reaction may have impacts on this phenomenon. The cigarette-based assessment model also indicated possible exposure risks of PM2.5-bound EPFRs during lockdown of Linfen. This study revealed not all the contaminants in the atmosphere had an apparent concentration decrease during city lockdown, suggesting the pollutants with complicated sources and formation mechanisms, like EPFRs in PM2.5, still should not be ignored.
Collapse
Affiliation(s)
- Lingyun Wang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China; Center of Advanced Analysis and Gene Sequencing, Key Laboratory of Molecular Sensing and Harmful Substances Detection Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Wuduo Zhao
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China; Center of Advanced Analysis and Gene Sequencing, Key Laboratory of Molecular Sensing and Harmful Substances Detection Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Peiru Luo
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China; Center of Advanced Analysis and Gene Sequencing, Key Laboratory of Molecular Sensing and Harmful Substances Detection Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Qingyun He
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China; Center of Advanced Analysis and Gene Sequencing, Key Laboratory of Molecular Sensing and Harmful Substances Detection Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Wenfen Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China; Center of Advanced Analysis and Gene Sequencing, Key Laboratory of Molecular Sensing and Harmful Substances Detection Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Chuan Dong
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Yanhao Zhang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China.
| |
Collapse
|
4
|
Zhang H, Wang X, Lv L, Li G, Liu X, Li X, Yao Z. Insights into quantitative evaluation technology of PM 2.5 transport at multi-perspective and multi-spatial and temporal scales in the north China plain. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122693. [PMID: 37802287 DOI: 10.1016/j.envpol.2023.122693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/14/2023] [Accepted: 10/03/2023] [Indexed: 10/08/2023]
Abstract
Cross-border transport is a crucial factor affecting air quality, while how to quantify the transport contribution through different technologies at multi-perspective and multi-scale have not been fully understood. This study established three quantification techniques, and conducted a systematic assessment of PM2.5 transport over the North China Plain (NCP) based on numerical simulations and vertical observations. Results suggested that the annual local emissions, inter-urban and outer-regional transport contributed 44.5%-64.6%, 15.2%-27.9% and 18.0%-28.2% of total surface PM2.5 concentrations, respectively, with transport intensity stronger in July and April, yet weaker in January and October. The southwest-northeast, northeast-southwest, and southeast-northwest were three prevailing transport directions near the surface. By comparison, the annual PM2.5 transport contribution below the atmospheric boundary layer height increased by 16.8%-24.5% in Beijing, Tianjin and Shijiazhuang, with inter-urban and outer-regional contribution of 29.8%-32.1% and 18.5%-23.1%. Furthermore, observed fluxes from fixed-point and vehicle-based mobile lidar were in good agreement with the simulated flux. PM2.5 net flux intensity varied with height, with generally larger at the middle- and high-altitude layer than that of low-altitude layer. In the early, during and late period of haze peak formation (Stage Ⅰ, Ⅱ, Ⅲ, respectively), the largest absolute flux intensity on average was Stage Ⅱ (566.7 t/d), followed by Stage Ⅲ (307.0 t/d) and Ⅰ (191.4 t/d). Besides, external transport may dominate the second concentration peak, while local emissions may play a more vital role in the first and third peaks. It has been noted that joint prevention and control measures should be proposed 1-2 days before reaching PM2.5 extremes. These findings could improve our understanding of transport influence mechanism of PM2.5 and propose effective emission reduction measures in the NCP region.
Collapse
Affiliation(s)
- Hanyu Zhang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Xuejun Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Longyue Lv
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Guohao Li
- Beijing Municipal Research Institute of Environmental Protection, Beijing Key Laboratory of Urban Atmospheric Volatile Organic Compounds Pollution Control and Application, National Urban Environmental Pollution Control Engineering Research Center, Beijing, 100037, China
| | - Xiaoyu Liu
- Beijing Municipal Research Institute of Environmental Protection, Beijing Key Laboratory of Urban Atmospheric Volatile Organic Compounds Pollution Control and Application, National Urban Environmental Pollution Control Engineering Research Center, Beijing, 100037, China
| | - Xin Li
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Zhiliang Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
5
|
Li X, Abdullah LC, Sobri S, Syazarudin Md Said M, Aslina Hussain S, Poh Aun T, Hu J. Long-term spatiotemporal evolution and coordinated control of air pollutants in a typical mega-mountain city of Cheng-Yu region under the "dual carbon" goal. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2023; 73:649-678. [PMID: 37449903 DOI: 10.1080/10962247.2023.2232744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/31/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023]
Abstract
Clarifying the spatiotemporal distribution and impact mechanism of pollution is the prerequisite for megacities to formulate relevant air pollution prevention and control measures and achieve carbon neutrality goals. Chongqing is one of the dual-core key megacities in Cheng-Yu region and as a typical mountain-city in China, environmental problems are complex and sensitive. This research aims to investigate the exceeding standard levels and spatio-temporal evolution of criteria pollutants between 2014 and 2020. The results indicated that PM10, PM2.5, CO and SO2 were decreased significantly by 45.91%, 52.86%, 38.89% and 66.67%, respectively. Conversely, the concentration of pollutant O3 present a fluctuating growth and found a "seesaw" phenomenon between it and PM. Furthermore, PM and O3 are highest in winter and summer, respectively. SO2, NO2, CO, and PM showed a "U-shaped", and O3 showed an inverted "U-shaped" seasonal variation. PM and O3 concentrations are still far behind the WHO, 2021AQGs standards. Significant spatial heterogeneity was observed in air pollution distribution. These results are of great significance for Chongqing to achieve "double control and double reduction" of PM2.5 and O3 pollution, and formulate a regional carbon peaking roadmap under climate coordination. Besides, it can provide an important platform for exploring air pollution in typical terrain around the world and provide references for related epidemiological research.Implications: Chongqing is one of the dual-core key megacities in Cheng-Yu region and as a typical mountain city, environmental problems are complex and sensitive. Under the background of the "14th Five-Year Plan", the construction of the "Cheng-Yu Dual-City Economic Circle" and the "Dual-Carbon" goal, this article comprehensively discussed the annual and seasonal excess levels and spatiotemporal evolution of pollutants under the multiple policy and the newest international standards (WHO,2021AQG) backgrounds from 2014 to 2020 in Chongqing. Furthermore, suggestions and measures related to the collaborative management of pollutants were discussed. Finally, limitations and recommendations were also put forward.Clarifying the spatiotemporal distribution and impact mechanism of pollution is the prerequisite for cities to formulate relevant air pollution control measures and achieve carbon neutrality goals. This study is of great significance for Chongqing to achieve "double control and double reduction" of PM2.5 and O3 pollution, study and formulate a regional carbon peaking roadmap under climate coordination and an action plan for sustained improvement of air quality.In addition, this research can advanced our understanding of air pollution in complex terrain. Furthermore, it also promote the construction of the China national strategic Cheng-Yu economic circle and build a beautiful west. Moreover, it provides scientific insights for local policymakers to guide smart urban planning, industrial layout, energy structure, and transportation planning to improve air quality throughout the Cheng-Yu region. Finally, this is also conducive to future scientific research in other regions of China, and even megacities with complex terrain in the world.
Collapse
Affiliation(s)
- Xiaoju Li
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University Putra Malaysia, Serdang, Malaysia
- Department of Resource and Environment, Xichang University, Xichang City, Sichuan Province, China
| | - Luqman Chuah Abdullah
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University Putra Malaysia, Serdang, Malaysia
| | - Shafreeza Sobri
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University Putra Malaysia, Serdang, Malaysia
| | - Mohamad Syazarudin Md Said
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University Putra Malaysia, Serdang, Malaysia
| | - Siti Aslina Hussain
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University Putra Malaysia, Serdang, Malaysia
| | - Tan Poh Aun
- SOx NOx Asia Sdn Bhd, Subang Jaya, Selangor, Malaysia
| | - Jinzhao Hu
- Department of Resource and Environment, Xichang University, Xichang City, Sichuan Province, China
| |
Collapse
|
6
|
Liu P, Zhou H, Chun X, Wan Z, Liu T, Sun B. Characteristics and sources of carbonaceous aerosols in a semi-arid city: Quantifying anthropogenic and meteorological impacts. CHEMOSPHERE 2023; 335:139056. [PMID: 37247672 DOI: 10.1016/j.chemosphere.2023.139056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 05/31/2023]
Abstract
Carbonaceous aerosols have great adverse impacts on air quality, human health, and climate. However, there is a limited understanding of carbonaceous aerosols in semi-arid areas. The correlation between carbonaceous aerosols and control measures is still unclear owing to the insufficient information regarding meteorological contribution. To reveal the complex relationship between control measures and carbonaceous aerosols, offline and online observations of carbonaceous aerosols were conducted from October 8, 2019 to October 7, 2020 in Hohhot, a semi-arid city. The characteristics and sources of carbonaceous aerosols and impacts of anthropogenic emissions and meteorological conditions were studied. The annual mean concentrations (± standard deviation) of fine particulate matter (PM2.5), organic carbon (OC), and elemental carbon (EC) were 42.81 (±40.13), 7.57 (±6.43), and 2.25 (±1.39) μg m-3, respectively. The highest PM2.5 and carbonaceous aerosol concentrations were observed in winter, whereas the lowest was observed in summer. The result indicated that coal combustion for heating had a critical role in air quality degradation in Hohhot. A boost regression tree model was applied to quantify the impacts of anthropogenic emissions and meteorological conditions on carbonaceous aerosols. The results suggested that the anthropogenic contributions of PM2.5, OC, and EC during the COVID-19 lockdown period were 53.0, 15.0, and 2.36 μg m-3, respectively, while the meteorological contributions were 5.38, 2.49, and -0.62 μg m-3, respectively. Secondary formation caused by unfavorable meteorological conditions offset the emission reduction during the COVID-19 lockdown period. Coal combustion (46.4% for OC and 35.4% for EC) and vehicular emissions (32.0% for OC and 50.4% for EC) were the predominant contributors of carbonaceous aerosols. The result indicated that Hohhot must regulate coal use and vehicle emissions to reduce carbonaceous aerosol pollution. This study provides new insights and a comprehensive understanding of the complex relationships between control strategies, meteorological conditions, and air quality.
Collapse
Affiliation(s)
- Peng Liu
- College of Geographical Sciences, Inner Mongolia Normal University, Hohhot, 010022, China.
| | - Haijun Zhou
- College of Geographical Sciences, Inner Mongolia Normal University, Hohhot, 010022, China; Provincial Key Laboratory of Mongolian Plateau's Climate System, Inner Mongolia Normal University, Hohhot, 010022, China; Inner Mongolia Repair Engineering Laboratory of Wetland Eco-environment System, Inner Mongolia Normal University, Hohhot, 010022, China.
| | - Xi Chun
- College of Geographical Sciences, Inner Mongolia Normal University, Hohhot, 010022, China; Provincial Key Laboratory of Mongolian Plateau's Climate System, Inner Mongolia Normal University, Hohhot, 010022, China; Inner Mongolia Repair Engineering Laboratory of Wetland Eco-environment System, Inner Mongolia Normal University, Hohhot, 010022, China.
| | - Zhiqiang Wan
- College of Geographical Sciences, Inner Mongolia Normal University, Hohhot, 010022, China; Provincial Key Laboratory of Mongolian Plateau's Climate System, Inner Mongolia Normal University, Hohhot, 010022, China; Inner Mongolia Repair Engineering Laboratory of Wetland Eco-environment System, Inner Mongolia Normal University, Hohhot, 010022, China.
| | - Tao Liu
- Environmental Monitoring Center Station of Inner Mongolia, Hohhot, 010011, China.
| | - Bing Sun
- Hohhot Environmental Monitoring Branch Station of Inner Mongolia, Hohhot, 010030, China.
| |
Collapse
|
7
|
Zeng W, Chen X, Dong H, Liu Y. Doing more with less: How to design a good subgroup governance model for the air pollution transport network in "2+26" cities of China? JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 327:116909. [PMID: 36463842 DOI: 10.1016/j.jenvman.2022.116909] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/08/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Air pollution shares the attributes of significant spatial spillover effects and environmental public goods, leading to the territorial governance model that easily falls into a state of failure. Despite a growing number of studies on the local spatial spillover effect of air pollution, scant evidence currently exists on its global spatial association effect and a good subgroup governance model. Based on a panel data set of the daily prefecture-level city data on air quality measured by the air quality index (AQI) in "2 + 26" cities of China in 2015 and 2018, this study first builds an air pollution transport network (APTN), i.e., the cities as the nodes and the association relationships between the nodes as the edges. Furthermore, this paper reveals the spatial association effect and the temporal lagged attribute of the APTN using the Social network analysis (SNA) and the Generalized impulse response function (GIRF). The results are summarized as follows. (1) Every city has significant spatial association effects of air pollution with at least another city in the APTN, and northern APTN affects most to the air pollution of other cities, while southern APTN is obviously always affected by air pollution in other cities. (2) Transport strength peaks on the second day of an air pollution transport process, and the transport process lasts for 7-12 days. (3) The APTN is divided into four subgroups: Sycophants, Primary, Bidirectional, and Brokers, with Baoding, Zhengzhou, Heze, and Hengshui as the central cities of each group, respectively. Overall, our study provides a networked, modular, and early-warning governance model for policymakers.
Collapse
Affiliation(s)
- Wenxia Zeng
- School of Economics & Management, Xidian University, Xi'an, 710071, China
| | - Xi Chen
- School of Economics & Management, Xidian University, Xi'an, 710071, China.
| | - Huizhong Dong
- School of Management, Shandong University of Technology, Zibo, 255012, China
| | - Yanping Liu
- School of Business Administration, Guangdong University of Finance and Economics, Guangzhou, 510320, China
| |
Collapse
|
8
|
Spatiotemporal Distribution Patterns and Exposure Risks of PM2.5 Pollution in China. REMOTE SENSING 2022. [DOI: 10.3390/rs14133173] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The serious pollution of PM2.5 caused by rapid urbanization in recent years has become an urgent problem to be solved in China. Annual and daily satellite-derived PM2.5 datasets from 2001 to 2020 were used to analyze the temporal and spatial patterns of PM2.5 in China. The regional and population exposure risks of the nation and of urban agglomerations were evaluated by exceedance frequency and population weight. The results indicated that the PM2.5 concentrations of urban agglomerations decreased sharply from 2014 to 2020. The region with PM2.5 concentrations less than 35 μg·m−3 accounted for 80.27% in China, and the average PM2.5 concentrations in 8 urban agglomerations were less than 35 μg·m−3 in 2020. The spatial distribution pattern of PM2.5 concentrations in China revealed higher concentrations to the east of the Hu Line and lower concentrations to the west. The annual regional exposure risk (RER) in China was at a high level, with a national average of 0.75, while the average of 14 urban agglomerations was as high as 0.86. Among the 14 urban agglomerations, the average annual RER was the highest in the Shandong Peninsula (0.99) and lowest in the Northern Tianshan Mountains (0.76). The RER in China has obvious seasonality; the most serious was in winter, and the least serious was in summer. The population exposure risk (PER) east of the Hu Line was significantly higher than that west of the Hu Line. The average PER was the highest in Beijing-Tianjin-Hebei (4.09) and lowest in the Northern Tianshan Mountains (0.71). The analysis of air pollution patterns and exposure risks in China and urban agglomerations in this study could provide scientific guidance for cities seeking to alleviate air pollution and prevent residents’ exposure risks.
Collapse
|