1
|
Yan B, Luo L, Zhang Y, Men J, Guo Y, Wu S, Han J, Zhou B. Detrimental effects of glyphosate on muscle metabolism in grass carp (Ctenopharyngodon idellus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107122. [PMID: 39426364 DOI: 10.1016/j.aquatox.2024.107122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/28/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
Glyphosate, a commonly used herbicide, has been associated with environmental pollution and potential health risks to aquatic organisms. This study investigated the effects of glyphosate on the muscle metabolism of grass carp (Ctenopharyngodon idellus) following exposure to environmentally relevant concentrations. Over a 14-day exposure period to varying glyphosate levels, significant disruptions were observed in antioxidant capacity and muscle health. These disruptions were evidenced by reductions in total antioxidant capacity (T-AOC), increases in malondialdehyde (MDA) levels, and decreases in activities of glutathione peroxidase (GSH-PX) and catalase (CAT). Furthermore, exposure to glyphosate resulted in a reduction of vitamin E content and an elevation of hormonal levels, suggesting the potential for endocrine disruption. Metabolomics analysis identified 605 distinct metabolites, with notable alterations in amino acid, carbohydrate, and nucleotide metabolism pathways. Specifically, arginine and glutathione metabolisms were severely impacted, with decreases in key amino acids such as glycine and glutathione at higher glyphosate concentrations. Nucleotide metabolism, particularly purine synthesis, was also significantly affected, with reduced levels of deoxyguanosine and other purine-related compounds. The study further investigated the origins of these differential metabolites using the MetOrigin platform, suggesting a potential involvement of the intestinal microbiota in the metabolic response to glyphosate. These findings highlight the multifaceted adverse effects of glyphosate on fish muscle, including oxidative stress and metabolic dysregulation, which may contribute to diminished muscle quality and health risks for aquatic organisms.
Collapse
Affiliation(s)
- Biao Yan
- School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning 437100, PR China; Institute of Hydrobiology, Chinese Academic of Sciences, Wuhan 430072, PR China
| | - Lijun Luo
- Institute of Hydrobiology, Chinese Academic of Sciences, Wuhan 430072, PR China; College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, PR China
| | - Yindan Zhang
- Institute of Hydrobiology, Chinese Academic of Sciences, Wuhan 430072, PR China
| | - Jun Men
- The Analysis and Testing Center of Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Yongyong Guo
- Institute of Hydrobiology, Chinese Academic of Sciences, Wuhan 430072, PR China
| | - Shengmin Wu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China.
| | - Jian Han
- Institute of Hydrobiology, Chinese Academic of Sciences, Wuhan 430072, PR China.
| | - Bingsheng Zhou
- Institute of Hydrobiology, Chinese Academic of Sciences, Wuhan 430072, PR China
| |
Collapse
|
2
|
Morozov A, Yurchenko V. Glyphosate and aminomethylphosphonic acid impact on redox status and biotransformation in fish and the mitigating effects of diet supplementation. Vet Res Commun 2024; 48:2901-2914. [PMID: 39073654 DOI: 10.1007/s11259-024-10481-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Fish reared under seminatural conditions can be challenged by exposure to herbicides. Farming facilities relying on the surrounding area's water quality can be affected by glyphosate and aminomethylphosphonic acid (AMPA) contamination. This review summarizes findings on how glyphosate and AMPA in the amounts registered in surface waterbodies affect redox status and biotransformation in fish and covers the aspect of diet supplementation for oxidative stress relief. Environmentally relevant concentrations of glyphosate and AMPA can alter the transcription and catalytic activities of antioxidant enzymes, decrease the content of reduced glutathione, and increase the accumulation of lipid peroxidation products, all of which are signs of a redox imbalance. Glyphosate has been shown to affect complex I in the mitochondrial respiratory chain and dysregulate iron transport-related genes, causing redox disturbance. Relatively high but environmentally realistic glyphosate concentrations can initiate the induction of cytochrome P450 biotransformation enzymes, alter the regulation of ABC exporters, and cause the inhibition of the redox-sensitive Nrf2 signaling pathway. Studies on reducing herbicide toxicity through dietary supplementation are a promising area of research. Natural functional supplements have been proven to have great potential for mitigating glyphosate-induced oxidative stress and thereby improving fish health, which in turn means maintaining productivity in fish farms that use natural water. However, data on the effects of AMPA on fish are scarce, and studies on the alleviation of its toxicity in fish are lacking. Considering the variety of AMPA contamination routes, one cannot underestimate the need for further research.
Collapse
Affiliation(s)
- Alexey Morozov
- Papanin Institute for Biology of Inland Waters Russian Academy of Sciences (IBIW RAS), 109, Yaroslavl, Borok, 152742, Russia.
| | - Victoria Yurchenko
- Papanin Institute for Biology of Inland Waters Russian Academy of Sciences (IBIW RAS), 109, Yaroslavl, Borok, 152742, Russia
| |
Collapse
|
3
|
Tan H, Xing Q, Mo L, Wu C, Zhang X, He X, Liang Y, Hao R. Occurrence, multiphase partitioning, drivers, and ecological risks of current-use herbicides in a river basin dominated by rice-vegetable rotations in tropical China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168270. [PMID: 37918751 DOI: 10.1016/j.scitotenv.2023.168270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Rice-vegetable rotation practices prevail in subtropical and tropical agriculture worldwide, with applications of current-use herbicides (CUHs) vital for nontarget plant control. After application, CUHs migrate to environmental compartments, where the occurrence, fate, and ecological risks have not been well characterized. To further understand the occurrence and multiphase partitioning, as well as to evaluate potential drivers and mixture risks in environmental compartments, we analyzed 11 CUHs in 576 samples from 36 rice-vegetable rotations in Nandu River basin, Hainan, China. Samples included soil, water, suspended particulate matter, and sediment collected during both rice and vegetable planting periods. The CUH concentrations varied across environmental compartments, but with high levels of glyphosate and aminomethylphosphonic acid organophosphorus herbicides (OPHs) frequently detected, accounting for 82.3 % to 99.0 % in environmental compartments. Phenoxy acid (PAA) and chloroacetanilide (ANH) herbicides were detected at lower frequencies. Spatiotemporal variation was significantly different among OPHs, ANHs, and PAAs, with geographic and crop-related patterns most evident for CUHs rather than OPHs. Structural equation model, redundancy, and boosted regression tree analyses indicated environmental compartment properties (pH, organic matter, and Fe/Al oxides), crop type, and wet/dry climate were important drivers of spatiotemporal patterns. Fugacity ratios indicated multiphase partitioning and transport of CUHs differed in rice and vegetable planting periods. A new assessment framework based on species-sensitive distributions and environmental compartment weight index indicated unacceptable risks of CUHs (risk quotient >1 in >50 % of sites), with most risks from OPHs (10.5 % to 98.0 %) and butachlor, acetochlor, and 2,4-dichlorophenoxyacetic acid. Risk hot spots were identified as the soil, the central region, and the vegetable planting period, potentially threatening nontarget organisms (e.g., Lemna minor, Glomus intraradices, and Apis mellifera). This study provides a new risk assessment framework and demonstrates the domination of OPHs in CUH contamination and risks in the tropics, thus helping guide policymakers and stakeholders on herbicide management.
Collapse
Affiliation(s)
- Huadong Tan
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China; National Agricultural Experimental Station for Agricultural Environment, Danzhou 571737, PR China; Hainan Engineering Research Center for Non-point Source and Heavy Metal Pollution Control, Danzhou 571737, PR China
| | - Qiao Xing
- Hainan Research Academy of Environmental Sciences, Haikou 571126, PR China
| | - Ling Mo
- Hainan Research Academy of Environmental Sciences, Haikou 571126, PR China
| | - Chunyuan Wu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China; National Agricultural Experimental Station for Agricultural Environment, Danzhou 571737, PR China; Hainan Engineering Research Center for Non-point Source and Heavy Metal Pollution Control, Danzhou 571737, PR China.
| | - Xiaoying Zhang
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China
| | - Xiaoyu He
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China; Guizhou University, Guiyang 550025, PR China
| | - Yuefu Liang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China; Huazhong Agricultural University, Wuhan 430070, PR China
| | - Rong Hao
- Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
4
|
Mao T, Gan J, Yuan K, He L, Yu Y, Liu Z, Zhou Y, Wu G. Effects of Aminomethylphosphonic Acid on the Transcriptome and Metabolome of Red Swamp Crayfish, Procambarus clarkii. Int J Mol Sci 2024; 25:943. [PMID: 38256017 PMCID: PMC10816000 DOI: 10.3390/ijms25020943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Red swamp crayfish, Procambarus clarkii (P. clarkii), is an important model crustacean organism used in many types of research. However, the effects of different doses of aminomethylphosphonic acid (AMAP) on the transcriptome and metabolites of P. clarkii have not been explored. Thus, this study investigated the molecular and metabolic mechanisms activated at the different exposure dosages of AMAP in P. clarkii to provide new insights into the strategies of P. clarkii in response to the high concentrations of AMAP in the environment. In the present study, the P. clarkii were divided into three groups (control group; low-dosage AMAP exposure; high-dosage AMAP exposure), and hepatopancreatic tissue samples were dependently taken from the three groups. The response mechanisms at the different dosages of AMAP were investigated based on the transcriptome and metabolome data of P. clarkii. Differentially expressed genes and differentially abundant metabolites were identified in the distinct AMAP dosage exposure groups. The genes related to ribosome cell components were significantly up-regulated, suggesting that ribosomes play an essential role in responding to AMAP stress. The metabolite taurine, involved in the taurine and hypotaurine metabolism pathway, was significantly down-regulated. P. clarkii may provide feedback to counteract different dosages of AMAP via the upregulation of ribosome-related genes and multiple metabolic pathways. These key genes and metabolites play an important role in the response to AMAP stress to better prepare for survival in high AMAP concentrations.
Collapse
Affiliation(s)
- Tao Mao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (T.M.); (Z.L.)
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.G.); (K.Y.); (L.H.); (Y.Y.)
| | - Jinhua Gan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.G.); (K.Y.); (L.H.); (Y.Y.)
| | - Keping Yuan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.G.); (K.Y.); (L.H.); (Y.Y.)
| | - Li He
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.G.); (K.Y.); (L.H.); (Y.Y.)
| | - Yali Yu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.G.); (K.Y.); (L.H.); (Y.Y.)
| | - Ziduo Liu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (T.M.); (Z.L.)
| | - Yuntao Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.G.); (K.Y.); (L.H.); (Y.Y.)
| | - Gaobing Wu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (T.M.); (Z.L.)
| |
Collapse
|
5
|
Kou Y, Chen Y, Feng T, Chen L, Wang H, Sun N, Zhao S, Yang T, Jiao W, Feng G, Fan H, Zhao Y. Glufosinate-ammonium causes liver injury in zebrafish by blocking the Nrf2 pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:148-155. [PMID: 37676913 DOI: 10.1002/tox.23968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 07/27/2023] [Accepted: 08/27/2023] [Indexed: 09/09/2023]
Abstract
Glufosinate-ammonium (GLA) is a widely used herbicide, but less research has been done on its harmful effects on non-target organisms, especially aquatic organisms. In this study, 600 adult zebrafish were exposed to different concentration of GLA (0, 1.25, 2.5, 5, 10, and 20 mg/L) for 7 days, and the livers were dissected on the eighth day to examine the changes in liver structure, function, oxidative stress, inflammation, apoptosis, and Nrf2 pathway, and finally to clarify the mechanism of GLA induced liver injury in zebrafish. The levels of alanine aminotransferase, aspartate aminotransferase, reactive oxygen species, malondialdehyde, inflammatory factors (IL-6 and TNF-α), and caspase-3 gradually increased, while the levels of superoxide dismutase, catalase, glutathione, and glutathione peroxidase gradually decreased with the increase of GLA concentration. The Nrf2 pathway was activated at low concentrations (1.25-5 mg/L) and significantly inhibited at high concentrations (10 and 20 mg/L). These results suggested that GLA could cause oxidative stress, inflammation, and apoptosis in zebrafish liver. Therefore, GLA can cause liver injury in zebrafish, and at high concentrations, the inhibition of Nrf2 pathway is one of the important causes of liver injury.
Collapse
Affiliation(s)
- Yuhong Kou
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yongping Chen
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Tongtong Feng
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Luomeng Chen
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Hui Wang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Ning Sun
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Shuping Zhao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Tianyuan Yang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Wenjing Jiao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Guofeng Feng
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Honggang Fan
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yuan Zhao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
6
|
Liu S, Wang Z, Wang Z, Wu Q, Zhou J, Wang R, Han J, Su X. Comparison of the gut microbiota and metabolism in different regions of Red Swamp Crayfish ( Procambarus clarkii). Front Microbiol 2023; 14:1289634. [PMID: 38188569 PMCID: PMC10770849 DOI: 10.3389/fmicb.2023.1289634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024] Open
Abstract
Background The gut microbiota is very important for maintaining the homeostasis and health of crustaceans. Many factors affect the gut microbiota of crustaceans, one of which is temperature. However, it is currently unclear how temperature affects the gut microbiota and metabolites of Procambarus clarkii. Methods Using metagenomic sequencing and gas chromatography-mass spectrometry (GC-MS) techniques, the gut microbiota and metabolites of P. clarkii from Hubei (HB), Jiangsu (JS), Shandong (SD), and Zhejiang (ZJ) in China were investigated. Results Under the impact of temperature, the gut microbiota and metabolites of P. clarkii exhibit a specific trend of change. The primary pathogenic bacteria affecting P. clarkii are Citrobacter, Enterobacterium, and Aeromonas, which are affected by temperature. Two metabolites, namely, sugars and amino acids, are regulated by temperature. Implication This study demonstrated that the gut microbiota and gut metabolites of P. clarkii were considerably affected by temperature. It provides a theoretical basis for the systematic study of P. clarkii and provides a basis for a healthy culture of P. clarkii.
Collapse
Affiliation(s)
- Songyi Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
| | - Ziyan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
| | - Ze Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
| | - Qiaoli Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
| | - Jun Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
| | - Rixin Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
| | - Jiaojiao Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
| | - Xiurong Su
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
| |
Collapse
|
7
|
Yan B, Sun Y, Fu K, Zhang Y, Lei L, Men J, Guo Y, Wu S, Han J, Zhou B. Effects of glyphosate exposure on gut-liver axis: Metabolomic and mechanistic analysis in grass carp (Ctenopharyngodon idellus). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166062. [PMID: 37544446 DOI: 10.1016/j.scitotenv.2023.166062] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Glyphosate, one of the most widely used herbicide worldwide, is potentially harmful to non-target aquatic organisms. However, the environmental health risks regarding impacts on metabolism homeostasis and underlying mechanisms remain unclear. Here we investigated bioaccumulation, metabolism disorders and mechanisms in grass carp after exposure to glyphosate. Higher accumulation of glyphosate and its major metabolite, aminomethylphosphonic acid, in the gut was detected. Intestinal inflammation, barrier damage and hepatic steatosis were caused by glyphosate exposure. Lipid metabolism disorder was confirmed by the decreased triglyceride, increased total cholesterol and lipoproteins in serum and decreased visceral fat. Metabolomics analysis found that glyphosate exposure significantly inhibited bile acids biosynthesis in liver with decreased total bile acids content, which was further supported by significant downregulations of cyp27a1, cyp8b1 and fxr. Moreover, the dysbiosis of gut microbiota contributed to the inflammation in liver and gut by increasing lipopolysaccharide, as well as to the declined bile acids circulation by reducing secondary bile acids. These results indicated that exposure to environmental levels of glyphosate generated higher bioaccumulation in gut, where evoked enterohepatic injury, intestinal microbiota dysbiosis and disturbed homeostasis of bile acids metabolism; then the functional dysregulation of the gut-liver axis possibly resulted in ultimate lipid metabolism disorder. These findings highlight the metabolism health risks of glyphosate exposure to fish in aquatic environment.
Collapse
Affiliation(s)
- Biao Yan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academic of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Xianning Engineering Research Center for Healthy Environment, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, PR China
| | - Yumiao Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academic of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Kaiyu Fu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academic of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yindan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academic of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Lei Lei
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academic of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jun Men
- The Analysis and Testing Center of Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Yongyong Guo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academic of Sciences, Wuhan 430072, PR China
| | - Shengmin Wu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China.
| | - Jian Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academic of Sciences, Wuhan 430072, PR China.
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academic of Sciences, Wuhan 430072, PR China
| |
Collapse
|
8
|
Liu HL, Wu JM, Deng XT, Yu L, Yi PH, Liu ZQ, Xue YP, Jin LQ, Zheng YG. Development of an aminotransferase-driven biocatalytic cascade for deracemization of d,l-phosphinothricin. Biotechnol Bioeng 2023; 120:2940-2952. [PMID: 37227020 DOI: 10.1002/bit.28432] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/29/2023] [Accepted: 05/07/2023] [Indexed: 05/26/2023]
Abstract
2-oxo-4-[(hydroxy)(methyl)phosphinoyl]butyric acid (PPO) is the essential precursor keto acid for the asymmetric biosynthesis of herbicide l-phosphinothricin (l-PPT). Developing a biocatalytic cascade for PPO production with high efficiency and low cost is highly desired. Herein, a d-amino acid aminotransferase from Bacillus sp. YM-1 (Ym DAAT) with high activity (48.95 U/mg) and affinity (Km = 27.49 mM) toward d-PPT was evaluated. To circumvent the inhibition of by-product d-glutamate (d-Glu), an amino acceptor (α-ketoglutarate) regeneration cascade was constructed as a recombinant Escherichia coli (E. coli D), by coupling Ym d-AAT, d-aspartate oxidase from Thermomyces dupontii (TdDDO) and catalase from Geobacillus sp. CHB1. Moreover, the regulation of the ribosome binding site was employed to overcome the limiting step of expression toxic protein TdDDO in E. coli BL21(DE3). The aminotransferase-driven whole-cell biocatalytic cascade (E. coli D) showed superior catalytic efficiency for the synthesis of PPO from d,l-phosphinothricin (d,l-PPT). It revealed the production of PPO exhibited high space-time yield (2.59 g L-1 h-1 ) with complete conversion of d-PPT to PPO at high substrate concentration (600 mM d,l-PPT) in 1.5 L reaction system. This study first provides the synthesis of PPO from d,l-PPT employing an aminotransferase-driven biocatalytic cascade.
Collapse
Affiliation(s)
- Han-Lin Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Jia-Min Wu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Xin-Tong Deng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Lan Yu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Pu-Hong Yi
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Zhi-Qiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Ya-Ping Xue
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Li-Qun Jin
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Yu-Guo Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| |
Collapse
|
9
|
Arreguin-Rebolledo U, Páez-Osuna F, Betancourt-Lozano M, Rico-Martínez R. Multi-and transgenerational synergistic effects of glyphosate and chlorpyrifos at environmentally relevant concentrations in the estuarine rotifer Proales similis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120708. [PMID: 36410595 DOI: 10.1016/j.envpol.2022.120708] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/03/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
We evaluated the multi-and transgenerational effects of single and combined environmentally relevant concentrations of glyphosate (GLY) and chlorpyrifos (CPF) in the estuarine rotifer Proales similis. The acute and chronic toxicities of GLY and CPF were determined as individual compounds and as a mixture. Rotifers were exposed to environmental concentrations of GLY (1, 10, 100, and 1000 μg/L) and CPF (0.1, 1, 5, and 10 μg/L). The main findings were as follows: (i) the LC50 values were 33.91 mg/L (GLY) and 280 μg/L (CPF); (ii) the toxic unit (TU50) of the mixture was 0.30, corresponding to 10.17 mg/L GLY and 83 μg/L CPF; (iii) the multigenerational study indicated that the tested concentrations of GLY and CPF, both single and combined, significantly and consistently decreased the growth rates of P. similis from the F0 to F6 generations; (iv) in most cases, GLY and CPF mixtures induced a strong synergistic effect; and (v) transgenerational effects were detected in the F4 generation, especially GLY and CPF in higher equitoxic proportions. These effects seem to dissipate in F5. Across multigeneration, a slight recovery could indicate population resilience to pollution. Our findings suggest that a mixture of GLY and CPF at environmental concentrations is likely to occur under real field conditions, increasing the risk to marine and estuarine invertebrates such as rotifers.
Collapse
Affiliation(s)
- Uriel Arreguin-Rebolledo
- Centro de Ciencias Básicas, Departamento de Química, Universidad Autónoma de Aguascalientes, Avenida Universidad 940, C.P. 20100, Aguascalientes, Ags, Mexico
| | - Federico Páez-Osuna
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de Mexico, Unidad Académica, Mazatlán, Mexico
| | | | - Roberto Rico-Martínez
- Centro de Ciencias Básicas, Departamento de Química, Universidad Autónoma de Aguascalientes, Avenida Universidad 940, C.P. 20100, Aguascalientes, Ags, Mexico.
| |
Collapse
|
10
|
Yan B, Han J, Sun Y, Lei L, Yuan J, Qiao Z, Men J, Wang X, Guo Y, Wang Q, Zhou B. Probiotics ameliorate growth retardation of glyphosate by regulating intestinal microbiota and metabolites in crucian carp (Carassius auratus). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158260. [PMID: 36030870 DOI: 10.1016/j.scitotenv.2022.158260] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Glyphosate (GLY) contamination widely occurred in aquatic environments including aquaculture systems and raised hazard to aquatic organisms such as fish. Probiotics have been reported to alleviate contaminants-induced toxicity. However, whether probiotics could reduce the health risk of GLY to fish remain unknown. Here we investigated the impacts of GLY on crucian carp (Carassius auratus) by focusing on the protective roles of two commonly used aquaculture probiotics, Bacillus coagulans (BC) and Clostridium butyricum (CB). Exposure to GLY significantly caused growth retardation and reduced visceral fat and intestinal lipase activity in crucian carp. 16S rRNA sequencing indicated that dysbiosis of Bacteroidetes at phylum level and Flavobacterium at genus level might be primarily responsible for GLY-induced negative growth performance. High throughput targeted quantification for metabolites revealed that GLY changed intestinal metabolites profiles, especially the reduced bile acids and short-chain fatty acids. However, the addition of BC or CB effectively attenuated the adverse effects above by remodeling the gut microbiota composition and improving microbial metabolism. The present study provides novel evidence for ameliorating the harmful effects of GLY on fish species by adding probiotics, which highlights the potential application of probiotics in reducing the health risks of GLY in aquatic environment.
Collapse
Affiliation(s)
- Biao Yan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academic of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Xianning Engineering Research Center for Healthy Environment, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, PR China.
| | - Jian Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academic of Sciences, Wuhan 430072, PR China.
| | - Yumiao Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academic of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Lei Lei
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academic of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Jing Yuan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academic of Sciences, Wuhan 430072, PR China.
| | - Zhixian Qiao
- The Analysis and Testing Center of Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China.
| | - Jun Men
- The Analysis and Testing Center of Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China.
| | - Xin Wang
- The Analysis and Testing Center of Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China.
| | - Yongyong Guo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academic of Sciences, Wuhan 430072, PR China.
| | - Qidong Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academic of Sciences, Wuhan 430072, PR China.
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academic of Sciences, Wuhan 430072, PR China.
| |
Collapse
|
11
|
Cuzziol Boccioni AP, Lener G, Peluso J, Peltzer PM, Attademo AM, Aronzon C, Simoniello MF, Demonte LD, Repetti MR, Lajmanovich RC. Comparative assessment of individual and mixture chronic toxicity of glyphosate and glufosinate ammonium on amphibian tadpoles: A multibiomarker approach. CHEMOSPHERE 2022; 309:136554. [PMID: 36174726 DOI: 10.1016/j.chemosphere.2022.136554] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/06/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
The aim of the present study was to assess the ecotoxicity of glyphosate and glufosinate ammonium mixtures on amphibian tadpoles and the potential impact of mixture in aquatic ecosystems health. The bonding properties of the mixture based on computational chemistry and an experimental bioassay on morphology, DNA damage and biochemical biomarkers on tadpoles of the common toad Rhinella arenarum were studied. The results of the density functional theory analysis showed trends of the pesticides clustering to form exothermic mixtures, suggesting the likelihood of hot-spots of pesticides in real aquatic systems. In addition, biological effects of individual pesticides and the mixture were studied on tadpoles over 45 days-chronic bioassay. The bioassay consisted of four treatments: a negative control (CO), 2.5 mg L-1 of a glyphosate-based herbicide (GBH), 2.5 mg L-1 of a glufosinate ammonium-based herbicide (GABH) and their 50:50 (% v/v) mixture (GBH-GABH). Morphological abnormality rates were significantly higher in all herbicide treatments with respect to CO at 48 h of exposure. Abdominal edema was the most frequent type of abnormality recorded at 48 h, 10 and 45 days of exposure. DNA damage was recorded in all herbicides treatments. Thyroxin increased only in GABH treatment. Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) significantly increased in GBH treatment, indicating a GBH-neurotoxic effect. Glutathione S-transferase decreased in GABH and GBH-GABH treatments, while catalase decreased in individual GBH and GABH treatments. Overall, teratogenicity, DNA damage, hormonal disruption (T4), and oxidative stress were greater in GABH-treated tadpoles than GBH-treated tadpoles. This study also highlights the robust chemical interaction between the active ingredients of both herbicides, which is reflected on antagonisms in most of analyzed biomarkers, as well as potentiation and additivity in others. Based on our results, the GABH had a higher toxicity than GBH for amphibian tadpoles.
Collapse
Affiliation(s)
- Ana P Cuzziol Boccioni
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina.
| | - German Lener
- Instituto de Investigaciones en Físico-Química de Córdoba-CONICET. Departamento de Química Teórica y Computacional. Facultad de Ciencias Químicas. Universidad Nacional de Córdoba, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - Julieta Peluso
- Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (IIIA-UNSAM)-CONICET, Campus Miguelete, San Martín, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - Paola M Peltzer
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - Andrés M Attademo
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - Carolina Aronzon
- Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (IIIA-UNSAM)-CONICET, Campus Miguelete, San Martín, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - María F Simoniello
- Cátedra de Toxicología, Farmacología y Bioquímica Legal, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral, Ciudad Universitaria, Santa Fe, Argentina
| | - Luisina D Demonte
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos. Facultad de Ingeniería Química, Universidad Nacional Del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - María R Repetti
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos. Facultad de Ingeniería Química, Universidad Nacional Del Litoral, Santa Fe, Argentina
| | - Rafael C Lajmanovich
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
12
|
Nguyen MH, Nguyen TD, Vu MT, Duong HA, Pham HV. Determination of Glyphosate, Glufosinate, and Their Major Metabolites in Tea Infusions by Dual-Channel Capillary Electrophoresis following Solid-Phase Extraction. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2022; 2022:5687025. [PMID: 35402060 PMCID: PMC8993582 DOI: 10.1155/2022/5687025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
In this study, two analytical procedures were developed and validated using dual-channel capillary electrophoresis-coupled contactless conductivity detection (CE-C4D) followed by solid-phase extraction (SPE) for simultaneous determination of glyphosate (GLYP), glufosinate (GLUF), and their two major metabolites, aminomethylphosphonic acid (AMPA) and 3-(methylphosphinico) propionic acid (MPPA), respectively, in a popular beverage such as tea infusions. GLYP, GLUF, and AMPA were analyzed in the first channel using background electrolyte (BGE) of 1 mM histidine (His) adjusted to pH 2.75 by acetic acid (Ace). In contrast, MPPA was quantified in the second channel with a BGE of 30 mM His adjusted to pH 6.7 by 3-(N-morpholino) propanesulfonic acid (MOPS) and 10 µM of cetyltrimethylammonium bromide (CTAB). In addition, the samples of tea infusions were treated using SPE with 10 mL of 0.5 mM HCl in methanol as eluent. At the optimized conditions, the method detection limit (MDL) of GLYP, GLUF, AMPA, and MPPA is 0.80, 1.56, 0.56, and 0.54 μg/l, respectively. The methods were then applied to analyze four target compounds in 16 samples of tea infusions. GLYP was found in two infusion samples of oolong tea with concentrations ranging from 5.34 to 10.74 µg/L, and GLUF was recognized in three samples of green tea infusion in the range of 45.1-53.9 µg/L.
Collapse
Affiliation(s)
- Manh Huy Nguyen
- Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), VNU University of Science (VNU-HUS), Vietnam National University, Hanoi (VNU), 334 Nguyen Trai Street, Thanh Xuan District, Hanoi, Vietnam
| | - Thanh Dam Nguyen
- Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), VNU University of Science (VNU-HUS), Vietnam National University, Hanoi (VNU), 334 Nguyen Trai Street, Thanh Xuan District, Hanoi, Vietnam
| | - Minh Tuan Vu
- Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), VNU University of Science (VNU-HUS), Vietnam National University, Hanoi (VNU), 334 Nguyen Trai Street, Thanh Xuan District, Hanoi, Vietnam
| | - Hong Anh Duong
- Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), VNU University of Science (VNU-HUS), Vietnam National University, Hanoi (VNU), 334 Nguyen Trai Street, Thanh Xuan District, Hanoi, Vietnam
- Research Centre for Environmental Technology and Sustainable Development (CETASD), VNU University of Science (VNU-HUS), Vietnam National University, Hanoi (VNU), 334 Nguyen Trai Street, Thanh Xuan District, Hanoi, Vietnam
| | - Hung Viet Pham
- Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), VNU University of Science (VNU-HUS), Vietnam National University, Hanoi (VNU), 334 Nguyen Trai Street, Thanh Xuan District, Hanoi, Vietnam
- Research Centre for Environmental Technology and Sustainable Development (CETASD), VNU University of Science (VNU-HUS), Vietnam National University, Hanoi (VNU), 334 Nguyen Trai Street, Thanh Xuan District, Hanoi, Vietnam
| |
Collapse
|