1
|
Hong G, Yang M, Wang S, Xia Y, Peng G. Metarhizium acridum transcription factor MaFTF1 negatively regulates virulence of the entomopathogenic fungus by controlling cuticle penetration of locusts. PEST MANAGEMENT SCIENCE 2024. [PMID: 39704032 DOI: 10.1002/ps.8604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/22/2024] [Accepted: 11/29/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND The entomopathogenic fungus (EPF) Metarhizium acridum, a typical filamentous fungus, has been utilized for the biological control of migratory locusts (Locusta migratoria manilensis). Fungal-specific transcription factors (TFs) play a crucial role in governing various cellular processes in fungi, although TFs with only the Fungal_trans domain remain poorly understood. RESULTS In this study, we identified a unique fungal-specific TF in M. acridum, named MaFTF1, which contains only a Fungal_trans domain and functions as a negative regulator of M. acridum virulence by influencing cuticle penetration. The virulence of the MaFTF1 knockout strain (ΔMaFTF1) against L. migratoria was increased, with a median lethal time (LT50) ~0.91 days shorter than that of the wild-type (WT) strain when inoculated topically, mimicking natural infection conditions. Correspondingly, ΔMaFTF1 penetrated the cuticle earlier than did the WT strain. Our investigation revealed that the development of appressoria was accelerated in ΔMaFTF1 compared with the WT strain. Furthermore, the appressoria of the ΔMaFTF1 displayed higher turgor pressure and an upregulated expression of fungal hydrolases active toward the insect cuticle. RNA sequencing analysis indicated that the differences in appressorium behavior between the strains were due to MaFTF1 regulating a complex metabolism pathway. CONCLUSION This study revealed that MaFTF1 acts as a negative regulator of virulence, impacting the process of cuticle penetration by slowing the formation of appressoria, decreasing their turgor pressure, and reducing the expression of hydrolases in appressoria, revealing an unexpected strategy in the EPFs. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Geng Hong
- School of Life Sciences, Chongqing University, Chongqing, China
- Chongqing Engineering Research Center for Fungal Insecticides, Chongqing, China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, China
| | - Man Yang
- School of Life Sciences, Chongqing University, Chongqing, China
- Chongqing Engineering Research Center for Fungal Insecticides, Chongqing, China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, China
| | - Shanjun Wang
- School of Life Sciences, Chongqing University, Chongqing, China
- Chongqing Engineering Research Center for Fungal Insecticides, Chongqing, China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, China
| | - Yuxian Xia
- School of Life Sciences, Chongqing University, Chongqing, China
- Chongqing Engineering Research Center for Fungal Insecticides, Chongqing, China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, China
| | - Guoxiong Peng
- School of Life Sciences, Chongqing University, Chongqing, China
- Chongqing Engineering Research Center for Fungal Insecticides, Chongqing, China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, China
| |
Collapse
|
2
|
Li H, Huo L, Zhang R, Gu X, Chen G, Yuan Y, Tan W, Hui K, Jiang Y. Effect of soil-groundwater system on migration and transformation of organochlorine pesticides: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 290:117564. [PMID: 39700769 DOI: 10.1016/j.ecoenv.2024.117564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 12/01/2024] [Accepted: 12/15/2024] [Indexed: 12/21/2024]
Abstract
Soil is the place where human beings, plants, and animals depend on for their survival and the link between the various ecological layers. Groundwater is an important component of water resources and is one of the most important sources of water for irrigated agriculture, industry, mining and cities because of its stable quantity and quality. Soil and groundwater are important strategic resources highly valued by countries around the world. However, in recent years, the deterioration of the ecological environment of soil-groundwater caused by industrial, domestic, and agricultural pollution sources has continued to threaten human health and ecological security. Among them, organochlorine pesticides (OCPs), as typical organic pollutants, cause very serious pollution of soil and groundwater environment. However, most studies on the pollution of OCPs have focused on the aboveground or surface water environment, and little consideration has been given to the pollution and hazards of OCPs to the deep soil and groundwater environment, especially the effects of different environmental factors on the transport and transformation of OCPs in soil-groundwater. Moreover, in addition to the influence of a single factor on it, the interactions that arise between different factors cannot be ignored. This paper focuses on two major sources of OCPs in soil and groundwater environments, compiles and summarizes the effects of environmental factors such as pH, microbial communities and enzyme activities on the transport and transformation of OCPs in soil and groundwater systems, discusses the synergistic effects of individual environmental factors and others, and comprehensively analyses the effects of synergistic effects of various environmental factors on the transport and transformation of OCPs. In the context of ecological civilization construction, it provides the scientific basis and theoretical foundation for the prevention and treatment of OCPs-contaminated soil and groundwater, and puts forward new ideas and suggestions for the research and development of green, eco-friendly remediation and treatment technologies for OCPs-contaminated sites.
Collapse
Affiliation(s)
- Haohao Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Xi'an Key Laboratory of Low-carbon Utilization for High-carbon Resources, Xi'an Shiyou University, Xi'an 710065, China
| | - Lin Huo
- Swiss Federal Institute of Technology (ETH) Zurich, Universitaetstrasse 16, Zurich 8092, Switzerland
| | - Rui Zhang
- Guizhou Shale Gas Exploration and Development Co., Zunyi, Guizhou 563499, China
| | - Xuefan Gu
- Xi'an Key Laboratory of Low-carbon Utilization for High-carbon Resources, Xi'an Shiyou University, Xi'an 710065, China
| | - Gang Chen
- Xi'an Key Laboratory of Low-carbon Utilization for High-carbon Resources, Xi'an Shiyou University, Xi'an 710065, China
| | - Ying Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Xi'an Key Laboratory of Low-carbon Utilization for High-carbon Resources, Xi'an Shiyou University, Xi'an 710065, China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Xi'an Key Laboratory of Low-carbon Utilization for High-carbon Resources, Xi'an Shiyou University, Xi'an 710065, China
| | - Kunlong Hui
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Xi'an Key Laboratory of Low-carbon Utilization for High-carbon Resources, Xi'an Shiyou University, Xi'an 710065, China.
| | - Yu Jiang
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
3
|
Oyovwi MO, Atere AD, Chimwuba P, Joseph UG. Implication of Pyrethroid Neurotoxicity for Human Health: A Lesson from Animal Models. Neurotox Res 2024; 43:1. [PMID: 39680194 DOI: 10.1007/s12640-024-00723-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/19/2024] [Accepted: 12/01/2024] [Indexed: 12/17/2024]
Abstract
Pyrethroids, synthetic insecticides used in pest management, pose health risks, particularly neurotoxic effects, with studies linking exposure to a neurodegenerative disorder. This review examines the neurotoxic mechanisms of pyrethroids analyzing literature from animal model studies. It identifies critical targets for neurotoxicity, including ion channels, oxidative stress, inflammation, neuronal cell loss, and mitochondrial dysfunction. The review also discusses key therapeutic targets and signaling pathways relevant to Pyrethroids neurotoxicity management, including calcium, Wnt/β-catenin, mTOR, MAPK/Erk, PI3K/Akt, Nrf2, Nurr1, and PPARγ. Our findings demonstrate that pyrethroid exposure triggers multiple neurotoxic pathways that bear resemblance to the mechanisms underlying neurotoxicity. Oxidative stress and inflammation emerge as prominent factors that contribute to neuronal degeneration, alongside disrupted mitochondrial function. The investigation highlights the significance of ion channels as primary neurodegeneration targets while acknowledging the potential involvement of various other receptors and enzymes that may exacerbate neurological damage. Additionally, we elucidate how pyrethroids may interfere with therapeutic targets associated with neuronal dysfunction, potentially impairing treatment efficacy.Also, exposure to these chemicals can alter DNA methylation patterns and histone modifications, ultimately leading to changes in gene expression that may enhance susceptibility to neurological disorders. Pyrethroid neurotoxicity poses a significant public health risk, necessitating future research for protective strategies against pesticide-induced neurological disorders and understanding the interplay between neurodegenerative diseases, potentially leading to innovative therapeutic interventions.
Collapse
Affiliation(s)
- Mega Obukohwo Oyovwi
- Department of Physiology, Faculty of Basic Medical Sciences, Adeleke University, Ede, Osun State, Nigeria.
| | - Adedeji David Atere
- Department of Medical Laboratory Science, College of Health Sciences, Osun State University, Osogbo, Nigeria
- Neurotoxicology Laboratory, Sefako Makgatho Health Sciences University, Ga-Rankuwa, South Africa
| | - Paul Chimwuba
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Uchechukwu Gregory Joseph
- Department of Medical Laboratory Science, Faculty of Basic Medical Sciences, Adeleke University, Ede, Osun State, Nigeria
| |
Collapse
|
4
|
Ishwarya Lakshmi KS, Dhillon MK, Mukri G, Mahendra KR, Gowtham KV, Tanwar AK. Induced biochemical variations in maize parental lines affect the life table and age-specific reproductive potential of Spodoptera frugiperda (J.E. Smith). FRONTIERS IN PLANT SCIENCE 2024; 15:1517848. [PMID: 39717731 PMCID: PMC11663683 DOI: 10.3389/fpls.2024.1517848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 11/21/2024] [Indexed: 12/25/2024]
Abstract
In recent years, the fall armyworm, Spodoptera frugiperda has rapidly emerged as a global invasive pest, challenging the maize production and leading to considerable economic losses. Developing resistant hybrids is essential for sustainable maize cultivation, which requires a comprehensive understanding of resistance traits and the underlying mechanisms in parental lines. To address this need, the present study aimed to identify the sources of resistance, age and stage-specific effects and role of phytochemicals in plant defense against S. frugiperda in thirty diverse maize parental lines [17 female (A) and 13 male (R) lines]. The study revealed that the larvae fed on maize A-lines CML 565, AI 501, AI 544 and PDIM 639, and R-lines AI 125, AI 542, AI 155, AI 1100 and PML 105 exhibited a reduced intrinsic (r) and finite rate of increase (λ), and net (R0) and gross reproduction rates (GRR); while, increased mean generation time (T) and doubling time (DT). Among these, A-lines CML 565, PDIM 639 and AI 544, and R-lines AI 125, AI 155 and AI 1100 showed higher detrimental effect on reproductive value of S. frugiperda. Aforesaid A- and R-lines were also found with greater increase in insect-induced test phytochemicals compared to other lines, accounting for 25.0 to 72.8% variation in the life table parameters, indicating antibiosis effect on S. frugiperda. Among the test phytochemicals, tannins, CAT, PAL, TAL and APX inflicted greater effect, indicating their role in induced-biochemical defense against S. frugiperda.
Collapse
Affiliation(s)
| | - Mukesh K. Dhillon
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Ganapati Mukri
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - K. R. Mahendra
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - K. V. Gowtham
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Aditya K. Tanwar
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
5
|
Ragasruthi M, Balakrishnan N, Murugan M, Swarnakumari N, Harish S, Sharmila DJS. Bacillus thuringiensis (Bt)-based biopesticide: Navigating success, challenges, and future horizons in sustainable pest control. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176594. [PMID: 39353493 DOI: 10.1016/j.scitotenv.2024.176594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
The global demand for food production is escalating, necessitating innovative approaches to mitigate pest-related crop losses. Conventional pest management using synthetic pesticides has several drawbacks, promoting the search for eco-friendly alternatives such as biopesticides. Among these, Bacillus thuringiensis (Bt)-based biopesticides have emerged as a promising option due to their specificity, sustainability, and safety. This article reviews the success and application of Bt as a biopesticide, analysing its environmental impacts, formulation strategies, marketing trends and associated challenges. The environment impact of Bt is multifaceted, influencing soil ecosystems, plant-associated habitats, and non-target organisms. It interacts dynamically with soil invertebrates and affects both aquatic and terrestrial ecosystems, demonstrating a complex ecological footprint. The market for Bt-based biopesticide is expanding, driven by their proven efficacy and eco-friendliness with projections indicating continued growth. Despite the promising market trends, regulatory hurdles and formulation complexities remain significant obstacles. Addressing these challenges require collaborative efforts to streamline processes and enhance market acceptance. Nonetheless, the future of Bt-based biopesticide appears promising. Ongoing research is focused on advanced formulations, expanding the range of targeted pests and fostering regulatory cooperation, underscoring the pivotal role of Bt-based biopesticide in sustainable agriculture.
Collapse
Affiliation(s)
- M Ragasruthi
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, India
| | - N Balakrishnan
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, India.
| | - M Murugan
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, India
| | - N Swarnakumari
- Department of Plant Protection Studies, HC&RI for Women, Tamil Nadu Agricultural University, Tiruchirappalli, India
| | - S Harish
- Department of Oil Seeds, Tamil Nadu Agricultural University, Coimbatore, India
| | - D Jeya Sundara Sharmila
- Center for Agricultural Nano Technology, Tamil Nadu Agricultural University, Coimbatore, India
| |
Collapse
|
6
|
Zainab R, Hasnain M, Ali F, Abideen Z, Siddiqui ZS, Jamil F, Hussain M, Park YK. Prospects and challenges of nanopesticides in advancing pest management for sustainable agricultural and environmental service. ENVIRONMENTAL RESEARCH 2024; 261:119722. [PMID: 39098710 DOI: 10.1016/j.envres.2024.119722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
The expanding global population and the use of conventional agrochemical pesticides have led to the loss of crop yield and food shortages. Excessive pesticide used in agriculture risks life forms by contaminating soil and water resources, necessitating the use of nano agrochemicals. This article focuses on synthesis moiety and use of nanopesticides for enhanced stability, controlled release mechanisms, improved efficacy, and reduced pesticide residue levels. The current literature survey offered regulatory frameworks for commercial deployment of nanopesticides and evaluated societal and environmental impacts. Various physicochemical and biological processes, especially microorganisms and advanced oxidation techniques are important in treating pesticide residues through degradation mechanisms. Agricultural waste could be converted into nanofibers for sustainable composites production, new nanocatalysts, such as N-doped TiO2 and bimetallic nanoparticles for advancing pesticide degradation. Microbial and enzyme methods have been listed as emerging nanobiotechnology tools in achieving a significant reduction of chlorpyrifos and dimethomorph for the management of pesticide residues in agriculture. Moreover, cutting-edge biotechnological alternatives to conventional pesticides are advocated for promoting a transition towards more sustainable pest control methodologies. Application of nanopesticides could be critical in addressing environmental concern due to its increased mobility, prolonged persistence and ecosystem toxicity. Green synthesis of nanopesticides offers solutions to environmental risks associated and using genetic engineering techniques may induce pest and disease resistance for agricultural sustainability. Production of nanopesticides from biological sources is necessary to develop and implement comprehensive strategies to uphold agricultural productivity while safeguarding environmental integrity.
Collapse
Affiliation(s)
- Rida Zainab
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, P.O. Box 2727, United Arab Emirates; Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Maria Hasnain
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Faraz Ali
- School of Engineering and Technology, Central Queensland University, Sydney, Australia
| | - Zainul Abideen
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, P.O. Box 2727, United Arab Emirates; Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, 75270, Pakistan.
| | | | - Farrukh Jamil
- Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore Campus, Defence Road, Off Raiwind Road, Lahore, Pakistan; Biomass & Bioenergy Research Group, Center for Sustainable Energy and Power Systems Research, Research Institute of Sciences and Engineering, University of Sharjah, 27272, Sharjah, United Arab Emirates
| | - Murid Hussain
- Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore Campus, Defence Road, Off Raiwind Road, Lahore, Pakistan
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea.
| |
Collapse
|
7
|
Liu X, Wang B, Luo H, Zou J, Yang BC, Hu B. Portable Miniature Mass Spectrometry for Enhanced On-Site Detection of Analytes in Complex Samples by Integrating Solid-Phase Microextraction and Nano-Electrospray Ionization. Anal Chem 2024; 96:17471-17475. [PMID: 39415685 DOI: 10.1021/acs.analchem.4c04224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
On-site mass spectrometry (MS) analysis plays a crucial role in timely understanding chemical compositions of field samples but presents a challenge to miniaturization, portability, and sensitivity. In this work, a portable MS approach was developed by integrating biocompatible solid-phase microextraction (SPME) and a nano-electrospray ionization (nESI) emitter into a kit to couple miniature MS (mMS). The SPME fiber was used for on-site extractive sampling of analytes from complex liquid samples and living organisms and was then inserted into an nESI emitter for on-site MS analysis via the facile kit. The limit of detection was found to be at the pg/mL level for various compounds tested. Acceptable relative standard deviation (RSD) values (5.5-7.6%, n = 6) were obtained for direct measurement of analytes in complex matrixes; acceptable linear responses (0.1-50 ng/mL) and matrix effects (76.0-82.6%) were also found. Enhanced detection of compounds of interest in various real samples, such as food samples, human fluids, environmental water, and living organisms, was unambiguously demonstrated. Our experimental data showed that SPME-nESI-mMS is a promising tool for on-site analysis of various complex samples in significant applications including but not limited to food safety, environmental monitoring, forensic investigation, and bioanalysis.
Collapse
Affiliation(s)
- Xuan Liu
- College of Environment and Climate, Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, and Guangdong Provincial Key Laboratory of Speed Capability, Jinan University, Guangzhou 510632, China
| | - Baixue Wang
- College of Environment and Climate, Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, and Guangdong Provincial Key Laboratory of Speed Capability, Jinan University, Guangzhou 510632, China
| | - Haiyan Luo
- Jiangxi Maternal and Child Health Hospital, Nanchang 330006, China
| | - Jun Zou
- Jiangxi Maternal and Child Health Hospital, Nanchang 330006, China
| | - Bi-Cheng Yang
- Jiangxi Maternal and Child Health Hospital, Nanchang 330006, China
| | - Bin Hu
- College of Environment and Climate, Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, and Guangdong Provincial Key Laboratory of Speed Capability, Jinan University, Guangzhou 510632, China
| |
Collapse
|
8
|
Kaczyński P, Iwaniuk P, Jankowska M, Orywal K, Socha K, Perkowski M, Farhan JA, Łozowicka B. Pesticide residues in common and herbal teas combined with risk assessment and transfer to the infusion. CHEMOSPHERE 2024; 367:143550. [PMID: 39426745 DOI: 10.1016/j.chemosphere.2024.143550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/27/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
The use of pesticides is permitted in tea cultivation, but many of them are withdrawn in Europe. The aim of this study was a comprehensive assessment of pesticide occurrence in common teas (black, green, red, white, and black flavored) and herbal teas (lemon balm and mint) and their transfer to the infusion. Among 603 pesticides, 24 were detected, of which 9 were withdrawn in Europe. Of the 64 tea samples, 47% had pesticide residues and 2% exceeded the European Maximum Residue Level (EU MRL; 572% for linuron/mint). The highest mean concentrations of the most common pesticides were 336 ng g-1 (quizalofop-P-ethyl/mint), 108.4 ng g-1 (MCPA/lemon balm), and 92.4 ng g-1 (glyphosate/red tea). A short time of brewing (5 min) had a higher transfer factor (TF) of most pesticides to the infusion (TF = 0.85/thiacloprid), compared to 30 min brewing (TF = 0.75/thiacloprid). Moreover, the physicochemical properties of detected pesticides, mainly density and melting temperature had a crucial impact on their transfer to the infusion. Acute risk was the highest for linuron/mint/children (17% of Acute Reference Dose; ARfD). Despite the withdrawal of some pesticides in the EU, they are still detected in tea samples. The results are pivotal for human health and highlight the need for further legislative action for tea.
Collapse
Affiliation(s)
- Piotr Kaczyński
- Institute of Plant Protection - National Research Institute, Chełmońskiego 22 St., 15-195, Białystok, Poland
| | - Piotr Iwaniuk
- Institute of Plant Protection - National Research Institute, Chełmońskiego 22 St., 15-195, Białystok, Poland.
| | - Magdalena Jankowska
- Institute of Plant Protection - National Research Institute, Chełmońskiego 22 St., 15-195, Białystok, Poland
| | - Karolina Orywal
- Medical University of Białystok, Faculty of Pharmacy with the Division of Laboratory Medicine, Department of Biochemical Diagnostics, Waszyngtona 15A St., 15-269, Białystok, Poland
| | - Katarzyna Socha
- Medical University of Białystok, Faculty of Pharmacy with the Division of Laboratory Medicine, Department of Bromatology, Mickiewicza 2D St., 15-222, Białystok, Poland
| | - Maciej Perkowski
- University of Białystok, Faculty of Law, Department of Public International Law and European Law, Mickiewicza 1 St., 15-213, Białystok, Poland
| | - Jakub Ali Farhan
- University of Białystok, Faculty of Law, Department of Public International Law and European Law, Mickiewicza 1 St., 15-213, Białystok, Poland
| | - Bożena Łozowicka
- Institute of Plant Protection - National Research Institute, Chełmońskiego 22 St., 15-195, Białystok, Poland
| |
Collapse
|
9
|
Muhoro AM, Ochomo EO, Kinyua IN, Kosgei JJ, Rasaki LA, Farkas E. A study on the effectiveness of (+)-usnic acid as oral toxic sugar bait against adult male and female Anopheles gambiae. Malar J 2024; 23:311. [PMID: 39420395 PMCID: PMC11487889 DOI: 10.1186/s12936-024-05141-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Despite the application of various tools for the control of vectors of Plasmodium falciparum, malaria remains the major killer disease in sub-Saharan Africa accounting for up to 90% of deaths due to the disease. Due to limitations of the useage of chemical insecticides such as resistance, negative impact on the environment and to nontarget organisms, the World Health Organization (WHO) requires that affected countries find alternative vector control tools. This study evaluated the effectiveness of ( +)-usnic acid (UA) as an insecticide through oral administration to male and female Anopheles gambiae as an alternative or additional active ingredient to be used in toxic sugar bait. METHODS ( +)-usnic acid was diluted using acetone at 5, 10, and 15 mg/ml concentrations in three replicates. A 5 ml mixture of 2% food dye and 10% sugar using chlorine-free water mixed with the dilutions of the ( +)-usnic acid and negative control was made containing 2% food dye and 10% sugar solution. The preparations were soaked on a ball of cotton wool and placed over the net of a cup. 5 male and 5 non-blood-fed female newly hatched starved An. gambiae Kisumu strain were introduced together into a cup and monitored for knockdown and mortalities after 4, 24 48, and 72 h. The data were analysed using a multiple linear regression model using the lm function, a base R function and a posthoc test were conducted on the significant main effects and interaction terms using the emmeans function from the emmeans R package. All analyses were performed in RStudio using base R (version 4.3.3). RESULTS There was high mortality of both male and female An. gambiae after ingestion of the toxic sugar bait. 15 mg/ml usnic acid caused the highest mortality (50%) within the first 4 h compared to 5 and 10 mg/ml ( +)-UA. There was a decline in the mortality rate with increased exposure time from 24 to 72 h, however, there was a significant difference in mortality at 5, 10 and 15 mg/ml. Acute toxicity was associated with ingestion of 15 mg/ml after 24 h. 72 h post-mortality was lower in all concentrations than in the control. High mortality was observed among females over the first 4 h (60%) compared to males (40%) due to higher feeding rate of the toxic agent. The proportion of dead males and females was equal after 24 h while after 48 h, the proportion of dead males was high.There was a significantly lower mortality rate after 72 h for both males and females (0 to 13.3%). Compared to all the treatments, high mortality of males was observed. CONCLUSIONS The results of this study indicate that ( +)-UA when administered as oral sugar bait to An. gambiae has insecticidal properties and is a suitable ingredient to be used as a toxic agent in the novel attractive toxic sugar bait for the control of malaria vectors. ( +)-UA may be an alternative active ingredient as toxic bait in the effort to reduce and eliminate the transmission of Plasmodium falciparum in Africa.
Collapse
Affiliation(s)
- Arthur Macharia Muhoro
- Doctoral School of Biological Sciences, Hungarian University of Agriculture and Life Sciences, Páter K. U. 1, 2100, Gödöllő, Hungary.
- Kenya Medical Research Institute-Centre for Global Health Research (KEMRI-CGHR), P.O. Box 1578, Kisumu, 40100, Kenya.
| | - Eric Odhiambo Ochomo
- Kenya Medical Research Institute-Centre for Global Health Research (KEMRI-CGHR), P.O. Box 1578, Kisumu, 40100, Kenya
| | - Isaac Njangiru Kinyua
- Institute of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös U. 6, 6720, Szeged, Hungary
| | - Jackline Jeruto Kosgei
- Kenya Medical Research Institute-Centre for Global Health Research (KEMRI-CGHR), P.O. Box 1578, Kisumu, 40100, Kenya
| | - Laide Abbas Rasaki
- Department of Crop Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Edit Farkas
- HUN-REN Centre for Ecological Research, Institute of Ecology and Botany, Alkotmány u. 2-4, 2163, Vácrátót, Hungary
| |
Collapse
|
10
|
Liu B, Shi T, Yang H, Zhang J, Li Y. Size-dependent effect on controllable release and field insecticidal efficacy of diamide insecticide polylactic acid microspheres delivery systems against Ostrinia nubilalis. Int J Biol Macromol 2024; 278:134659. [PMID: 39128754 DOI: 10.1016/j.ijbiomac.2024.134659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
New nano/microcarriers of pesticides represent a highly promising novel field for sustainable pest management. However, despite extensive laboratory research, few studies on the design and evaluation of nanopesticides for field applications exist. In this study, we present a straightforward and green synthetic method of ultrasonic-assisted and hydrogen-bonded self-assembly at the oil-water interface for the synthesis of polylactic acid (PLA) microspheres encapsulating chlorantraniliprole (CAP), with precise control over the size of the microspheres. The resulting CAP-loaded PLA microspheres (CAP-PLA MS) exhibit both high pesticide encapsulation efficiency and stability in natural environments. It has been determined that non-Fickian diffusion mainly controls pesticide release, thus enabling dynamic control over molecular transport speeds. Importantly, our functional CAP-PLA MS demonstrates superior sustained pesticide release performance under both laboratory and field conditions while maintaining better exceptional insecticidal efficacy than normal CAP in controlling O. nubilalis at a concentration of 30 or 45 g/ha. Consequently, we propose that our functional PLA microspheres could serve as ideal pesticide carriers in the sustained treatment of O. nubilalis.
Collapse
Affiliation(s)
- Bingrui Liu
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Taozhong Shi
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Huiying Yang
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Jian Zhang
- Key Laboratory of Green Pesticide and Agricultural Bio-engineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China.
| | - Yahui Li
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, Hefei, Anhui 230036, China.
| |
Collapse
|
11
|
Ibrahium SM, Abdel-Baki AAS, Gadelhaq SM, Aboelhadid SM, Mahran HA, Al-Quraishy S, Reyad A, Kamel AA. Toxicity of Common Acaricides, Disinfectants, and Natural Compounds against Eggs of Rhipicephalus annulatus. Pathogens 2024; 13:824. [PMID: 39452696 PMCID: PMC11510607 DOI: 10.3390/pathogens13100824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/26/2024] Open
Abstract
Ticks pose a significant threat due to their ability to lay thousands of eggs, which can persist in the environment for extended periods. While the impact of various compounds on adult and larval ticks has been studied, research on their efficacy against tick eggs is limited. This study evaluated the ovicidal activity of commercial acaricides, disinfectants, and natural products against Rhipicephalus annulatus eggs using the egg hatch assay (EHA). Deltamethrin and cypermethrin caused a non-significant inhibition of hatching (IH%), even at concentrations higher than the recommended levels. By contrast, the acaricides chlorpyrifos, phoxim, and amitraz significantly inhibited hatching at all tested concentrations. Ivermectin also demonstrated significant IH% at various concentrations but did not fully inhibit the hatching process. Among the disinfectants tested, Virkon-S®, TH4, and Chlorox showed insignificant effects, whereas formalin achieved an IH% of only 34.1% at a high concentration of 200 mg/mL. Natural products, carvacrol and thymol, exhibited significant ovicidal activity, with a significant IH%. In a semi-field application, phoxim (0.5 mg/mL) and deltamethrin (0.05 mg/mL) were sprayed on tick eggs on pasture soil from a farm. The results indicated that phoxim-treated eggs had a 40% IH%, while deltamethrin-treated eggs showed only an 8.79% IH%. In conclusion, the acaricides amitraz, phoxim, and chlorpyrifos, as well as the natural products carvacrol and thymol, caused significant toxicity to R. annulatus eggs.
Collapse
Affiliation(s)
- Samar M. Ibrahium
- Parasitology Department, Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Fayoum 16101, Egypt;
| | - Abdel-Azeem S. Abdel-Baki
- Department of Parasitology, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt;
| | - Sahar M. Gadelhaq
- Parasitology Department, Faculty of Veterinary Medicine, Minia University, Minia 61519, Egypt;
| | - Shawky M. Aboelhadid
- Parasitology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt;
| | - Hesham A. Mahran
- Hygeine Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 52611, Egypt;
| | - Saleh Al-Quraishy
- Zoology Department, College of Science, King Saud University, Riyadh P.O. Box 2455, Saudi Arabia;
| | - Abdulrahman Reyad
- Hydrobiology Department, Debrecen University, 4002 Debrecen, Hungary;
| | - Asmaa A. Kamel
- Parasitology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt;
| |
Collapse
|
12
|
Martínez-Burgos WJ, Porto de Souza Vandenberghe L, Murawski de Mello AF, de Carvalho JC, Valladares-Diestra KK, Manzoki MC, Scapini T, Pozzan R, Liew RK, Thomaz-Soccol V, Soccol CR. Bioremediation strategies against pesticides: An overview of current knowledge and innovations. CHEMOSPHERE 2024; 364:142867. [PMID: 39019183 DOI: 10.1016/j.chemosphere.2024.142867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/07/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
Pesticides pose significant risks to both human health, such as cancer, neurological disorders, and endocrine disruption, and ecosystems, through the destruction of beneficial insects, contamination of soil and water, and impact on non-target species. In the face of escalating pesticide pollution, there is an urgent need for multifaceted approaches to address the issue. Bioremediation emerges as a potent tool in the environmental pollution mitigation arsenal. Ideally aiming for the complete decomposition of pesticides into harmless molecules, bioremediation encompasses diverse approaches - from bioabsorption, bioadsorption, and biotransformation using enzymes and nanoenzymes to comprehensive degradation facilitated by microorganisms such as bacteria, fungi, macro- and microalgae, or phytoremediation. Exploring nature's biodiversity offers a promising avenue to find solutions to this pressing human-induced problem. The acceleration of biodegradation necessitates identifying and developing efficient organisms, achieved through bioprospection and targeted modifications. Specific strategies to enhance process efficiency and throughput include optimizing biomass production, strategic inoculation in diverse environments, and employing bioreactor systems for processing heavily contaminated waters or soils. This comprehensive review presents various bioremediation approaches, emphasizing the importance of microorganisms' exploration and new technologies development, including current innovations and patents to effectively combat pesticide pollution. Furthermore, challenges regarding the effective implementation of these technologies are also addressed.
Collapse
Affiliation(s)
- Walter José Martínez-Burgos
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Centro Politécnico, CP 19011, Curitiba-PR, 81531-908, Brazil
| | - Luciana Porto de Souza Vandenberghe
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Centro Politécnico, CP 19011, Curitiba-PR, 81531-908, Brazil
| | - Ariane Fátima Murawski de Mello
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Centro Politécnico, CP 19011, Curitiba-PR, 81531-908, Brazil
| | - Júlio César de Carvalho
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Centro Politécnico, CP 19011, Curitiba-PR, 81531-908, Brazil
| | - Kim Kley Valladares-Diestra
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Centro Politécnico, CP 19011, Curitiba-PR, 81531-908, Brazil
| | - Maria Clara Manzoki
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Centro Politécnico, CP 19011, Curitiba-PR, 81531-908, Brazil
| | - Thamarys Scapini
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Centro Politécnico, CP 19011, Curitiba-PR, 81531-908, Brazil
| | - Roberta Pozzan
- Laboratory of Cell Toxicology, Department of Cell Biology, Federal University of Paraná, Centro Politécnico, CP 19011, Curitiba-PR, 81531-908, Brazil
| | - Rocky Keey Liew
- Center for Global Health Research (CGHR), Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Vanete Thomaz-Soccol
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Centro Politécnico, CP 19011, Curitiba-PR, 81531-908, Brazil
| | - Carlos Ricardo Soccol
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Centro Politécnico, CP 19011, Curitiba-PR, 81531-908, Brazil.
| |
Collapse
|
13
|
Bustamante CM, Bravo N, Ruiz P, Grimalt JO, Garí M. Method optimization for a simultaneous determination of neonicotinoid, carbamate/thiocarbamate, triazole, organophosphate and pyrethroid pesticides and their metabolites in urine using UPLC-MS/MS. J Chromatogr A 2024; 1730:465054. [PMID: 38901297 DOI: 10.1016/j.chroma.2024.465054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/22/2024]
Abstract
An accurate and sensitive method for the determination of a total of 23 pesticides and their metabolites in human urine has been optimised. The methodology is based on a previously published method based on solid-phase extraction with methanol and acetone followed by ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS) in the selected reaction mode (SRM) with both positive and negative electrospray ionization (ESI+/-). The detection settings of the previous method, which allowed to determine the metabolites from 6 organophosphate and 2 pyrethroid pesticides, were optimised in order to include further pesticide groups, such as 11 neonicotinoids, 3 carbamates/thiocarbamates and 2 triazoles. The 5-windows method enduring 22 min was optimized with acceptable results in relation to accuracy (recoveries >75 %), precision (coefficients of variation <26 %) and linearity (R2> 0.9915). The limits of detection ranged between 0.012 ng/mL and 0.058 ng/mL. Samples from the German External Quality Assessment Scheme (G-EQUAS) encompassing 2 pyrethroids, 2 organophosphate and one neonicotinoid (6-chloronicotinic acid, a common metabolite of imidacloprid and acetamiprid) were analysed, and the latter, included in this newest optimization, provided good reference results. The method is optimal as a human biomonitoring tool for health risk assessment in large population surveys.
Collapse
Affiliation(s)
- Carolina M Bustamante
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Catalonia, Spain; Faculty of Chemistry, Universitat de Barcelona (UB), Barcelona, Catalonia, Spain
| | - Natalia Bravo
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Catalonia, Spain
| | - Paula Ruiz
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Catalonia, Spain
| | - Joan O Grimalt
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Catalonia, Spain
| | - Mercè Garí
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Catalonia, Spain.
| |
Collapse
|
14
|
Hong G, Wang S, Xia Y, Peng G. MaAzaR Influences Virulence of Metarhizium acridum against Locusta migratoria manilensis by Affecting Cuticle Penetration. J Fungi (Basel) 2024; 10:564. [PMID: 39194890 DOI: 10.3390/jof10080564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024] Open
Abstract
The entomopathogenic fungus (EPF) Metarhizium acridum is a typical filamentous fungus and has been used to control migratory locusts (Locusta migratoria manilensis). This study examines the impact of the Zn(II)2Cys6 transcription factor, MaAzaR, in the virulence of M. acridum. Disruption of MaAzaR (ΔMaAzaR) diminished the fungus's ability to penetrate the insect cuticle, thereby decreasing its virulence. The median lethal time (LT50) for the ΔMaAzaR strain increased by approximately 1.5 d compared to the wild-type (WT) strain when topically inoculated, simulating natural infection conditions. ΔMaAzaR compromises the formation, turgor pressure, and secretion of extracellular hydrolytic enzymes in appressoria. However, the growth ability of ΔMaAzaR within the hemolymph is not impaired; in fact, it grows better than the WT strain. Moreover, RNA-sequencing (RNA-Seq) analysis of ΔMaAzaR and WT strains grown for 20 h on locust hindwings revealed 87 upregulated and 37 downregulated differentially expressed genes (DEGs) in the mutant strain. Pathogen-host interaction database (PHI) analysis showed that about 40% of the total DEGs were associated with virulence, suggesting that MaAzaR is a crucial transcription factor that directly regulates the expression of downstream genes. This study identifies a new transcription factor involved in EPF cuticle penetration, providing theoretical support and genetic resources for the developing highly virulent strains.
Collapse
Affiliation(s)
- Geng Hong
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing 401331, China
| | - Siqing Wang
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing 401331, China
| | - Yuxian Xia
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing 401331, China
| | - Guoxiong Peng
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing 401331, China
| |
Collapse
|
15
|
Guo Y, Han M, Zhong Y, Li X, Hu S, Yang R. Discovery of Novel (+)-Nootkatone-Based Amine Derivatives as Potential Insecticide Candidates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17240-17247. [PMID: 38912665 DOI: 10.1021/acs.jafc.4c02697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
To discover novel natural product-based insecticides, a series of (+)-nootkatone-based amine derivatives 3a-t were prepared and evaluated for their insecticidal activities against Mythimna separata Walker, Myzus persicae Sulzer, and Plutella xylostella Linnaeus. Insecticidal assays showed that most of the title (+)-nootkatone derivatives exhibited stronger insecticidal activities against three insect pests than the precursor (+)-nootkatone after the introduction of amine groups on the parent (+)-nootkatone. Compounds 3a, 3d, 3h, 3m, 3n, 3p, and 3r displayed more promising growth inhibitory (GI) effect against M. separata than the commercially available botanical insecticide toosendanin. Compound 3o exhibited the most potent aphicidal activity with an LD50 value of 0.011 μg/larvae, which was 2.09-fold higher than the positive control rotenone. Additionally, compounds 3g and 3n showed more promising larvicidal activity against P. xylostella with LC50 values of 260 and 230 mg/L, respectively, superior to that of rotenone (460 mg/L). Moreover, derivatives 3g and 3n exhibited better control efficacy toward P. xylostella than rotenone under greenhouse conditions. Preliminary mechanistic studies revealed that derivative 3n could inhibit the activity of glutathione S-transferase (GST) in P. xylostella and thus exerted larvicidal activity, and molecular docking further demonstrated that 3n could interact well with some amino acid residues of GST. Finally, the toxicity assay suggested that derivatives 3g and 3n were relatively less toxic to nontarget organisms. These findings will provide insights into the development of (+)-nootkatone derivatives as green pesticides.
Collapse
Affiliation(s)
- Yong Guo
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Meiyue Han
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yan Zhong
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xueyu Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Songlin Hu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Ruige Yang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
16
|
da Silva WJ, Diel LF, Pilz-Júnior HL, de Lemos AB, de Freitas Milagres T, Pereira ILG, Bernardi L, Ribeiro BM, Lamers ML, Schrekker HS, da Silva OS. Imidazolium salt's toxic effects in larvae and cells of Aedes aegypti and Aedes albopictus (Diptera: Culicidae). Sci Rep 2024; 14:15421. [PMID: 38965297 PMCID: PMC11224238 DOI: 10.1038/s41598-024-66404-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024] Open
Abstract
Aedes aegypti and Aedes albopictus are the main vectors of arboviruses such as Dengue, Chikungunya and Zika, causing a major impact on global economic and public health. The main way to prevent these diseases is vector control, which is carried out through physical and biological methods, in addition to environmental management. Although chemical insecticides are the most effective strategy, they present some problems such as vector resistance and ecotoxicity. Recent research highlights the potential of the imidazolium salt "1-methyl-3-octadecylimidazolium chloride" (C18MImCl) as an innovative and environmentally friendly solution against Ae. aegypti. Despite its promising larvicidal activity, the mode of action of C18MImCl in mosquito cells and tissues remains unknown. This study aimed to investigate its impacts on Ae. aegypti larvae and three cell lines of Ae. aegypti and Ae. albopictus, comparing the cellular effects with those on human cells. Cell viability assays and histopathological analyses of treated larvae were conducted. Results revealed the imidazolium salt's high selectivity (> 254) for mosquito cells over human cells. After salt ingestion, the mechanism of larval death involves toxic effects on midgut cells. This research marks the first description of an imidazolium salt's action on mosquito cells and midgut tissues, showcasing its potential for the development of a selective and sustainable strategy for vector control.
Collapse
Affiliation(s)
- Wellington Junior da Silva
- Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Leonardo Francisco Diel
- Faculty of Dentistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Harry Luiz Pilz-Júnior
- Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Alessandra Bittencourt de Lemos
- Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Tarcísio de Freitas Milagres
- Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Igor Luiz Gonçalves Pereira
- Laboratory of Technological Processes and Catalysis, Institute of Chemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Lisiane Bernardi
- Department of Morphological Sciences, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Bergmann Morais Ribeiro
- Department of Celular Biology, Institute of Biological Sciences, Universidade de Brasília, Brasília-DF, Brazil
| | - Marcelo Lazzaron Lamers
- Department of Morphological Sciences, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Henri Stephan Schrekker
- Laboratory of Technological Processes and Catalysis, Institute of Chemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Onilda Santos da Silva
- Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
17
|
Passara H, Sittichok S, Sinthusiri J, Moungthipmalai T, Puwanard C, Murata K, Soonwera M. Ovicidal Toxicity and Morphological Changes in Housefly Eggs Induced by the Essential Oils of Star Anise and Lemongrass and Their Main Constituents. INSECTS 2024; 15:481. [PMID: 39057214 PMCID: PMC11277329 DOI: 10.3390/insects15070481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024]
Abstract
This study attempted to evaluate the ovicidal activity of single-component formulations and combination formulations of lemongrass and star anise essential oils (EOs) and their main constituents against housefly eggs. The efficacies of the combinations were compared with those of single-component formulations and α-cypermethrin. Safety bioassays of all treatments and α-cypermethrin on non-target predators-guppy and molly-were conducted. Two combinations: 1% lemongrass EO + 1% trans-anethole and 1% star anise EO + 1% geranial, exhibited a strong ovicidal activity with an inhibition rate of 94.4 to 96.2%. They were 1.1 times as effective as α-cypermethrin. The two combinations also showed high synergistic activity compared to single-component formulations, with a high synergistic index and a high increased inhibition value of 37.4 to 57.7%. All EO treatments were benign for all non-target aquatic species with a high 50% lethal time (LT50) and safety index. In contrast, α-cypermethrin was highly toxic to them with a low LT50. The morphological abnormalities observed in housefly eggs at death were those such as the shrivelling of the eggs, aberrations and damage to the eggshells, hatching lines, aeropyles, plastron, and micropyle. The potential of these two combinations as a cypermethrin replacement is compelling.
Collapse
Affiliation(s)
- Hataichanok Passara
- Office of Administrative Interdisciplinary Program on Agricultural Technology, School of Agricultural Technology, King Mongkut’s Institute of Technology Ladkrabang, Ladkrabang, Bangkok 10520, Thailand; (H.P.); (S.S.)
| | - Sirawut Sittichok
- Office of Administrative Interdisciplinary Program on Agricultural Technology, School of Agricultural Technology, King Mongkut’s Institute of Technology Ladkrabang, Ladkrabang, Bangkok 10520, Thailand; (H.P.); (S.S.)
- Department of Plant Production Technology, School of Agricultural Technology, King Mongkut’s Institute of Technology Ladkrabang, Ladkrabang, Bangkok 10520, Thailand; (T.M.); (C.P.)
| | - Jirisuda Sinthusiri
- Community Public Health Program, Faculty of Public and Environmental Health, Huachiew Chalermprakiet University, Samut Prakan 10540, Thailand;
| | - Tanapoom Moungthipmalai
- Department of Plant Production Technology, School of Agricultural Technology, King Mongkut’s Institute of Technology Ladkrabang, Ladkrabang, Bangkok 10520, Thailand; (T.M.); (C.P.)
| | - Cheepchanok Puwanard
- Department of Plant Production Technology, School of Agricultural Technology, King Mongkut’s Institute of Technology Ladkrabang, Ladkrabang, Bangkok 10520, Thailand; (T.M.); (C.P.)
| | - Kouhei Murata
- School of Agriculture, Tokai University, Kumamoto 862-8652, Japan;
| | - Mayura Soonwera
- Office of Administrative Interdisciplinary Program on Agricultural Technology, School of Agricultural Technology, King Mongkut’s Institute of Technology Ladkrabang, Ladkrabang, Bangkok 10520, Thailand; (H.P.); (S.S.)
- Department of Plant Production Technology, School of Agricultural Technology, King Mongkut’s Institute of Technology Ladkrabang, Ladkrabang, Bangkok 10520, Thailand; (T.M.); (C.P.)
| |
Collapse
|
18
|
Otranto D, Mendoza-Roldan JA, Beugnet F, Baneth G, Dantas-Torres F. New paradigms in the prevention of canine vector-borne diseases. Trends Parasitol 2024; 40:500-510. [PMID: 38744542 DOI: 10.1016/j.pt.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/12/2024] [Accepted: 04/14/2024] [Indexed: 05/16/2024]
Abstract
The prevention of canine vector-borne diseases (CVBDs) is pivotal for the health and welfare of dogs as well as for reducing their zoonotic risk to humans. Scientific knowledge gained in recent years contributed to the development of new strategies for the control of these diseases in different social and cultural contexts. Here, we discuss recent advances in the prevention of vector-borne pathogens (VBPs) affecting dogs with a focus on those of zoonotic relevance.
Collapse
Affiliation(s)
- Domenico Otranto
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy; Department of Veterinary Clinical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, China.
| | | | | | - Gad Baneth
- Koret School of Veterinary Medicine, Hebrew University, Rehovot, Israel
| | | |
Collapse
|
19
|
Ding L, Guo J, Chen S, Wang Y. Electrochemical sensing mechanisms of neonicotinoid pesticides and recent progress in utilizing functional materials for electrochemical detection platforms. Talanta 2024; 273:125937. [PMID: 38503124 DOI: 10.1016/j.talanta.2024.125937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024]
Abstract
The excessive residue of neonicotinoid pesticides in the environment and food poses a severe threat to human health, necessitating the urgent development of a sensitive and efficient method for detecting trace amounts of these pesticides. Electrochemical sensors, characterized by their simplicity of operation, rapid response, low cost, strong selectivity, and high feasibility, have garnered significant attention for their immense potential in swiftly detecting trace target molecules. The detection capability of electrochemical sensors primarily relies on the catalytic activity of electrode materials towards the target analyte, efficient loading of biomolecular functionalities, and the effective conversion of interactions between the target analyte and its receptor into electrical signals. Electrode materials with superior performance play a crucial role in enhancing the detection capability of electrochemical sensors. With the continuous advancement of nanotechnology, particularly the widespread application of novel functional materials, there is paramount significance in broadening the applicability and expanding the detection range of pesticide sensors. This comprehensive review encapsulates the electrochemical detection mechanisms of neonicotinoid pesticides, providing detailed insights into the outstanding roles, advantages, and limitations of functional materials such as carbon-based materials, metal-organic framework materials, supramolecular materials, metal-based nanomaterials, as well as molecular imprinted materials, antibodies/antigens, and aptamers as molecular recognition elements in the construction of electrochemical sensors for neonicotinoid pesticides. Furthermore, prospects and challenges facing various electrochemical sensors based on functional materials for neonicotinoid pesticides are discussed, providing valuable insights for the future development and application of biosensors for simplified on-site detection of agricultural residues.
Collapse
Affiliation(s)
- Longhua Ding
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| | - Jiawei Guo
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Shu Chen
- School of Bioengineering, Shandong Polytechnic, Jinan, 250104, PR China
| | - Yawen Wang
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| |
Collapse
|
20
|
Hubbard CB, Murillo AC. Behavioral resistance to insecticides: current understanding, challenges, and future directions. CURRENT OPINION IN INSECT SCIENCE 2024; 63:101177. [PMID: 38355042 DOI: 10.1016/j.cois.2024.101177] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Identifying and understanding behavioral resistance to insecticides is vital for maintaining global food security, public health, and ecological balance. Behavioral resistance has been documented to occur in a multitude of insect taxa dating back to the 1940s, but has not received significant research attention due primarily to the complexities of studying insect behavior and a lack of any clear definition of behavioral resistance. In recent years, a systematic effort to investigate the mechanism(s) of behavioral resistance in pest taxa (e.g. the German cockroach and the house fly) has been undertaken. Here, we practically define behavioral resistance, describe the efforts taken by research groups to elucidate resistance mechanisms, and provide insight on designing appropriate bioassays for investigating behavioral resistance mechanisms in the future.
Collapse
Affiliation(s)
- Caleb B Hubbard
- Department of Entomology, University of California, Riverside, CA 92521, USA.
| | - Amy C Murillo
- Department of Entomology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
21
|
Guo Y, Zhang T, Wang X, Zhang J, Miao W, Li QX, Fan Y. Toxic effects of the insecticide tolfenpyrad on zebrafish embryos: Cardiac toxicity and mitochondrial damage. ENVIRONMENTAL TOXICOLOGY 2024; 39:2583-2595. [PMID: 38205909 DOI: 10.1002/tox.24133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/07/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024]
Abstract
Tolfenpyrad, a highly effective and broad-spectrum insecticide and acaricide extensively utilized in agriculture, presents a potential hazard to nontarget organisms. This study was designed to explore the toxic mechanisms of tolfenpyrad on zebrafish embryos. Between 24 and 96 h after exposure of the fertilized embryos to tolfenpyrad at concentrations ranging from 0.001 to 0.016 mg/L (96 h-LC50 = 0.017 mg/L), lethal effects were apparent, accompanied with notable anomalies including pericardial edema, increased pericardial area, diminished heart rate, and an elongated distance between the venous sinus and the arterial bulb. Tolfenpyrad elicited noteworthy alterations in the expression of genes pertinent to cardiac development and apoptosis, with the most pronounced changes observed in the cardiac development-related genes of bone morphogenetic protein 2b (bmp2b) and p53 upregulated modulator of apoptosis (puma). The findings underscore that tolfenpyrad induces severe cardiac toxicity and mitochondrial damage in zebrafish embryos. This data is imperative for a comprehensive assessment of tolfenpyrad risks to aquatic ecosystems, particularly considering the limited knowledge regarding its detrimental impact on aquatic vertebrates.
Collapse
Affiliation(s)
- Yuzhao Guo
- Key Laboratory of Green Prevention and Control of Tropical Agriculture and Forestry Disasters, College of Plant Protection, Hainan University, Haikou, Hainan, China
| | - Taiyu Zhang
- Key Laboratory of Green Prevention and Control of Tropical Agriculture and Forestry Disasters, College of Plant Protection, Hainan University, Haikou, Hainan, China
| | - Xinyu Wang
- Key Laboratory of Green Prevention and Control of Tropical Agriculture and Forestry Disasters, College of Plant Protection, Hainan University, Haikou, Hainan, China
| | - Jie Zhang
- Key Laboratory of Green Prevention and Control of Tropical Agriculture and Forestry Disasters, College of Plant Protection, Hainan University, Haikou, Hainan, China
| | - Weiguo Miao
- Key Laboratory of Green Prevention and Control of Tropical Agriculture and Forestry Disasters, College of Plant Protection, Hainan University, Haikou, Hainan, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Yongmei Fan
- Key Laboratory of Green Prevention and Control of Tropical Agriculture and Forestry Disasters, College of Plant Protection, Hainan University, Haikou, Hainan, China
| |
Collapse
|
22
|
Gouesbet G, Renault D, Derocles SAP, Colinet H. Strong resistance to β-cyfluthrin in a strain of the beetle Alphitobius diaperinus: a de novo transcriptome analysis. INSECT SCIENCE 2024. [PMID: 38632693 DOI: 10.1111/1744-7917.13368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/09/2024] [Accepted: 03/13/2024] [Indexed: 04/19/2024]
Abstract
The lesser mealworm, Alphitobius diaperinus, is an invasive tenebrionid beetle and a vector of pathogens. Due to the emergence of insecticide resistance and consequent outbreaks that generate significant phytosanitary and energy costs for poultry farmers, it has become a major insect pest worldwide. To better understand the molecular mechanisms behind this resistance, we studied a strain of A. diaperinus from a poultry house in Brittany that was found to be highly resistant to the β-cyfluthrin. The strain survived β-cyfluthrin exposures corresponding to more than 100 times the recommended dose. We used a comparative de novo RNA-Seq approach to explore genes expression in resistant versus sensitive strains. Our de novo transcriptomic analyses showed that responses to β-cyfluthrin likely involved a whole set of resistance mechanisms. Genes related to detoxification, metabolic resistance, cuticular hydrocarbon biosynthesis and proteolysis were found to be constitutively overexpressed in the resistant compared to the sensitive strain. Follow-up enzymatic assays confirmed that the resistant strain exhibited high basal activities for detoxification enzymes such as cytochrome P450 monooxygenase and glutathione-S-transferase. The in-depth analysis of differentially expressed genes suggests the involvement of complex regulation of signaling pathways. Detailed knowledge of these resistance mechanisms is essential for the establishment of effective pest control.
Collapse
Affiliation(s)
- Gwenola Gouesbet
- CNRS, ECOBIO (Ecosystèmes, Biodiversité, Évolution)-UMR 6553, University of Rennes, Rennes, France
| | - David Renault
- CNRS, ECOBIO (Ecosystèmes, Biodiversité, Évolution)-UMR 6553, University of Rennes, Rennes, France
- Institut Universitaire de France, 1 rue Descartes, CEDEX 05, Paris, France
| | - Stéphane A P Derocles
- CNRS, ECOBIO (Ecosystèmes, Biodiversité, Évolution)-UMR 6553, University of Rennes, Rennes, France
| | - Hervé Colinet
- CNRS, ECOBIO (Ecosystèmes, Biodiversité, Évolution)-UMR 6553, University of Rennes, Rennes, France
| |
Collapse
|
23
|
Ahmad MF, Ahmad FA, Alsayegh AA, Zeyaullah M, AlShahrani AM, Muzammil K, Saati AA, Wahab S, Elbendary EY, Kambal N, Abdelrahman MH, Hussain S. Pesticides impacts on human health and the environment with their mechanisms of action and possible countermeasures. Heliyon 2024; 10:e29128. [PMID: 38623208 PMCID: PMC11016626 DOI: 10.1016/j.heliyon.2024.e29128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/17/2024] Open
Abstract
Pesticides are chemical constituents used to prevent or control pests, including insects, rodents, fungi, weeds, and other unwanted organisms. Despite their advantages in crop production and disease management, the use of pesticides poses significant hazards to the environment and public health. Pesticide elements have now perpetually entered our atmosphere and subsequently contaminated water, food, and soil, leading to health threats ranging from acute to chronic toxicities. Pesticides can cause acute toxicity if a high dose is inhaled, ingested, or comes into contact with the skin or eyes, while prolonged or recurrent exposure to pesticides leads to chronic toxicity. Pesticides produce different types of toxicity, for instance, neurotoxicity, mutagenicity, carcinogenicity, teratogenicity, and endocrine disruption. The toxicity of a pesticide formulation may depend on the specific active ingredient and the presence of synergistic or inert compounds that can enhance or modify its toxicity. Safety concerns are the need of the hour to control contemporary pesticide-induced health hazards. The effectiveness and implementation of the current legislature in providing ample protection for human health and the environment are key concerns. This review explored a comprehensive summary of pesticides regarding their updated impacts on human health and advanced safety concerns with legislation. Implementing regulations, proper training, and education can help mitigate the negative impacts of pesticide use and promote safer and more sustainable agricultural practices.
Collapse
Affiliation(s)
- Md Faruque Ahmad
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Fakhruddin Ali Ahmad
- Department of Basic and Applied Science, School of Engineering and Science, G.D Goenka University, Gururgram, Haryana, 122103, India
| | - Abdulrahman A. Alsayegh
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Md. Zeyaullah
- Department of Basic Medical Science, College of Applied Medical Sciences, Khamis Mushayt Campus, King Khalid University (KKU), Abha, Saudi Arabia
| | - Abdullah M. AlShahrani
- Department of Basic Medical Science, College of Applied Medical Sciences, Khamis Mushayt Campus, King Khalid University (KKU), Abha, Saudi Arabia
| | - Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushayt Campus, King Khalid University (KKU), Abha, Saudi Arabia
| | - Abdullah Ali Saati
- Department of Community Medicine & Pilgrims Healthcare, Faculty of Medicine, Umm Al-Qura University, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Ehab Y. Elbendary
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Nahla Kambal
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Mohamed H. Abdelrahman
- College of Applied Medical Sciences, Medical Laboratory Sciences, Jazan University, Jazan, 45142, Saudi Arabia
| | - Sohail Hussain
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| |
Collapse
|
24
|
Boonyuan W, Panthawong A, Thannarin T, Kongratarporn T, Khamvarn V, Chareonviriyaphap T, Nararak J. Irritant and repellent behaviors of sterile male Aedes aegypti (L.) (Diptera: Culicidae) mosquitoes are crucial in the development of disease control strategies applying sterile insect technique. PeerJ 2024; 12:e17038. [PMID: 38529314 PMCID: PMC10962334 DOI: 10.7717/peerj.17038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 02/12/2024] [Indexed: 03/27/2024] Open
Abstract
The mosquito Aedes aegypti, known to transmit important arboviral diseases, including dengue, chikungunya, Zika and yellow fever. Given the importance of this disease vector, a number of control programs have been proposed involving the use of the sterile insect technique (SIT). However, the success of this technique hinges on having a good understanding of the biology and behavior of the male mosquito. Behavioral responses of Ae. aegypti male populations developed for SIT technology were tested under laboratory conditions against chemical and natural irritants and repellents using an excito-repellency (ER) chamber. The results showed that there were no significant behavioral escape responses in any of the radiation-sterilized male Ae. aegypti test populations when exposed to citronella, DEET, transfluthrin, and deltamethrin, suggesting that SIT did not suppress the expected irritancy and repellency (avoidance) behaviors. The type of information reported in the current study is vital in defining the effects of SIT on vector behavior and understanding how such behavior may influence the success of SIT technology with regard to other vector control interventions.
Collapse
Affiliation(s)
- Wasana Boonyuan
- Nuclear Technology Research and Development Center, Thailand Institute of Nuclear Technology (Public Organization), Nakhon Nayok, Thailand
| | - Amonrat Panthawong
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| | - Thodsapon Thannarin
- Nuclear Technology Research and Development Center, Thailand Institute of Nuclear Technology (Public Organization), Nakhon Nayok, Thailand
| | - Titima Kongratarporn
- Nuclear Technology Research and Development Center, Thailand Institute of Nuclear Technology (Public Organization), Nakhon Nayok, Thailand
| | - Vararas Khamvarn
- Nuclear Technology Research and Development Center, Thailand Institute of Nuclear Technology (Public Organization), Nakhon Nayok, Thailand
| | | | - Jirod Nararak
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
25
|
Tahir R, Samra, Afzal F, Liang J, Yang S. Novel protective aspects of dietary polyphenols against pesticidal toxicity and its prospective application in rice-fish mode: A Review. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109418. [PMID: 38301811 DOI: 10.1016/j.fsi.2024.109418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
The rice fish system represents an innovative and sustainable approach to integrated farming, combining rice cultivation with fish rearing in the same ecosystem. However, one of the major challenges in this system is the pesticidal pollution resulting from various sources, which poses risks to fish health and overall ecosystem balance. In recent years, dietary polyphenols have emerged as promising bioactive compounds with potential chemo-preventive and therapeutic properties. These polyphenols, derived from various plant sources, have shown great potential in reducing the toxicity of pesticides and improving the health of fish within the rice fish system. This review aims to explore the novel aspects of using dietary polyphenols to mitigate pesticidal toxicity and enhance fish health in the rice fish system. It provides comprehensive insights into the mechanisms of action of dietary polyphenols and their beneficial effects on fish health, including antioxidant, anti-inflammatory, and detoxification properties. Furthermore, the review discusses the potential application methods of dietary polyphenols, such as direct supplementation in fish diets or through incorporation into the rice fields. By understanding the interplay between dietary polyphenols and pesticides in the rice fish system, researchers can develop innovative and sustainable strategies to promote fish health, minimize pesticide impacts, and ensure the long-term viability of this integrated farming approach. The information presented in this review will be valuable for scientists, aqua-culturists, and policymakers aiming to implement eco-friendly and health-enhancing practices in the rice fish system.
Collapse
Affiliation(s)
- Rabia Tahir
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | - Samra
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Fozia Afzal
- Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | - Ji Liang
- School of Humanities, Universiti Sains Malaysia, Minden, Penang, 11800, Malaysia
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
26
|
Khan HAA. Lethal and Sublethal Effects of Cyromazine on the Biology of Musca domestica Based on the Age-Stage, Two-Sex Life Table Theory. TOXICS 2023; 12:2. [PMID: 38276715 PMCID: PMC10819214 DOI: 10.3390/toxics12010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/11/2023] [Accepted: 12/17/2023] [Indexed: 01/27/2024]
Abstract
Cyromazine is a triazine insect growth regulator insecticide that is recommended for control of Musca domestica worldwide. Cyromazine is highly effective in causing mortality of M. domestica; however, some aspects of its lethal and sublethal effects on the biology of M. domestica are still unknown. The present study explored lethal and sublethal effects on several biological traits and population parameters of M. domestica. Concentration-response bioassays of cyromazine against third-instar larvae of M. domestica exhibited sublethal and lethal effects from concentrations of 0.03 (LC10), 0.06 (LC25), and 0.14 (LC50) μg/g of a larval medium. Exposure of M. domestica larvae to these concentrations resulted in reduced fecundity, survival, longevity and oviposition period, and delayed development of immature stages (i.e., egg hatch time and larval and pupal durations) in the upcoming generation of M. domestica. The values of population parameters such as intrinsic rate of increase, finite rate of increase, net reproductive rate, age-specific survival rate and fecundity, and age-stage life expectancy and reproductive value, analyzed using the age-stage and two-sex life table theory, were significantly reduced in a concentration-dependent manner in comparison with the control group. In conclusion, the study highlights the significant effects of cyromazine on the biology of M. domestica that could help suppress its population in cases of severe infestations.
Collapse
Affiliation(s)
- Hafiz Azhar Ali Khan
- Institute of Zoology, University of the Punjab, Lahore P.O. Box. 54590, Pakistan
| |
Collapse
|
27
|
Chen Z, Zhao L, Zhang Z, Wu J, Zhang L, Jing X, Wang X. Dispersive liquid‒liquid microextraction combined with enzyme-linked immunosorbent assay for the analysis of chlorpyrifos in cereal samples. Talanta 2023; 265:124802. [PMID: 37329751 DOI: 10.1016/j.talanta.2023.124802] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/25/2023] [Accepted: 06/09/2023] [Indexed: 06/19/2023]
Abstract
In this paper, an analysis method for chlorpyrifos (CPF) in cereal samples was proposed using dispersive liquid‒liquid microextraction combined with an enzyme-linked immunosorbent assay. In the dispersive liquid‒liquid microextraction, deep eutectic solvents and fatty acids were used as solvents to extract, purify, and concentrate CPF in cereals. In the enzyme-linked immunosorbent assay, gold nanoparticles were utilized to enrich and conjugate more antibodies and horseradish peroxidase, while magnetic beads were used as solid supports to amplify the signal and shorten the detection time of CPF. The linearity range was 0.002-1 μg kg-1, and the limit of detection was 0.0006 μg kg-1. The extraction recoveries were 86.7-99.9% with a relative standard deviation of less than 7.0%. The proposed method was successfully used to analyze CPF in cereal samples (rice, wheat, maize, and millet) and has prospects for the pretreatment and detection of CPF residues in other food samples.
Collapse
Affiliation(s)
- Zhenjia Chen
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Luyao Zhao
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, 030801, China; Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Zhuoting Zhang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Jing Wu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Lixin Zhang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Xu Jing
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, 030801, China; Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, 300071, China.
| | - Xiaowen Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| |
Collapse
|
28
|
Bravo A, Soberón M. Can microbial-based insecticides replace chemical pesticides in agricultural production? Microb Biotechnol 2023; 16:2011-2014. [PMID: 37462982 PMCID: PMC10616638 DOI: 10.1111/1751-7915.14316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 11/01/2023] Open
Abstract
Extensive use of chemical insecticides to control insect pests in agriculture has improved yields and production of high-quality food products. However, chemical insecticides have been shown to be harmful also to beneficial insects and many other organisms like vertebrates. Thus, there is a need to replace those chemical insecticides by other control methods in order to protect the environment. Insect pest pathogens, like bacteria, viruses or fungi, are interesting alternatives for production of microbial-based insecticides to replace the use of chemical products in agriculture. Organic farming, which does not use chemical pesticides for pest control, relies on integrated pest management techniques and in the use of microbial-based insecticides for pest control. Microbial-based insecticides require precise formulation and extensive monitoring of insect pests, since they are highly specific for certain insect pests and in general are more effective for larval young instars. Here, we analyse the possibility of using microbial-based insecticides to replace chemical pesticides in agricultural production.
Collapse
Affiliation(s)
- Alejandra Bravo
- Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavacaMexico
| | - Mario Soberón
- Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavacaMexico
| |
Collapse
|
29
|
Norton AE, Ewing R, Tilley M, Whitworth J, Cohnstaedt LW. Fatal Food: Silver-Coated Grain Particles Display Larvicidal Activity in Culex quinquefasciatus. ACS OMEGA 2023; 8:33437-33443. [PMID: 37744788 PMCID: PMC10515342 DOI: 10.1021/acsomega.3c03210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/24/2023] [Indexed: 09/26/2023]
Abstract
Mosquitoes pose a significant risk to millions of people worldwide since they can transmit pathogens. Current methods to control mosquito populations include the use of synthetic pesticides. Nanotechnology may be a solution to develop new mosquito control. However, one barrier to expanding the impact of nanomaterials is the ability to mass-produce the particles. Here, we report a novel hybrid particle synthesis combining micro- and nanoparticles using the coprecipitation technique with the potential for mass production. These particles may have applications as a mosquito larvacide. The particles reported here were designed using a microparticle zein polymer as the core and a nanoparticle silver as the active ingredient. The hybrid NPs reported here targeted a late-stage mosquito larvae and that resulted in a high larval mortality concentration (1.0 ppm, LC90) and suppression of pupal emergence at 0.1 ppm. This research demonstrates the efficacy of a plant-based core with a metal-based AI coating (AgNPs) against larval mosquitoes.
Collapse
Affiliation(s)
- Amie E. Norton
- Department
of Entomology, Kansas State University, Manhattan, Kansas 66506-0100, United
States
| | - Robert Ewing
- National
Bio and Agro-Defense Facility-USDA, Manhattan, Kansas 66503, United States
| | - Michael Tilley
- USDA,
Agricultural Research Service, Center for Grain and Animal Health
Research, 1515 College
Avenue, Manhattan, Kansas 66502, United States
| | - Jeff Whitworth
- Department
of Entomology, Kansas State University, Manhattan, Kansas 66506-0100, United
States
| | - Lee W. Cohnstaedt
- National
Bio and Agro-Defense Facility-USDA, Manhattan, Kansas 66503, United States
| |
Collapse
|
30
|
Seth RK, Yadav P, Reynolds SE. Dichotomous sperm in Lepidopteran insects: a biorational target for pest management. FRONTIERS IN INSECT SCIENCE 2023; 3:1198252. [PMID: 38469506 PMCID: PMC10926456 DOI: 10.3389/finsc.2023.1198252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/31/2023] [Indexed: 03/13/2024]
Abstract
Lepidoptera are unusual in possessing two distinct kinds of sperm, regular nucleated (eupyrene) sperm and anucleate (apyrene) sperm ('parasperm'). Sperm of both types are transferred to the female and are required for male fertility. Apyrene sperm play 'helper' roles, assisting eupyrene sperm to gain access to unfertilized eggs and influencing the reproductive behavior of mated female moths. Sperm development and behavior are promising targets for environmentally safer, target-specific biorational control strategies in lepidopteran pest insects. Sperm dimorphism provides a wide window in which to manipulate sperm functionality and dynamics, thereby impairing the reproductive fitness of pest species. Opportunities to interfere with spermatozoa are available not only while sperm are still in the male (before copulation), but also in the female (after copulation, when sperm are still in the male-provided spermatophore, or during storage in the female's spermatheca). Biomolecular technologies like RNAi, miRNAs and CRISPR-Cas9 are promising strategies to achieve lepidopteran pest control by targeting genes directly or indirectly involved in dichotomous sperm production, function, or persistence.
Collapse
Affiliation(s)
- Rakesh K. Seth
- Department of Zoology, University of Delhi, Delhi, India
| | - Priya Yadav
- Department of Zoology, University of Delhi, Delhi, India
| | - Stuart E. Reynolds
- Department of Life Sciences, University of Bath, Bath, United Kingdom
- Milner Centre for Evolution, University of Bath, Bath, United Kingdom
| |
Collapse
|
31
|
Katak RDM, Cintra AM, Burini BC, Marinotti O, Souza-Neto JA, Rocha EM. Biotechnological Potential of Microorganisms for Mosquito Population Control and Reduction in Vector Competence. INSECTS 2023; 14:718. [PMID: 37754686 PMCID: PMC10532289 DOI: 10.3390/insects14090718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/11/2023] [Accepted: 08/19/2023] [Indexed: 09/28/2023]
Abstract
Mosquitoes transmit pathogens that cause human diseases such as malaria, dengue fever, chikungunya, yellow fever, Zika fever, and filariasis. Biotechnological approaches using microorganisms have a significant potential to control mosquito populations and reduce their vector competence, making them alternatives to synthetic insecticides. Ongoing research has identified many microorganisms that can be used effectively to control mosquito populations and disease transmission. However, the successful implementation of these newly proposed approaches requires a thorough understanding of the multipronged microorganism-mosquito-pathogen-environment interactions. Although much has been achieved in discovering new entomopathogenic microorganisms, antipathogen compounds, and their mechanisms of action, only a few have been turned into viable products for mosquito control. There is a discrepancy between the number of microorganisms with the potential for the development of new insecticides and/or antipathogen products and the actual available products, highlighting the need for investments in the intersection of basic research and biotechnology.
Collapse
Affiliation(s)
- Ricardo de Melo Katak
- Malaria and Dengue Laboratory, Instituto Nacional de Pesquisas da Amazônia-INPA, Manaus 69060-001, AM, Brazil;
| | - Amanda Montezano Cintra
- Multiuser Central Laboratory, Department of Bioprocesses and Biotechnology, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (A.M.C.); (J.A.S.-N.)
| | - Bianca Correa Burini
- Florida Medical Entomology Laboratory, University of Florida, Vero Beach, FL 32962, USA;
| | - Osvaldo Marinotti
- Department of Biology, Indiana University, Bloomington, IN 47405, USA;
| | - Jayme A. Souza-Neto
- Multiuser Central Laboratory, Department of Bioprocesses and Biotechnology, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (A.M.C.); (J.A.S.-N.)
| | - Elerson Matos Rocha
- Multiuser Central Laboratory, Department of Bioprocesses and Biotechnology, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (A.M.C.); (J.A.S.-N.)
| |
Collapse
|
32
|
Njoroge TM, Hamid-Adiamoh M, Duman-Scheel M. Maximizing the Potential of Attractive Targeted Sugar Baits (ATSBs) for Integrated Vector Management. INSECTS 2023; 14:585. [PMID: 37504591 PMCID: PMC10380652 DOI: 10.3390/insects14070585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 07/29/2023]
Abstract
Due to the limitations of the human therapeutics and vaccines available to treat and prevent mosquito-borne diseases, the primary strategy for disease mitigation is through vector control. However, the current tools and approaches used for mosquito control have proven insufficient to prevent malaria and arboviral infections, such as dengue, Zika, and lymphatic filariasis, and hence, these diseases remain a global public health threat. The proven ability of mosquito vectors to adapt to various control strategies through insecticide resistance, invasive potential, and behavioral changes from indoor to outdoor biting, combined with human failures to comply with vector control requirements, challenge sustained malaria and arboviral disease control worldwide. To address these concerns, increased efforts to explore more varied and integrated control strategies have emerged. These include approaches that involve the behavioral management of vectors. Attractive targeted sugar baits (ATSBs) are a vector control approach that manipulates and exploits mosquito sugar-feeding behavior to deploy insecticides. Although traditional approaches have been effective in controlling malaria vectors indoors, preventing mosquito bites outdoors and around human dwellings is challenging. ATSBs, which can be used to curb outdoor biting mosquitoes, have the potential to reduce mosquito densities and clinical malaria incidence when used in conjunction with existing vector control strategies. This review examines the available literature regarding the utility of ATSBs for mosquito control, providing an overview of ATSB active ingredients (toxicants), attractants, modes of deployment, target organisms, and the potential for integrating ATSBs with existing vector control interventions.
Collapse
Affiliation(s)
- Teresia Muthoni Njoroge
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN 46617, USA
- Eck Institute for Global Health, The University of Notre Dame, Notre Dame, South Bend, IN 46556, USA
| | - Majidah Hamid-Adiamoh
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN 46617, USA
- Eck Institute for Global Health, The University of Notre Dame, Notre Dame, South Bend, IN 46556, USA
| | - Molly Duman-Scheel
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN 46617, USA
- Eck Institute for Global Health, The University of Notre Dame, Notre Dame, South Bend, IN 46556, USA
| |
Collapse
|
33
|
Zhang J, Tang X, Hong Y, Chen G, Chen Y, Zhang L, Gao W, Zhou Y, Sun B. Carbon-based single-atom catalysts in advanced oxidation reactions for water remediation: From materials to reaction pathways. ECO-ENVIRONMENT & HEALTH 2023; 2:47-60. [PMID: 38075290 PMCID: PMC10702890 DOI: 10.1016/j.eehl.2023.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/21/2023] [Accepted: 04/03/2023] [Indexed: 01/01/2024]
Abstract
Single-atom catalysts (SACs) have been widely recognized as state-of-the-art catalysts in environment remediation because of their exceptional performance, 100% metal atomic utilization, almost no secondary pollution, and robust structures. Most recently, the activation of persulfate with carbon-based SACs in advanced oxidation processes (AOPs) raises tremendous interest in the degradation of emerging contaminants in wastewater, owning to its efficient and versatile reactive oxidant species (ROS) generation. However, the comprehensive and critical review unraveling the underlying relationship between structures of carbon-based SACs and the corresponding generated ROS is still rare. Herein, we systematically summarize the fundamental understandings and intrinsic mechanisms between single metal atom active sites and produced ROS during AOPs. The types of emerging contaminants are firstly elaborated, presenting the prior pollutants that need to be degraded. Then, the preparation and characterization methods of carbon-based SACs are overviewed. The underlying material structure-ROS type relationship in persulfate-based AOPs is discussed in depth to expound the catalytic mechanisms. Finally, we briefly conclude the current development of carbon-based SACs in AOPs and propose the prospects for rational design and synthesis of carbon-based SACs with on-demand catalytic performances in AOPs in future research.
Collapse
Affiliation(s)
- Junjie Zhang
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), School of Material Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Xu Tang
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), School of Material Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Yongjia Hong
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), School of Material Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Guanyu Chen
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), School of Material Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Yong Chen
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), School of Material Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Li Zhang
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), School of Material Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Wenran Gao
- Joint International Research Laboratory of Biomass Energy and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yang Zhou
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), School of Material Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Bin Sun
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), School of Material Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| |
Collapse
|
34
|
Moon JH, Ajuna HB, Won SJ, Choub V, Choi SI, Yun JY, Hwang WJ, Park SW, Ahn YS. Entomopathogenic Potential of Bacillus velezensis CE 100 for the Biological Control of Termite Damage in Wooden Architectural Buildings of Korean Cultural Heritage. Int J Mol Sci 2023; 24:ijms24098189. [PMID: 37175895 PMCID: PMC10179512 DOI: 10.3390/ijms24098189] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/02/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Biocontrol strategies are gaining tremendous attention in insect pest management, such as controlling termite damage, due to the growing awareness of the irreparable harm caused by the continuous use of synthetic pesticides. This study examines the proteolytic and chitinolytic activities of Bacillus velezensis CE 100 and its termiticidal effect through cuticle degradation. The proteolytic and chitinolytic activities of B. velezensis CE 100 systematically increased with cell growth to the respective peaks of 68.3 and 128.3 units/mL after seven days of inoculation, corresponding with the highest cell growth of 16 × 107 colony-forming units (CFU)/mL. The in vitro termiticidal assay showed that B. velezensis CE 100 caused a rapid and high rate of termite mortality, with a median lethal time (LT50) of >1 h and the highest mortality rates of 91.1% and 92.2% recorded at 11 h and 12 h in the bacterial broth culture and crude enzyme fraction, respectively. In addition to broken setae and deformed sockets, termites treated with the bacterial broth culture exhibited degraded epicuticles, while the crude enzyme fraction caused severe disintegration of both the epicuticle and endocuticle. These results indicate the tremendously higher potential of B. velezensis CE 100 in the biological control of subterranean termites compared to the previously used entomopathogenic bacteria.
Collapse
Affiliation(s)
- Jae-Hyun Moon
- Department of Forest Resources, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Henry B Ajuna
- Department of Forest Resources, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sang-Jae Won
- Department of Forest Resources, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Vantha Choub
- Department of Forest Resources, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Su-In Choi
- Department of Forest Resources, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Ju-Yeol Yun
- Department of Forest Resources, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Won Joung Hwang
- Forest Products and Industry Department, Wood Industry Division, National Institute of Forest Science, Seoul 02455, Republic of Korea
| | - Sang Wook Park
- Department of Landscape Architecture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Young Sang Ahn
- Department of Forest Resources, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
35
|
Ang S, Liang J, Zheng W, Zhang Z, Li J, Yan Z, Wong WL, Zhang K, Chen M, Wu P. Novel Matrine Derivatives as Potential Larvicidal Agents against Aedes albopictus: Synthesis, Biological Evaluation, and Mechanistic Analysis. Molecules 2023; 28:molecules28073035. [PMID: 37049799 PMCID: PMC10096473 DOI: 10.3390/molecules28073035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
A large number of studies have shown that matrine (MA) possesses various pharmacological activities and is one of the few natural, plant-derived pesticides with the highest prospects for promotion and application. Fifty-eight MA derivatives were prepared, including 10 intermediates and 48 target compounds in 3 series, to develop novel mosquitocidal agents. Compounds 4b, 4e, 4f, 4m, 4n, 6e, 6k, 6m, and 6o showed good larvicidal activity against Aedes albopictus, which is both a highly aggressive mosquito and an important viral vector that can transmit a wide range of pathogens. Dipping methods and a bottle bioassay were used for insecticidal activity evaluation. The LC50 values of 4e, 4m, and 6m reached 147.65, 140.08, and 205.79 μg/mL, respectively, whereas the LC50 value of MA was 659.34 μg/mL. Structure–activity relationship analysis demonstrated that larvicidal activity could be improved by the unsaturated heterocyclic groups introduced into the carboxyl group after opening the D ring. The MA derivatives with oxidized N-1 lost their mosquitocidal activities, indicating that the bareness of N-1 is crucial to maintain their anti-mosquito activity. However, the activity was not greatly influenced by introducing a cyan group at C-6 or a benzene sulfonyl group at N-16. Additionally, compounds 4e and 4m exhibited good inhibitory activities against acetylcholinesterase with inhibitory rates of 59.12% and 54.30%, respectively, at a concentration of 250 μg/mL, whereas the inhibitory rate of MA was 9.88%. Therefore, the structural modification and mosquitocidal activity of MA and its derivatives obtained here pave the way for those seeking strong mosquitocidal agents of plant origin.
Collapse
Affiliation(s)
- Song Ang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Jinfeng Liang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Wende Zheng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Zhen Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Jinxuan Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Zhenping Yan
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Wing-Leung Wong
- The State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Kun Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
- Correspondence: (K.Z.); (M.C.); (P.W.); Tel.: +86-13822330019 (K.Z.); +86-18312066545 (M.C.); +86-18825179347 (P.W.)
| | - Min Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
- Correspondence: (K.Z.); (M.C.); (P.W.); Tel.: +86-13822330019 (K.Z.); +86-18312066545 (M.C.); +86-18825179347 (P.W.)
| | - Panpan Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
- Correspondence: (K.Z.); (M.C.); (P.W.); Tel.: +86-13822330019 (K.Z.); +86-18312066545 (M.C.); +86-18825179347 (P.W.)
| |
Collapse
|
36
|
Mannochio-Russo H, Nunes WDG, Almeida RF, Albernaz LC, Espindola LS, Bolzani VS. Old Meets New: Mass Spectrometry-Based Untargeted Metabolomics Reveals Unusual Larvicidal Nitropropanoyl Glycosides from the Leaves of Heteropterys umbellata. JOURNAL OF NATURAL PRODUCTS 2023; 86:621-632. [PMID: 36848642 DOI: 10.1021/acs.jnatprod.2c00788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The Aedes aegypti (Diptera: Culicidae) mosquito is the vector of several arboviruses in tropical and subtropical areas of the globe, and synthetic pesticides remain the most widely used combat strategy. This study describes the investigation of secondary metabolites with larvicidal activity from the Malpighiaceae taxon using a metabolomic and bioactivity-based approach. The workflow initially consisted of a larvicidal screening of 394 extracts from the leaves of 197 Malpighiaceae samples, which were extracted using solvents of different polarity, leading to the selection of Heteropterys umbellata for the identification of active compounds. By employing untargeted mass spectrometry-based metabolomics and multivariate analyses (PCA and PLS-DA), it was possible to determine that the metabolic profiles of different plant organs and collection sites differed significantly. A bioguided approach led to the isolation of isochlorogenic acid A (1) and the nitropropanoyl glucosides karakin (2) and 1,2,3,6-tetrakis-O-[3-nitropropanoyl]-beta-glucopyranose (3). These nitro compounds exhibited larvicidal activity, possibly potentialized by synergistic effects of their isomers in chromatographic fractions. Additionally, targeted quantification of the isolated compounds in different extracts corroborated the untargeted results from the statistical analyses. These results support a metabolomic-guided approach in combination with classical phytochemical techniques to search for natural larvicidal compounds for arboviral vector control.
Collapse
Affiliation(s)
- Helena Mannochio-Russo
- NuBBE, Department of Biochemistry and Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), SP, Araraquara, SP 14800-901, Brazil
| | - Wilhan D G Nunes
- Federal Institute of Education, Science and Technology of São Paulo (IFSP), Ilha Solteira, SP 15385-000, Brazil
| | - Rafael F Almeida
- Universidade Estadual de Goiás, Herbário JAR, Quirinópolis, GO 75860-000, Brazil
| | - Lorena C Albernaz
- Laboratório de Farmacognosia, Universidade de Brasília (UnB), Campus Universitário Darcy Ribeiro, Asa Norte, Brasília, DF 70910-900, Brazil
| | - Laila S Espindola
- Laboratório de Farmacognosia, Universidade de Brasília (UnB), Campus Universitário Darcy Ribeiro, Asa Norte, Brasília, DF 70910-900, Brazil
| | - Vanderlan S Bolzani
- NuBBE, Department of Biochemistry and Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), SP, Araraquara, SP 14800-901, Brazil
| |
Collapse
|
37
|
Whitten MMA, Xue Q, Taning CNT, James R, Smagghe G, del Sol R, Hitchings M, Dyson P. A narrow host-range and lack of persistence in two non-target insect species of a bacterial symbiont exploited to deliver insecticidal RNAi in Western Flower Thrips. FRONTIERS IN INSECT SCIENCE 2023; 3:1093970. [PMID: 38469480 PMCID: PMC10926499 DOI: 10.3389/finsc.2023.1093970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/31/2023] [Indexed: 03/13/2024]
Abstract
Introduction Insecticidal RNAi is a targeted pest insect population control measure. The specificity of insecticidal RNAi can theoretically be enhanced by using symbiotic bacteria with a narrow host range to deliver RNAi, an approach termed symbiont-mediated RNAi (SMR), a technology we have previously demonstrated in the globally-invasive pest species Western Flower Thrips (WFT). Methods Here we examine distribution of the two predominant bacterial symbionts of WFT, BFo1 and BFo2, among genome-sequenced insects. Moreover, we have challenged two non-target insect species with both bacterial species, namely the pollinating European bumblebee, Bombus terrestris, and an insect predator of WFT, the pirate bug Orius laevigatus. Results Our data indicate a very limited distribution of either symbiont among insects other than WFT. Moreover, whereas BFo1 could establish itself in both bees and pirate bugs, albeit with no significant effects on insect fitness, BFo2 was unable to persist in either species. Discussion In terms of biosafety, these data, together with its more specific growth requirements, vindicate the choice of BFo2 for delivery of RNAi and precision pest management of WFT.
Collapse
Affiliation(s)
- Miranda M. A. Whitten
- Institute of Life Science, Swansea University Medical School, Singleton Park, Swansea, United Kingdom
| | - Qi Xue
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Clauvis Nji Tizi Taning
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Reuben James
- Institute of Life Science, Swansea University Medical School, Singleton Park, Swansea, United Kingdom
| | - Guy Smagghe
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Ricardo del Sol
- Institute of Life Science, Swansea University Medical School, Singleton Park, Swansea, United Kingdom
| | - Matthew Hitchings
- Institute of Life Science, Swansea University Medical School, Singleton Park, Swansea, United Kingdom
| | - Paul Dyson
- Institute of Life Science, Swansea University Medical School, Singleton Park, Swansea, United Kingdom
| |
Collapse
|
38
|
Spodoptera exigua Multiple Nucleopolyhedrovirus Increases the Susceptibility to Insecticides: A Promising Efficient Way for Pest Resistance Management. BIOLOGY 2023; 12:biology12020260. [PMID: 36829536 PMCID: PMC9953395 DOI: 10.3390/biology12020260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023]
Abstract
Spodoptera exigua is a polyphagous pest of diverse crops and causes considerable economic losses. The overuse of chemical insecticides for controlling this pest results in insecticide resistance, environmental pollution and toxicity to other non-target organisms. Therefore, a sustainable and efficient way for pest management is urgently required. In this study, laboratory bioassays of eleven commonly used insecticides, the specific entomopathogen of S. exigua (Spodoptera exigua multiple nucleopolyhedrovirus, SeMNPV), and SeMNPV-insecticide combinations against the S. exigua laboratory population and two field populations were tested. Our results indicated that the two field populations had developed resistance to almost half of the tested insecticides, while SeMNPV had good virulence in all populations. Interestingly, the combined use of SeMNPV enhanced the toxicity of the tested insecticides against all populations to a different extent and considerably reduced the insecticide resistance of S. exigua field populations or even recovered the susceptibility to above insecticides. Furthermore, the field trial showed that the combined application of SeMNPV contributed to promoting the control efficacy of emamectin benzonate and chlorfenapyr. These results provide a promising efficient way for pest resistance management and an environmentally friendly approach for controlling S. exigua with the combined application of nucleopolyhedroviruses and insecticides.
Collapse
|
39
|
Wu Q, Siddique MS, Wang H, Cui L, Wang H, Pan M, Yan J. Visible-light-driven iron-based heterogeneous photo-Fenton catalysts for wastewater decontamination: A review of recent advances. CHEMOSPHERE 2023; 313:137509. [PMID: 36495983 DOI: 10.1016/j.chemosphere.2022.137509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/23/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Visible-light-driven heterogeneous photo-Fenton process has emerged as the most promising Fenton-derived technology for wastewater decontamination, owing to its prominent superiorities including the potential utilization of clean energy (solar light), and acceleration of ≡Fe(II)/≡Fe(III) dynamic cycle. As the core constituent, catalysts play a pivotal role in the photocatalytic activation of H2O2 to yield reactive oxidative species (ROS). To date, all types of iron-based heterogeneous photo-Fenton catalysts (Fe-HPFCs) have been extensively reported by the scientific community, and exhibited satisfactory catalytic performance towards pollutants decomposition, sometimes even exceeding the homogeneous counterparts (Fe(II)/H2O2). However, the relevant reviews on Fe-HPFCs, especially from the viewpoint of catalyst-self design are extremely limited. Therefore, this state-of-the-art review focuses on the available Fe-HPFCs in literatures, and gives their classification based on their self-characteristics and modification strategies for the first time. Two classes of representative Fe-HPFCs, conventional inorganic semiconductors of Fe-containing minerals and newly emerging Fe-based metal-organic frameworks (Fe-MOFs) are comprehensively summarized. Moreover, three universal strategies including (i) transition metal (TMs) doping, (ii) construction of heterojunctions with other semiconductors or plasmonic materials, and (iii) combination with supporters were proposed to tackle their inherent defects, viz., inferior light-harvesting capacity, fast recombination of photogenerated carriers, slow mass transfer and low exposure and uneven dispersion of active sites. Lastly, a critical emphasis was also made on the challenges and prospects of Fe-HPFCs in wastewater treatment, providing valuable guidance to researchers for the reasonable construction of high-performance Fe-HPFCs.
Collapse
Affiliation(s)
- Qiangshun Wu
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China.
| | - Muhammad Saboor Siddique
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100086, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huijuan Wang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Liqiang Cui
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Hui Wang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Mei Pan
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Jinlong Yan
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China.
| |
Collapse
|
40
|
Wu Y, Zhou L, Kang L, Cheng H, Wei X, Pan C. Suspect screening strategy for pesticide application history based on characteristics of trace metabolites. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120557. [PMID: 36328280 DOI: 10.1016/j.envpol.2022.120557] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Pesticides are widely used to protect crops but can also threaten public health as they can remain in the environment for a long time. Additionally, some transformation products (TPs) of unknown toxicity, stability, or bioaccumulation properties can further be formed from the hydrolysis, photolysis and biodegradation of pesticides. The identification and quantification of those TPs can be challenging for environmental regulation and risk assessment due to a limited understanding about them. In this study, a suspect screening strategy for pesticide application history was developed and then used to organic products (tea). Liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS) was used to screen and identify the TPs in crops and their toxicity was subsequently predicted with the open-source software (ECOSAR and admetSAR). Finally, the SIRIUS software was applied and 142 TPs from 20 pesticides were identified in tea plants based on the fragmentation-degradation relationship. Of these, standards (level 1) and 53 were considered as tentatively identified (levels 2a and 2b). Some TPs were also found to be present in tea plants and soil after 65 days, thus indicating higher persistency or stability than parent pesticides. While others from diafenthiuron and neonicotinoids had higher predicted toxicity of daphnid, and demonstrated positive for honeybee toxicity. Suspect screening is a powerful tool to screen pesticide TPs on the complex matrix of crops. Such screening can provide potential evidence of pesticide application, especially in cases of illegal practices in organic farming.
Collapse
Affiliation(s)
- Yangliu Wu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Li Zhou
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Lu Kang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Haiyan Cheng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xinlin Wei
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Canping Pan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
41
|
Kašuba V, Tariba Lovaković B, Lucić Vrdoljak A, Katić A, Kopjar N, Micek V, Milić M, Pizent A, Želježić D, Žunec S. Evaluation of Toxic Effects Induced by Sub-Acute Exposure to Low Doses of α-Cypermethrin in Adult Male Rats. TOXICS 2022; 10:toxics10120717. [PMID: 36548550 PMCID: PMC9785956 DOI: 10.3390/toxics10120717] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 05/14/2023]
Abstract
To contribute new information to the pyrethroid pesticide α-cypermethrin toxicity profile, we evaluated its effects after oral administration to Wistar rats at daily doses of 2.186, 0.015, 0.157, and 0.786 mg/kg bw for 28 days. Evaluations were performed using markers of oxidative stress, cholinesterase (ChE) activities, and levels of primary DNA damage in plasma/whole blood and liver, kidney, and brain tissue. Consecutive exposure to α-cypermethrin affected the kidney, liver, and brain weight of rats. A significant increase in concentration of the thiobarbituric acid reactive species was observed in the brain, accompanied by a significant increase in glutathione peroxidase (GPx) activity. An increase in GPx activity was also observed in the liver of all α-cypermethrin-treated groups, while GPx activity in the blood was significantly lower than in controls. A decrease in ChE activities was observed in the kidney and liver. Treatment with α-cypermethrin induced DNA damage in the studied cell types at almost all of the applied doses, indicating the highest susceptibility in the brain. The present study showed that, even at very low doses, exposure to α-cypermethrin exerts genotoxic effects and sets in motion the antioxidative mechanisms of cell defense, indicating the potential hazards posed by this insecticide.
Collapse
|
42
|
Occurrence of Selected Emerging Contaminants in Southern Europe WWTPs: Comparison of Simulations and Real Data. Processes (Basel) 2022. [DOI: 10.3390/pr10122491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Emerging contaminants (ECs) include a diverse group of compounds not commonly monitored in wastewaters, which have become a global concern due to their potential harmful effects on aquatic ecosystems and human health. In the present work, six ECs (ibuprofen, diclofenac, erythromycin, triclosan, imidacloprid and 17α-ethinylestradiol) were monitored for nine months in influents and effluents taken from four wastewater treatment plants (WWTPs). Except for the case of ibuprofen, which was in all cases in lower concentrations than those usually found in previous works, results found in this work were within the ranges normally reported. Global removal efficiencies were calculated, in each case being very variable, even when the same EC and facility were considered. In addition, the SimpleTreat model was tested by comparing simulated and real ibuprofen, diclofenac and erythromycin data. The best agreement was obtained for ibuprofen which was the EC with the highest removal efficiencies.
Collapse
|
43
|
Long L, Tang Y. Urinary pyrethroid metabolite and hearing threshold shifts of adults in the United States: A cross-sectional study. PLoS One 2022; 17:e0275775. [PMID: 36251636 PMCID: PMC9576071 DOI: 10.1371/journal.pone.0275775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/25/2022] [Indexed: 11/14/2022] Open
Abstract
Hearing loss (HL) is a global health problem with a high prevalence and profound socioeconomic impact. Pyrethroids are one of the most commonly used insecticides. Although previous studies have reported the relationship between pyrethroids and neurotoxicity, little is known about the effect of pyrethroid exposure on the auditory system among the general population. This study is aimed to investigate the association of pyrethroid exposure with hearing threshold shifts of adults in the United States. A total of 726 adults, aged from 20 to 69 years from the 2011-2012 National Health and Nutrition Examination Survey (NHANES) data were included in the study. Urinary 3-phenoxybenzoic acid (3-PBA), a general pyrethroid metabolite, was used as a biomarker for pyrethroid exposure. HL was defined as a pure-tone average (PTA) at 0.5, 1, 2, 4 kHz ≥ 20 dB in the better ear. Analyses by using multivariate linear regressions were conducted to explore the associations of urinary 3-PBA with PTA hearing threshold shifts. There were no statistically significant correlations between Ln-transformed 3-PBA and either low-frequency or high-frequency hearing thresholds after adjusting for age, gender, race/ethnicity, education level, firearm noise exposure, occupational noise exposure, recreational noise exposure, serum cotinine, BMI, hypertension, and diabetes. However, associations of 3-PBA with both low-frequency and high-frequency hearing thresholds depended on age (P interaction < 0.0396 and 0.0017, respectively). Positive associations between Ln-transformed 3-PBA and both low-frequency and high-frequency hearing thresholds were observed in participants aged 20-39 years after adjusting confounders (β = 1.53, 95% CI: 0.04-3.01, and β = 3.14, 95% CI: 0.99-5.29, respectively) with the highest tertile (≥ 0.884 μg/g creatinine) of 3-PBA compared with the lowest tertile (< 0.407 μg/g creatinine). The possibility of interaction between 3-PBA and age on the hearing threshold shifts indicated that pyrethroid insecticides were prone to be more toxic to auditory system in younger adults than in older ones. Further studies will be required to confirm these findings.
Collapse
Affiliation(s)
- Lili Long
- Department of Otorhinolaryngology, Sichuan University Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yuedi Tang
- Department of Otorhinolaryngology Head & Neck Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- * E-mail:
| |
Collapse
|
44
|
Abdel-Fattah Mostafa A, Yassin MT, Dawoud TM, Al-Otibi FO, Sayed SR. Mycodegradation of diazinon pesticide utilizing fungal strains isolated from polluted soil. ENVIRONMENTAL RESEARCH 2022; 212:113421. [PMID: 35568233 DOI: 10.1016/j.envres.2022.113421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/22/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
The current study aimed to isolate biodegradable soil fungi capable of metabolizing diazinon. The collected soil samples were investigated for diazinon pollution to detect the pesticide level in the polluted soil samples. Food poisoning techniques were utilized to preliminary investigate the biodegradation efficiency of the isolated fungal strains to diazinon pesticide using solid and liquid medium and also to detect their tolerance to different concentrations. GC-MS analysis of control and treated flasks were achieved to determine the diazinon residues for confirmation of the biodegradation efficiency. The total diazinon residues in the collected soil samples was found to be 0.106 mg/kg. Out of thirteen fungal strains isolated form diazinon polluted soils, six strains were potentially active in diazinon biodegradation. Food poisoning technique showed that A. niger, B. antennata, F. graminearum, P. digitatum, R. stolonifer and T. viride strains recorded fungal growth diameters of 65.2 ± 0.18, 57.5 ± 0.41, 47.2 ± 0.36, 56.5 ± 0.27, 85.0 ± 0.01, 85.0 ± 0.06 mm respectively in the treated group which were non significantly different compared to that of control (P > 0.05), indicating the high efficiency of these strains in diazinon degradation compared to the other isolated strains. GC-MS analysis revealed that B. antennata was the most efficient strain in diazinon degradation recording 32.24 ± 0.15 ppm concentration after 10 days incubation. Linear regression analysis confirmed that B. antennata was the most effective biodegradable strain recording the highest diazinon dissipation (83.88%) with the lowest T1/2 value of 5.96 days while T. viride, A. niger, R. stolonifer and F. graminearum exhibited a high biodegradable activities reducing diazinon to 80.26%, 78.22%, 77.36% and 75.43% respectively after 10 days incubation. In conclusion, these tolerant fungi could be considered as promising, eco-friendly and biodegradable fungi for the efficient and potential removal of hazardous diazinon from polluted soil.
Collapse
Affiliation(s)
- Ashraf Abdel-Fattah Mostafa
- Botany and Microbiology Department, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Mohamed Taha Yassin
- Botany and Microbiology Department, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia.
| | - Turki M Dawoud
- Botany and Microbiology Department, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Fatimah O Al-Otibi
- Botany and Microbiology Department, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Shaban Rm Sayed
- Electron Microscope Unit, Collage of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
45
|
Yang W, Wang B, Lei G, Chen G, Liu D. Advances in nanocarriers to improve the stability of dsRNA in the environment. Front Bioeng Biotechnol 2022; 10:974646. [PMID: 36051593 PMCID: PMC9424858 DOI: 10.3389/fbioe.2022.974646] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/14/2022] [Indexed: 11/20/2022] Open
Abstract
RNAi technology, known as a revolutionary technology in the history of pesticides, has been identified as a very promising novel approach for crop protection, which is of great significance for achieving the sustainable agricultural development of the United Nations Food and Agriculture Organization. Although many studies have shown that RNA biopesticides have strong application prospects, its stability seriously restricts the commercial use. As the core component of RNAi, double-stranded RNA (dsRNA) is unstable in its natural form. Therefore, how to ensure the stability of dsRNA is one of the most significant challenges in realizing the commercial use of RNA biopesticides. Nanomaterials such as cationic polymers and lipofectamine can improve the stability of dsRNA in the environment, which has been proved. This paper reviews the recent research progress of nanomaterials that can be used to improve the environmental stability of dsRNA, and discusses the advantages and limitations of different nanomaterials combined with dsRNA, which provides reference for the selection of dsRNA nanoformulations.
Collapse
Affiliation(s)
| | | | | | | | - Dehai Liu
- *Correspondence: Dehai Liu, ; Guocan Chen,
| |
Collapse
|
46
|
Effect of Glyphosate and Carbaryl Applications on Okra (Abelmoschus esculentus) Biomass and Arbuscular Mycorrhizal Fungi (AMF) Root Colonization in Organic Soil. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pesticide application in horticultural crops has recently multiplied to increase crop yields and boost economic return. Consequently, the effects of pesticides on soil organisms and plant symbionts is an evolving subject of research. In this short-term study, we evaluated the effects of glyphosate (herbicide) and carbaryl (insecticide) on okra biomass and AMF root colonization in both shade house and field settings. An additional treatment, the combination of glyphosate and carbaryl, was applied in the field trial. Soil and root samples were collected three times during the experiment: 30 days after planting (before first spray, or T0), 45 days after planting (before second spray, or T1), and at full maturity (at 66 days after planting, or T2). Our results indicate that glyphosate and combined treatments were most effective in controlling weeds and produced almost 40% higher okra biomass than the control. There was a ~40% increase in AMF root colonization in glyphosate-treated plots from T0 to T1. This result was likely due to high initial soil P content, high soil temperature, and low rainfall, which aided in the rapid degradation of glyphosate in the soil. However, at T2 (second spray), high rainfall and the presence of excess glyphosate resulted in a 15% reduction in AMF root colonization when compared to T1. We found carbaryl had little to negligible effect on AMF root colonization.
Collapse
|