1
|
Park SH, Gye MC. Dibutyl phthalate disrupts [Ca 2+] i, reactive oxygen species, [pH] i, protein kinases and mitochondrial activity, impairing sperm function. J Environ Sci (China) 2025; 151:68-78. [PMID: 39481973 DOI: 10.1016/j.jes.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 11/03/2024]
Abstract
To explore the mechanism of sperm dysfunction caused by dibutyl phthalate (DBP), the effects of DBP on intracellular [Ca2+] and [pH], reactive oxygen species (ROS), lipid peroxidation (LPO), mitochondrial permeability transition pore (mPTP) opening, mitochondrial membrane potential (MMP), adenosine triphosphate (ATP) levels, phosphorylation of protein kinase A (PKA) substrate proteins and phosphotyrosine (p-Tyr) proteins, sperm motility, spontaneous acrosome reaction, and tail bending were examined in mouse spermatozoa. At 100 µg/mL, DBP significantly increased tail bending and [Ca2+]i. Interestingly, DBP showed biphasic effects on [pH]i. DBP at 10-100 µg/mL significantly decreased sperm motility. Similarly, Ca2+ ionophore A23187 decreased [pH]i sperm motility, suggesting that DBP-induced excessive [Ca2+]i decreased sperm motility. DBP significantly increased ROS and LPO. DBP at 100 µg/mL significantly decreased mPTP closing, MMP, and ATP levels in spermatozoa, as did H2O2, indicative of ROS-mediated mitochondrial dysfunction caused by DBP. DBP as well as H2O2 increased p-Tyr sperm proteins and phosphorylated PKA substrate sperm proteins. DBP at 1-10 µg/mL significantly increased the spontaneous acrosome reaction, suggesting that DBP can activate sperm capacitation. Altogether, DBP showed a biphasic effect on intracellular signaling in spermatozoa. At concentrations relevant to seminal ortho-phthalate levels, DBP activates [pH]i, protein tyrosine kinases and PKA via physiological levels of ROS generation, potentiating sperm capacitation. DBP at high doses excessively raises [Ca2+]i and ROS and disrupts [pH]i, impairing the mitochondrial function, tail structural integrity, and sperm motility.
Collapse
Affiliation(s)
- Seung Hyun Park
- Department of Life Science and Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Myung Chan Gye
- Department of Life Science and Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
2
|
Luo S, Li J, Zhou Y, Zhai Z, Li Q, Huang Z, He W, Zhong K, Kong B, Xia Z, Kwok HF, Zhu L. Diisooctyl phthalate (DIOP) exposure leads to cell apoptosis to HUVEC cells and toxicity to Caenorhabditis elegans through increasing the oxidative stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117594. [PMID: 39729937 DOI: 10.1016/j.ecoenv.2024.117594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/12/2024] [Accepted: 12/19/2024] [Indexed: 12/29/2024]
Abstract
Diisooctyl phthalate (DIOP), a common phthalate plasticizer, is frequently encountered in everyday life. Despite its widespread use, there is a dearth of toxicological research on DIOP, resulting in incomplete knowledge of its potential harmful effects. Our current research endeavored to provide a comprehensive evaluation of DIOP's toxicological profile using both cellular and Caenorhabditis elegans models as our in vitro and in vivo study subjects. Our results demonstrate that DIOP markedly decreases the viability and colony-forming ability of HUVECs. Moreover, this cytotoxicity correlates with elevated levels of reactive oxygen species (ROS), causing cell cycle arrest at the G1 phase and the induction of cell apoptosis. In addition, DIOP adversely affects the growth, movement, and reproductive fitness of C. elegans, as well as other physiological aspects such as body curvature, egg-laying capability, and body length. C. elegans exposed to DIOP exhibit increased oxidative stress, evidenced by higher ROS levels and lipofuscin buildup. Importantly, the PI3K/AKT and MAPK pathways are implicated in the response to DIOP-induced toxicity. This study, therefore, highlights the potential toxicity of DIOP in both cellular and organismal models, advancing our understanding of the detrimental effects associated with exposure to DIOP.
Collapse
Affiliation(s)
- Siyuan Luo
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, University of Macau, 999078, Macao
| | - Junnan Li
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Yuqing Zhou
- School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha 510006, China
| | - Zihang Zhai
- School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha 510006, China
| | - Qiang Li
- Food Safety Inspection Technology Center of Sichuan Market Supervision Administration, Chengdu, China
| | - Zhenglin Huang
- Food Safety Inspection Technology Center of Sichuan Market Supervision Administration, Chengdu, China
| | - Wencan He
- School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha 510006, China; Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha 410014, China
| | - Kejun Zhong
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha 410014, China
| | - Bo Kong
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha 410014, China
| | - Zanxian Xia
- School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha 510006, China.
| | - Hang Fai Kwok
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, University of Macau, 999078, Macao.
| | - Lipeng Zhu
- School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha 510006, China.
| |
Collapse
|
3
|
Singh S, Goel I, Tripathi S, Ahirwar A, Kumar M, Rana A, Dhar R, Karmakar S. Effect of environmental air pollutants on placental function and pregnancy outcomes: a molecular insight. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:59819-59851. [PMID: 39388084 DOI: 10.1007/s11356-024-35016-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024]
Abstract
Air pollution has become a major health concern, particularly for vulnerable populations such as the elderly, children, and pregnant women. Studies have reported a strong association between prenatal exposure to air pollutants and adverse pregnancy outcomes, including lower birth weight, reduced fetal growth, and an increased frequency of preterm births. This review summarizes the harmful effects of air pollutants, such as particulate matter, on pregnancy and outlines the mechanistic details associated with these adverse outcomes. Particulate pollutant matter may be able to cross the placenta barrier, and alterations in placental functions are central to the detrimental effects of these pollutants. In addition to associations with preeclampsia and gestational hypertension, air pollutants also induce oxidative stress, inflammation, and epigenetic alteration in the placenta. These pollutants can also affect placental homeostasis and endocrine function, contributing to pregnancy complications and possible transgenerational effects. Prenatal air pollution exposure has been linked to reduced cognitive and motor function in infants and newborns, increasing the predisposition to autism spectrum disorders and other neuropsychiatric disorders. This review also summarizes the use of various animal models to study the harmful effects of air pollution on pregnancy and postnatal outcomes. These findings provide valuable insight into the molecular events associated with the process and can aid in risk mitigation and adopting safety measures. Implementing effective environmental protocols and taking appropriate steps may reduce the global disease burden, particularly for developing nations with poor regulatory compliance and large populations of pregnant women.
Collapse
Affiliation(s)
- Sunil Singh
- Department of Biochemistry, All India Institute of Medical Sciences, Room 3020, New Delhi, 110029, India
| | - Isha Goel
- Department of Psychiatry, All India Institute of Medical Sciences, New Delhi, India
| | - Smita Tripathi
- Department of Biochemistry, Lady Harding Medical College, New Delhi, India
| | - Ashok Ahirwar
- Department of Lab Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Megha Kumar
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Habsiguda, Hyderabad, India
| | - Anubhuti Rana
- Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences, New Delhi, India
| | - Ruby Dhar
- Department of Biochemistry, All India Institute of Medical Sciences, Room 3020, New Delhi, 110029, India
| | - Subhradip Karmakar
- Department of Biochemistry, All India Institute of Medical Sciences, Room 3020, New Delhi, 110029, India.
| |
Collapse
|
4
|
Battistoni M, Metruccio F, Di Renzo F, Moretto A, Bacchetta R, Menegola E. Effects of combined exposure to two bisphenol plasticizers (BPA and BPB) on Xenopus laevis development. Reprod Toxicol 2024; 128:108614. [PMID: 38866257 DOI: 10.1016/j.reprotox.2024.108614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/14/2024]
Abstract
Due to its endocrine disruptive activity, the plastic additive Bisphenol A (BPA) is classified as substance of very high concern (EU ECHA 2017). A correlation between environmental exposure to BPA and congenital defects has been described in humans and in experimental species including the amphibian Xenopus laevis, where severe branchial defects were associated to lethality. The exposure of X. laevis embryos to the BPA analogue bisphenol B (BPB) was recently linked to similar teratogenic effects, with BPB having relative potency about 3 times higher than BPA. The combined BPA-BPB exposure is realistic as both BPA and BPB are detected in human samples and environment. Limited experimental data are available on the combined developmental toxicity of BPA and BPB. The aim of the present work is to evaluate the effects of BPA and BPB mixture in the X. laevis development model, using R-FETAX procedure. The exposure was limited to the first day of development (corresponding to the phylotypic developmental period, common to all vertebrates). Samples were monitored for lethal effects during the full six-day test period and the external morphology was evaluated at the end of the test. Mixture effects were described by modelling, using the PROAST software package. Overall data modelling showed that dose-addiction could not be rejected, suggesting a health concern for co-exposure.
Collapse
Affiliation(s)
- M Battistoni
- Università degli Studi di Milano, Department of Environmental Science and Policy, via Celoria, Milan 26-20133, Italy
| | - F Metruccio
- ICPS, ASST Fatebenefratelli Sacco, via GB Grassi, Milan 74-20159, Italy
| | - F Di Renzo
- Università degli Studi di Milano, Department of Environmental Science and Policy, via Celoria, Milan 26-20133, Italy.
| | - A Moretto
- Università degli Studi di Padova, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, via Giustiniani, Padua 2-35128, Italy
| | - R Bacchetta
- Università degli Studi di Milano, Department of Environmental Science and Policy, via Celoria, Milan 26-20133, Italy
| | - E Menegola
- Università degli Studi di Milano, Department of Environmental Science and Policy, via Celoria, Milan 26-20133, Italy
| |
Collapse
|
5
|
Hou Y, Shang Y, Xu F, Li T, Li M, Wei L, Fan S, Hou W, Gou W, Shang H, Li Y. Ionizing radiation induces neurotoxicity in Xenopus laevis embryos through neuroactive ligand-receptor interaction pathway. ENVIRONMENTAL RESEARCH 2024; 256:119237. [PMID: 38810829 DOI: 10.1016/j.envres.2024.119237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/14/2024] [Accepted: 05/25/2024] [Indexed: 05/31/2024]
Abstract
Ionizing radiation (IR) poses a significant threat to both the natural environment and biological health. Exposure to specific doses of ionizing radiation early in an organism's development can lead to developmental toxicity, particularly neurotoxicity. Through experimentation with Xenopus laevis (X. laevis), we examined the effects of radiation on early developmental stage. Our findings revealed that radiation led to developmental abnormalities and mortality in X. laevis embryos in a dose-dependent manner, disrupting redox homeostasis and inducing cell apoptosis. Additionally, radiation caused neurotoxic effects, resulting in abnormal behavior and neuron damage in the embryos. Further investigation into the underlying mechanisms of radiation-induced neurotoxicity indicated the potential involvement of the neuroactive ligand-receptor interaction pathway, which was supported by RNA-Seq analysis. Validation of gene expression associated with this pathway and analysis of neurotransmitter levels confirmed our hypothesis. In addition, we further validated the important role of this signaling pathway in radiation-induced neurotoxicity through edaravone rescue experiments. This research establishes a valuable model for radiation damage studying and provides some insight into radiation-induced neurotoxicity mechanisms.
Collapse
Affiliation(s)
- Yue Hou
- State Key Laboratory of Advanced Medical Materials and Devices, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 300192, Tianjin, China
| | - Yue Shang
- State Key Laboratory of Advanced Medical Materials and Devices, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 300192, Tianjin, China
| | - Feifei Xu
- State Key Laboratory of Advanced Medical Materials and Devices, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 300192, Tianjin, China
| | - Tingyang Li
- State Key Laboratory of Advanced Medical Materials and Devices, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 300192, Tianjin, China
| | - Min Li
- State Key Laboratory of Advanced Medical Materials and Devices, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 300192, Tianjin, China
| | - Ling Wei
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, 510006, Guangzhou, China
| | - Saijun Fan
- State Key Laboratory of Advanced Medical Materials and Devices, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 300192, Tianjin, China
| | - Wenbin Hou
- State Key Laboratory of Advanced Medical Materials and Devices, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 300192, Tianjin, China
| | - Wenfeng Gou
- State Key Laboratory of Advanced Medical Materials and Devices, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 300192, Tianjin, China.
| | - Haihua Shang
- State Key Laboratory of Advanced Medical Materials and Devices, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 300192, Tianjin, China.
| | - Yiliang Li
- State Key Laboratory of Advanced Medical Materials and Devices, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 300192, Tianjin, China.
| |
Collapse
|
6
|
Teng M, Sun J, Zhao L, Li Y, Zhang Z, Zhu W, Zhang Y, Xu F, Xing S, Zhao X, Wu F. Effects of BBIBP-CorV vaccine on gut microbiota and short-chain fatty acids in mice exposed to bis (2-ethylhexyl) phthalate and dioctyl terephthalate. ENVIRONMENT INTERNATIONAL 2024; 190:108851. [PMID: 38941942 DOI: 10.1016/j.envint.2024.108851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 06/17/2024] [Accepted: 06/23/2024] [Indexed: 06/30/2024]
Abstract
As the COVID-19 pandemic has progressed, increasing evidences suggest that the gut microbiota may play a crucial role in the effectiveness of SARS-CoV-2 vaccine. Thus, this study was aimed at investigating the influence of SARS-CoV-2 vaccine on the gut microbiota and short-chain fatty acids (SCFAs) of organisms exposed to environmental contaminants, i.e., plasticizers: phthalate esters. We found that in mice, exposure to dioctyl terephthalate (DOTP) and bis -2-ethylhexyl phthalate (DEHP) decreased the blood glucose level and white fat weight, induced inflammatory responses, caused damage to liver and intestinal tissues, and disrupted the gut microbiota composition and SCFAs metabolism. Specifically, the Bacteroidetes phylum was positively correlated with BBIBP-CorV vaccine, while acetic acid was negatively associated with the vaccine. Interestingly, the BBIBP-CorV vaccine somewhat alleviated tissue inflammation and reduced the contents of acetic acid and propionic acid in mice exposed to DEHP and DOTP. These findings were confirmed by a fecal microbiota transplantation assay. Overall, this study revealed that exposure to DEHP and DOTP adversely affects the gut microbiota and SCFAs, while the BBIBP-CorV vaccine can protect mice against these effects. This work highlighted the relationship between BBIBP-CorV vaccination, gut microbiome composition, and responses to plasticizers, which may facilitate the development and risk assessment of SARS-CoV-2 vaccines and environmental contaminants on microbiota health.
Collapse
Affiliation(s)
- Miaomiao Teng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jiaqi Sun
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Lihui Zhao
- College of Geoexploration Science and Technology, Jilin University, Changchun 130026, China
| | - Yunxia Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zixuan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wentao Zhu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yuntao Zhang
- China National Biotec Group Company Limited, Beijing 100024, China
| | - Fangjingwei Xu
- China National Biotec Group Company Limited, Beijing 100024, China
| | - Sixi Xing
- China National Biotec Group Company Limited, Beijing 100024, China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
7
|
Qadeer A, Anis M, Warner GR, Potts C, Giovanoulis G, Nasr S, Archundia D, Zhang Q, Ajmal Z, Tweedale AC, Kun W, Wang P, Haoyu R, Jiang X, Shuhang W. Global Environmental and Toxicological Data of Emerging Plasticizers: Current Knowledge, Regrettable Substitution Dilemma, Green Solution and Future Perspectives. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2024; 26:5635-5683. [PMID: 39553194 PMCID: PMC11566117 DOI: 10.1039/d3gc03428c] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The global plasticizer market is projected to increase from $17 billion in 2022 to $22.5 billion in 2027. Various emerging/alternative plasticizers entered the market following the ban on several phthalate plasticizers because of their harmful effects. However, there is limited data (especially peer-reviewed) on emerging plasticizers' toxicity and environmental impact. This review compiles available data on toxicity, exposure, environmental effects, and safe production of emerging plasticizers. It identifies gaps in scientific research and provides evidence that emerging plasticizers are potential cases of regrettable substitution. Several alternative plasticizers, such as acetyl tributyl citrate (ATBC), diisononyl cyclohexane-1,2 dicarboxylate (DINCH), tris-2-ethylhexyl phosphate (TEHP), tricresyl phosphate (TCP), tris-2-ethylhexyl phosphate (TPHP), bis-2-ethylhexyl terephthalate (DEHT), and tris-2-ethylhexyl trimellitate (TOTM), show potential as endocrine disrupting properties and other toxic characteristics. Some chemicals like bis-2-ethylhexyl adipate (DEHA), diisobutyl adipate (DIBA), ATBC, DINCH, bis-2-ethylhexyl sebacate (DOS), diethylene glycol dibenzoate (DEGDB), DEHT, and phosphate esters showed the potential to cause toxicity in aquatic species. Plus, there is great lack of information on compounds like diisononyl adipate (DINA), dibutyl adipate (DBA), diisodecyl adipate (DIDA), dipropylene glycol dibenzoate (DPGDB), dibutyl sebacate (DBS), alkylsulfonic phenyl ester (ASE), trimethyl pentanyl diisobutyrate (TXIB), DEGDB and bis-2-ethylhexyl sebacate (DOS). Some compounds like epoxidized soybean oil (ESBO), castor-oil-mono-hydrogenated acetate (COMGHA), and glycerin triacetate (GTA) are potentially safer or less toxic. Alternative plasticizers such as adipates (LogKow 4.3-10.1), cyclohexane dicarboxylic acids (LogKow 10), phosphate esters (LogKow 2.7-9.5), sebacates (LogKow 6.3-10.1), terephthalates (LogKow 8.4), and vegetable oil derivatives (LogKow 6.4-14.8) have logKow values that are comparable to phthalate plasticizers (LogKow 7.5-10.4), indicating potential bioaccumulation and health consequences. Field studies have demonstrated that phosphate esters can undergo bioaccumulation and biomagnification, but there is a lack of bioaccumulation studies for other compounds. We also discuss the metabolism of emerging plasticizers, though data is limited. Our article highlights that numerous alternative compounds display potential health and ecological risks, indicating they might not be suitable substitutes for legacy plasticizers. There is also a lack of scientific data on most emerging plasticizers. This way, we call for increased research and timely regulatory action to prevent global contamination and health risks. Finally, this study presents a scientifically robust protocol to avoid harmful substitutions and ensure the production of safer chemicals.
Collapse
Affiliation(s)
- Abdul Qadeer
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China
- Alpha Planet Institute, Global Environmental and Climate Lab, Beijing, China
- O’Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN, 47405, United States
| | - Muhammad Anis
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China
- Alpha Planet Institute, Global Environmental and Climate Lab, Beijing, China
| | - Genoa R. Warner
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Courtney Potts
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | | | - Samia Nasr
- Chemistry Department, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | | | - Qinghuan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China
| | - Zeeshan Ajmal
- College of Chemistry and Material Science, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
- Alpha Planet Institute, Global Environmental and Climate Lab, Beijing, China
| | - Anthony C. Tweedale
- R.I.S.K. Consultancy (Rebutting Industry Science with Knowledge), Brussels, Belgium
| | - Wang Kun
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China
| | - Pengfei Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China
| | - Ren Haoyu
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China
| | - Xia Jiang
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China
| | - Wang Shuhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China
| |
Collapse
|
8
|
Jiang Q, Wan Y, Zhu K, Wang H, Feng Y, Xiang Z, Liu R, Zhao S, Zhu Y, Song R. Association of exposure to phthalates and phthalate alternatives with dyslexia in Chinese primary school children. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:28392-28403. [PMID: 38538993 DOI: 10.1007/s11356-024-32871-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/05/2024] [Indexed: 04/30/2024]
Abstract
Previous studies have shown associations between children's exposure to phthalates and neurodevelopmental disorders. Whereas the impact of exposure to phthalate alternatives is understudied. This study aimed to evaluate the association of exposure to phthalates/their alternatives with the risk of dyslexia. We recruited 745 children (355 dyslexia and 390 non-dyslexia) via the Tongji Reading Environment and Dyslexia Research Project, and their urine samples were collected. A total of 26 metabolites of phthalates/their alternatives were measured. Multivariate logistic regression and quantile-based g-computation were used to estimate the associations of exposure to the phthalates/their alternatives with dyslexia. More than 80% of the children had 17 related metabolites detected in their urine samples. After adjustment, the association between mono-2-(propyl-6-hydroxy-heptyl) phthalate (OH-MPHP) with the risk of dyslexia was observed. Compared with the lowest quartile of OH-MPHP levels, the odds of dyslexia for the third quartile was 1.93 (95% CI 1.06, 3.57). Regarding mixture analyses, it was found that OH-MPHP contributed the most to the association. Further analyses stratified by sex revealed that this association was only observed in boys. Our results suggested a significantly adverse association of di-2-propylheptyl phthalate exposure with children's language abilities. It highlights the necessity to prioritize the protection of children's neurodevelopment by minimizing their exposure to endocrine-disrupting chemicals like di-2-propylheptyl phthalate.
Collapse
Affiliation(s)
- Qi Jiang
- Department of Maternal and Child Health and MOE (Ministry of Education) the Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yanjian Wan
- Center for Public Health Laboratory Service, Institute of Environmental Health, Wuhan Centers for Disease Control & Prevention, Wuhan, 430024, Hubei, China
| | - Kaiheng Zhu
- Department of Maternal and Child Health and MOE (Ministry of Education) the Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Haoxue Wang
- Department of Maternal and Child Health and MOE (Ministry of Education) the Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yanan Feng
- Department of Maternal and Child Health and MOE (Ministry of Education) the Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhen Xiang
- Department of Maternal and Child Health and MOE (Ministry of Education) the Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Rundong Liu
- Department of Maternal and Child Health and MOE (Ministry of Education) the Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shuai Zhao
- Department of Maternal and Child Health and MOE (Ministry of Education) the Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ying Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430072, China
| | - Ranran Song
- Department of Maternal and Child Health and MOE (Ministry of Education) the Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
9
|
Zheng Y, Liu C, Chen J, Tang J, Luo J, Zou D, Tang Z, He J, Bai J. Integrated transcriptomic and biochemical characterization of the mechanisms governing stress responses in soil-dwelling invertebrate (Folsomia candida) upon exposure to dibutyl phthalate. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132644. [PMID: 37820532 DOI: 10.1016/j.jhazmat.2023.132644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
Dibutyl phthalate (DBP) is one of the most commonly utilized plasticizers and a frequently detected phthalic acid ester (PAE) compound in soil samples. However, the toxicological effects of DBP on soil-dwelling organisms remain poorly understood. This study employed a multi-biomarker approach to investigate the impact of DBP exposure on Folsomia candida's survival, reproduction, enzyme activity levels, and transcriptional profiles. Analyses of antioxidant biomarkers, including catalase (CAT) and glutathione S-transferase (GST), as well as detoxifying enzymes such as acetylcholinesterase (AChE), Cytochrome P450 (CYP450), and lipid peroxidation (LPO), revealed significant increases in CAT activity, GST levels, and CYP450 expression following treatment with various doses of DBP for 2, 4, 7, or 14 days. Additionally, LPO induction was observed along with significant AChE inhibition. In total, 3175 differentially expressed genes (DEGs) were identified following DBP treatment that were enriched in six Gene Ontology (GO) terms and 144 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, including 85 upregulated and 59 downregulated primarily associated with lipid metabolism, signal transduction, DNA repair, and cell growth and death. Overall these results provide foundational insights for further research into the molecular mechanisms underlying responses of soil invertebrates to DBP exposure.
Collapse
Affiliation(s)
- Yu Zheng
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China; Hunan Provincial Collaborative Innovation Center for Field Weeds Control, Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China.
| | - Can Liu
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| | - Jiayi Chen
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| | - Jianquan Tang
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| | - Jiali Luo
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| | - Di Zou
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| | - Zhen Tang
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| | - Jiali He
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| | - Jing Bai
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China.
| |
Collapse
|
10
|
Wang S, Ren GF, Guo K, Lin J, Zhao W, Qin YX. Butyl benzyl phthalate induced reproductive toxicity in the endoplasmic reticulum and oxidative stress in Brachionus plicatilis Müller, 1786. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115680. [PMID: 37984290 DOI: 10.1016/j.ecoenv.2023.115680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/27/2023] [Accepted: 11/10/2023] [Indexed: 11/22/2023]
Abstract
To study the adverse effects of butyl benzyl phthalate (BBP) on Brachionus plicatilis, rotifers were exposed to different BBP concentrations (0 [control], 0.001, 0.01, 0.1, and 1 mg/L). We measured the activities of the antioxidant enzymes superoxide dismutase, catalase, and reduced glutathione, which play a key role in detoxification, and the malondialdehyde content, which represents the level of lipid peroxidation. In addition, we investigated the effect of BBP on the submicroscopic structure and transcriptome of rotifer ovary cells. Our results showed that B. plicatilis exhibited a rapid oxidative stress response accompanied by a significant increase in superoxide dismutase enzyme activity. High BBP concentrations resulted in a significant decrease in malondialdehyde content, which indicated that BBP interferes with the lipid metabolism of rotifer cells. Our observations showed that the endoplasmic reticulum structure of rotifer ovary cells was severely damaged by BBP exposure. Transcriptomic data further demonstrated that oxidative stress and cellular sub-microstructural damage were associated with altered expression of functional genes related to rotifer redox regulation, biosynthetic processes, and cellular damage components. In conclusion, our study demonstrates that BBP triggers changes in antioxidant-related indicators in rotifers; this leads to activation of related genes and subsequent changes in intracellular signaling, which in turn triggers endoplasmic reticulum stress and ultimately leads to disruption of cell function and structure. These findings highlight the potential risks associated with BBP exposure and provide fundamental insights into its toxicological effects on marine invertebrates.
Collapse
Affiliation(s)
- Shan Wang
- School of Marine Science and Environment, Dalian Ocean University, Dalian 116023, PR China.
| | - Guan-Fang Ren
- School of Marine Science and Environment, Dalian Ocean University, Dalian 116023, PR China
| | - Kai Guo
- Animal Nutrition and Health Department, DSM, Shanghai 201203, PR China
| | - Jing Lin
- School of Marine Science and Environment, Dalian Ocean University, Dalian 116023, PR China
| | - Wen Zhao
- School of Marine Science and Environment, Dalian Ocean University, Dalian 116023, PR China
| | - Yu-Xue Qin
- School of Marine Science and Environment, Dalian Ocean University, Dalian 116023, PR China.
| |
Collapse
|
11
|
Wang H, Liu H, Zhang Y, Zhang L, Wang Q, Zhao Y. The toxicity of microplastics and their leachates to embryonic development of the sea cucumber Apostichopus japonicus. MARINE ENVIRONMENTAL RESEARCH 2023; 190:106114. [PMID: 37517918 DOI: 10.1016/j.marenvres.2023.106114] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/06/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023]
Abstract
Microplastic pollution has been widely detected across the global ocean, posing a major threat to a wide variety of marine biota. To date, the deleterious impacts of microplastics have predominantly been linked to their direct exposure, while the potential risks posed by the leachates emanating from microplastics have received comparatively less attention. Here, the toxicity of virgin plasticized polyvinyl chloride (PVC) microspheres and their leachates were evaluated on the embryo-larval development of sea cucumber Apostichopus japonicus using an in-vitro assay. Results showed that a significant toxic effect of both PVC microspheres and their leachates on the embryo development and larval growth of sea cucumbers follows a dose-dependent and time-dependent pattern. Nonetheless, the toxicity of PVC leachates surpasses that of the microspheres themselves. Abnormal developmental phenotypes, such as aberrant gastrulation, misaligned mesenchymal cells, and delayed arm development, were also observed in embryos and larvae treated with PVC. Further chemical analyses of PVC microspheres and leachates revealed the existence of five distinct phthalate esters (PAEs), with DIBP (diisobutyl phthalate) and DBP (dibutyl phthalate) exhibiting higher concentrations in the PVC leachates. This finding suggests that the elevated toxicity of plastic leachate may be attributed to the leaching of phthalate additives from the plastic particles.
Collapse
Affiliation(s)
- Haona Wang
- Ocean School, Yantai University, Yantai, 264005, PR China
| | - Hui Liu
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Yanying Zhang
- Ocean School, Yantai University, Yantai, 264005, PR China
| | - Lijie Zhang
- Ocean School, Yantai University, Yantai, 264005, PR China
| | - Qing Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China.
| | - Ye Zhao
- Ocean School, Yantai University, Yantai, 264005, PR China.
| |
Collapse
|
12
|
Li Y, Yan B, Wu Y, Peng Q, Wei Y, Chen Y, Zhang Y, Ma N, Yang X, Ma P. Ferroptosis participates in dibutyl phthalate-aggravated allergic asthma in ovalbumin-sensitized mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114848. [PMID: 37018853 DOI: 10.1016/j.ecoenv.2023.114848] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
Dibutyl phthalate (DBP), used as a plasticizer, is of wide concern as an environmental pollutant since it has certain immunotoxicity. Although there is growing evidence supporting a link between DBP exposure and allergic airway inflammation, there is less information concerned with whether the ferroptosis pathway is involved in DBP-aggravated allergic asthma in ovalbumin (OVA)-sensitized mice. This study aimed to investigate the role and underlying mechanisms of ferroptosis in DBP-exposed allergic asthmatic mice. Balb/c mice were orally exposed to 40 mg/kg-1 DBP for 28 days, followed by sensitization with OVA and seven consecutive challenges with nebulized OVA. We analyzed airway hyperresponsiveness (AHR), immunoglobulins, inflammation and pulmonary histopathology, to investigate whether DBP exacerbates allergic asthma in OVA-induced mice. We also measured the biomarkers of ferroptosis (Fe2+, GPX4, PTGS2), proteins related to the ferroptosis pathway (VEGF, IL-33, HMGB1, SLC7A11, ALOX15, PEBP1), and indices of lipid peroxidation (ROS, Lipid ROS, GSH, MDA, 4-HNE), to explore the role of ferroptosis in DBP+OVA mice. Finally, we used ferrostatin-1 (Fer-1) as an antagonist against the harmful effects of DBP. The results showed that, DBP+OVA mice had a significant increase in AHR, airway wall remodeling and airway inflammation. Further, we showed that DBP aggravated allergic asthma via ferroptosis and lipid peroxidation, and that Fer-1 inhibited ferroptosis and alleviated the pulmonary toxicity of DBP. These results suggest that ferroptosis participates in the exacerbation of allergic asthma resulting from oral exposure to DBP, highlighting a novel pathway for the connection between DBP and allergic asthma.
Collapse
Affiliation(s)
- Yan Li
- Xianning Engineering Research Center for Healthy Environment, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, PR China
| | - Biao Yan
- Xianning Engineering Research Center for Healthy Environment, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, PR China
| | - Yang Wu
- Xianning Engineering Research Center for Healthy Environment, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, PR China
| | - Qi Peng
- Xianning Engineering Research Center for Healthy Environment, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, PR China
| | - Yaolu Wei
- Xianning Engineering Research Center for Healthy Environment, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, PR China
| | - Yenan Chen
- Xianning Engineering Research Center for Healthy Environment, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, PR China
| | - Yuping Zhang
- Xianning Engineering Research Center for Healthy Environment, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, PR China
| | - Ning Ma
- Xianning Engineering Research Center for Healthy Environment, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, PR China
| | - Xu Yang
- Xianning Engineering Research Center for Healthy Environment, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, PR China; Section of Environmental Biomedicine, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Ping Ma
- Xianning Engineering Research Center for Healthy Environment, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, PR China.
| |
Collapse
|
13
|
Wang Q, Yao X, Jiang N, Zhang J, Liu G, Li X, Wang C, Yang Z, Wang J, Zhu L, Wang J. Environmentally relevant concentrations of butyl benzyl phthalate triggered oxidative stress and apoptosis in adult zebrafish (Danio rerio) liver: Combined analysis at physiological and molecular levels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160109. [PMID: 36370777 DOI: 10.1016/j.scitotenv.2022.160109] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
Butyl benzyl phthalate (BBP), a typical phthalate plasticizer, is frequently detected in aquatic environments, but its possible effects on fish liver are unknown. In this study, adult zebrafish were exposed to 5-500 μg/L BBP and cultured for 28 days. The toxicity mechanism of environmentally relevant concentrations of BBP in the liver was explored using integrated biomarker response (IBR), molecular docking, and histopathological analysis, based on the tests of oxidative stress, apoptosis, and tissue damage, respectively. The results revealed that exposure to 500 μg/L BBP caused lipid peroxidation and DNA damage and induced inflammatory responses in the liver and intestinal tissues. The accumulation of reactive oxygen species (ROS) is the primary manifestation of BBP toxicity and is accompanied by changes in the activities of antioxidant and detoxification enzymes. Notably, the pro-apoptotic genes (p53 and caspase-3) were still significantly upregulated in the 50 μg/L and 500 μg/L treatment groups on day 28. Moreover, BBP interfered with apoptosis by forming a stable complex with apoptosis proteins (P53 and Caspase-3). Our findings are helpful for understanding the toxicity mechanisms of BBP, which could further promote the assessment of the potential environmental risks of BBP.
Collapse
Affiliation(s)
- Qian Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, PR China
| | - Xiangfeng Yao
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, PR China
| | - Nan Jiang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712000, PR China
| | - Juan Zhang
- ShanDong Institute for Product Quality Inspection, Jinan 250100, PR China
| | | | - Xianxu Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, PR China
| | - Can Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, PR China
| | - Zhongkang Yang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, PR China
| | - Jinhua Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, PR China
| | - Lusheng Zhu
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, PR China
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, PR China.
| |
Collapse
|
14
|
Menegola E, Battistoni M, Metruccio F, Di Renzo F. Advantages and disadvantages of the use of Xenopus laevis embryos and Zebra fish as alternative methods to assess teratogens. CURRENT OPINION IN TOXICOLOGY 2023. [DOI: 10.1016/j.cotox.2023.100387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
15
|
Feng S, Jiang P, Zhang P, Lu M, Cui Z, Pan J, Pan L. Synthesis and evaluation of epoxidized vegetable oleic acid as a novel environmental benign plasticizer for polyvinyl chloride. J Appl Polym Sci 2022. [DOI: 10.1002/app.53331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shan Feng
- R&D Department Key Laboratory of Synthesis Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University Wuxi China
| | - Pingping Jiang
- R&D Department Key Laboratory of Synthesis Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University Wuxi China
| | - Pingbo Zhang
- R&D Department Key Laboratory of Synthesis Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University Wuxi China
| | - Minjia Lu
- R&D Department Key Laboratory of Synthesis Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University Wuxi China
| | - Zhixuan Cui
- R&D Department Key Laboratory of Synthesis Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University Wuxi China
| | - Jie Pan
- R&D Department Wuxi Jiasheng High‐tech Modified Materials Co., Ltd. Wuxi China
| | - Lingen Pan
- R&D Department Wuxi Jiasheng High‐tech Modified Materials Co., Ltd. Wuxi China
| |
Collapse
|
16
|
Lee JH, Park SH, Ryou C, Gye MC. Phthalate plasticizer decreases the prion-like protein doppel essential for structural integrity and function of spermatozoa. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 246:114159. [PMID: 36215882 DOI: 10.1016/j.ecoenv.2022.114159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Di-n-butyl phthalate (DBP), a well-known endocrine disruptor, causes male reproductive dysfunction. To understand the underlying mechanisms, we performed histological, endocrinological, and biochemical analyses and assessed the expression of genes involved in spermatogenesis and sperm function according to OECD test guideline 407. Following 28 days of administration of the lowest observed adverse effect level dose of DBP to mice, no significant changes in body weight, testis and epididymis weights and histology, serum testosterone level, or testicular daily sperm production were found. Nonetheless, the motility of the epididymal sperm of the DBP group was significantly decreased together with an increase in the incidence of bent tails and abnormal heads. In the testes of the DBP group, lipid peroxidation (LPO) level was significantly increased and testicular Bcl-2 mRNA level was significantly decreased together with an increase in the Bax/Bcl-2 mRNA ratio. In the testes of the DBP group, levels of Prnd mRNA and protein and Pou4f1 mRNA, an activator of the Prnd promotor, were significantly decreased. Of note, prion-like protein doppel (PRND) was significantly decreased together with decreased PRND immunoreactivity in the head, midpiece, and tail of sperm. In the testes of the DBP group, levels of Sox9, Sgp1, and Sgp2 mRNA, which are functional Sertoli cell markers, were significantly decreased. Level of Amh mRNA, a Sertoli cell immaturity marker, was significantly increased together with that of Inha mRNA, suggesting deregulation of the brain-gonadal axis. Together, our findings suggest that DBP at present dosage may potentiate LPO generation and Sertoli cell immaturity via downregulation of Sox9 and disruption of the Pou4f1-Prnd gene network in post-meiotic germ cells without visible changes in spermatogenesis or testosterone level. This may result in structural and functional abnormalities in spermatozoa. Additionally, our findings suggest that assessment of the male reproductive toxicity of phthalate ester plasticizers based on conventional OECD test guidelines should be reconsidered.
Collapse
Affiliation(s)
- Jae-Hyeon Lee
- Department of Life Science, Institute for Natural Sciences and Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Republic of Korea
| | - Seung Hyun Park
- Department of Life Science, Institute for Natural Sciences and Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Republic of Korea
| | - Chongsuk Ryou
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Myung Chan Gye
- Department of Life Science, Institute for Natural Sciences and Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
17
|
Whole genome sequencing exploitation analysis of dibutyl phthalate by strain Stenotrophomonas acidaminiphila BDBP 071. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
18
|
Li X, Zhang J, Jin Y, Liu Y, Li N, Wang Y, Du C, Xue Z, Zhang N, Chen Q. Effect of pH-Dependent Homo/Heteronuclear CAHB on Adsorption and Desorption Behaviors of Ionizable Organic Compounds on Carbonaceous Materials. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12118. [PMID: 36231423 PMCID: PMC9566536 DOI: 10.3390/ijerph191912118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Herein, the adsorption/desorption behaviors of benzoic acid (BA) and phthalic acid (PA) on three functionalized carbon nanotubes (CNTs) at various pH were investigated, and the charge-assisted H-bond (CAHB) was verified by DFT and FTIR analyses to play a key role. The results indicated that the adsorption order of BA and PA on CNTs was different from Kow of that at pH 2.0, 4.0, and 7.0 caused by the CAHB interaction. The strength of homonuclear CAHB (≥78.96 kJ·mol-1) formed by BA/PA on oxidized CNTs is stronger than that of heteronuclear CAHB formed between BA/PA and amino-functionalized CNTs (≤51.66 kJ·mol-1). Compared with the heteronuclear CAHB (Hysteresis index, HI ≥ 1.47), the stronger homonuclear CAHB leads to clearly desorption hysteresis (HI ≥ 3.51). Additionally, the contribution of homonuclear CAHB (≥52.70%) was also greater than that of heteronuclear CAHB (≤45.79%) at pH 7.0. These conclusions were further confirmed by FTIR and DFT calculation, and the crucial evidence of CAHB formation in FTIR was found. The highlight of this work is the identification of the importance and difference of pH-dependent homonuclear/heteronuclear CAHB on the adsorption and desorption behaviors of ionizable organic compounds on carbonaceous materials, which can provide a deeper understanding for the removal of ionizable organic compounds by designed carbonaceous materials.
Collapse
Affiliation(s)
- Xiaoyun Li
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi’an 710119, China
- International Joint Research Centre of Shaanxi Province for Pollutants Exposure and Eco-Environmental Health, Xi’an 710119, China
| | - Jinlong Zhang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi’an 710119, China
| | - Yaofeng Jin
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi’an 710119, China
| | - Yifan Liu
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi’an 710119, China
| | - Nana Li
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi’an 710119, China
| | - Yue Wang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi’an 710119, China
| | - Cong Du
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi’an 710119, China
| | - Zhijing Xue
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi’an 710119, China
| | - Nan Zhang
- Environmental Protection Department of Mahe Town, Yuyang District, Yulin 719000, China
| | - Qin Chen
- Northwest Land and Resource Research Center, Shaanxi Normal University, Xi’an 710119, China
| |
Collapse
|