1
|
Zhang S, Yang M, Xia X, Gu Q, Gao Q, Wang J, Liu S, Li X, Li Y, McDowell WH, Yang Z. Ecological Differentiation Among Nitrous Oxide Reducers Enhances Temperature Effects on Riverine N 2O Emissions. GLOBAL CHANGE BIOLOGY 2025; 31:e70096. [PMID: 39976081 DOI: 10.1111/gcb.70096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 01/26/2025] [Accepted: 01/29/2025] [Indexed: 02/21/2025]
Abstract
Nitrous oxide (N2O) reductase, the sole natural microbial sink for N2O, exists in two microbial clades: nosZI and nosZII. Although previous studies have explored inter-clade ecological differentiation, the intra-clade variations and their implications for N2O dynamics remain understudied. This study investigated both inter- and intra-clade ecological differentiation among N2O reducers, the drivers influencing these patterns, and their effects on N2O emissions across continental-scale river systems. The results showed that both nosZI and nosZII community turnovers were associated with similar key environmental factors, particularly total phosphorus (TP), but these variables explained a larger proportion of variation in the nosZI community. The influence of mean annual temperature (MAT) on community composition increased for more widespread N2O-reducing taxa. We identified distinct ecological clusters within each clade of N2O reducers and observed identical ecological clustering patterns across both clades. These clusters were primarily characterized by distinct MAT regimes, coarse sediment texture as well as low TP levels, and high abundance of N2O producers, with MAT-related clusters constituting predominant proportions. Intra-clade ecological differentiation was a crucial predictor of N2O flux and reduction efficiency. Although different ecological clusters showed varying or even contrasting associations with N2O dynamics, the shared ecological clusters across clades exhibited similar trends. Low-MAT clusters in both the nosZI and nosZII communities were negatively correlated with denitrification-normalized N2O flux and the N2O:(N2O + N2) ratio, whereas high-MAT clusters showed positive correlations. This contrasting pattern likely stems from low-MAT clusters being better adapted to eutrophic conditions and their more frequent co-occurrence with N2O-producing genes. These findings advance our understanding of the distribution and ecological functions of N2O reducers in natural ecosystems, suggesting that warming rivers may have decreased N2O reduction efficiency and thereby amplify temperature-driven emissions.
Collapse
Affiliation(s)
- Sibo Zhang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, China
| | - Meijuan Yang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, China
| | - Xinghui Xia
- Key Laboratory of Water and Sediment Sciences of Ministry of Education/State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Qinyuan Gu
- Key Laboratory of Water and Sediment Sciences of Ministry of Education/State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Qun Gao
- Key Laboratory of Water and Sediment Sciences of Ministry of Education/State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Junfeng Wang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education/State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Shaoda Liu
- Key Laboratory of Water and Sediment Sciences of Ministry of Education/State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Xiaokang Li
- School of Environmental and Material Engineering, Yantai University, Shandong, China
| | - Yingjie Li
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, China
| | - William H McDowell
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, New Hampshire, USA
| | - Zhifeng Yang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, China
| |
Collapse
|
2
|
Wu S, Jeyakumar P, Feng Y, Sun H, Feng Y, Jiang J, Shi W. How does forest fine root litter affect the agricultural soil NH 3 and N 2O losses? JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 374:124099. [PMID: 39799777 DOI: 10.1016/j.jenvman.2025.124099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
In farmland shelterbelt systems, the decomposition and/or apoptosis of forest fine root litter could affect farmland soil properties at the tree-crop interface, particularly the soil nitrogen (N) cycling. However, how fine root litter affect the ammonia (NH3) and nitrous oxide (N2O) losses from farmland soil and the crop production is little known. A soil column experiment covering a whole rice season was conducted to evaluate the dynamics aforesaid in response to fine root litter of Populus (RP) and Metasequoia glyptostroboides (RM) with 0 and 240 kg ha-1 N fertilizer input. Both RP and RM had minimal impact on NH3 and N2O emissions from soils without N input. At 240 kg N ha-1 input, RP significantly (p < 0.05) increased total NH3 volatilization (including yield-scaled NH3 volatilization and emission factor) by 37.1%, while RM significantly (p < 0.05) decreased it by 18.1%. Both fine root litter significantly (p < 0.05) reduced the N2O emissions from paddy soil receiving 240 kg N ha-1 by 22.7-27.1%. The reduction of N2O emission in N240 + RM was primarily attributed to higher topsoil ammonium-N but lower nitrate-N contents that indicating a reduced nitrification rate during the mid-season drainage stage. In addition, the decreases in soil AOA amoA (-39.4%) and nirS (-23.7%) gene copies explained the mitigating effect of RP on N2O emission. Regardless of N fertilizer application or not, there was no statistically significant difference in rice grain yield between treatments with and without fine root litter, although RM reduced grain yield by 11.2-14.9% compared to treatments without fine root litter. In conclusion, the impact of fine root litter on N emissions via NH3 and N2O depends on both N input rates and fine root types. RM simultaneously reduce reactive farmland soil N losses via NH3 and N2O in the tree-crop interface soils with N input.
Collapse
Affiliation(s)
- Si Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Soil and Water Conservation, Nanjing Forestry University, Nanjing, 210037, China.
| | - Paramsothy Jeyakumar
- Environmental Sciences, School of Agriculture and Environment, Massey University, Palmerston North, 4442, New Zealand.
| | - Yuanyuan Feng
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Soil and Water Conservation, Nanjing Forestry University, Nanjing, 210037, China.
| | - Haijun Sun
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Soil and Water Conservation, Nanjing Forestry University, Nanjing, 210037, China.
| | - Yanfang Feng
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Jiang Jiang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Soil and Water Conservation, Nanjing Forestry University, Nanjing, 210037, China.
| | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| |
Collapse
|
3
|
Gong Y, Li X, Yi W, Delgado-Baquerizo M, Zhou G, Li S, Jiang H, Ye C, Zhang Q. Extreme rainfall events eliminate the response of greenhouse gas fluxes to hydrological alterations and fertilization in a riparian ecosystem. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122945. [PMID: 39418700 DOI: 10.1016/j.jenvman.2024.122945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/07/2024] [Accepted: 10/13/2024] [Indexed: 10/19/2024]
Abstract
Riparian ecosystems are essential carbon dioxide (CO2) sources, which considerably promotes climate warming. However, the other greenhouse gas fluxes (GHGs), such as methane (CH4) and nitrous oxide (N2O), in the riparian ecosystems have not been well studied, and it remains unclear whether and how these GHG fluxes respond to extreme weather, fertilization and hydrological alterations associated with reservoir management. Here, we assessed the impacts of hydrological alterations (i.e., flooding frequency) and fertilization (nitrogen and/or phosphorus) induced by human activities (hydroengineering construction and agricultural activities) on GHG fluxes, and further investigated the underlying mechanisms in two contrasting years (normal vs. extreme rainfall years) in a reservoir riparian zone dominated by grasses. The significant combined effects of extreme rainfall events and human activities (hydrological alterations and fertilization) on the GHGs were observed. Continuous flooding reduced CO2 emissions by 24% but increased CH4 emissions by ∼4 times in a normal rainfall year. In addition, nitrogen fertilization promoted CO2 emissions by 37%. However, these phenomena were not observed in the year with extreme rainfall events, which made the flooding levels homogeneous across the treatments. Furthermore, we found that CO2 fluxes were driven by the soil moisture, nutrient content, aboveground biomass, and root carbon content, while CH4 and N2O fluxes were merely driven by the soil properties (pH, moisture, and nutrient content). This study provides valuable insights into the crucial role of extreme rainfall events, hydrological alteration, and fertilization in regulating GHG fluxes in riparian ecosystems, as well as supports the integration of these changes in GHG emission models.
Collapse
Affiliation(s)
- Yu Gong
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan, 430074, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, the Chinese Academy of Sciences & Hubei Province, Wuhan, 430074, China
| | - Xiaoling Li
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, College of Biological and Pharmaceutical Science, China Three Gorges University, Yichang, Hubei, 443002, China; Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan, 430074, China
| | - Wenxiong Yi
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, College of Biological and Pharmaceutical Science, China Three Gorges University, Yichang, Hubei, 443002, China
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico. Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Av. Reina Mercedes 10, E-41012, Sevilla, Spain
| | - Guiyao Zhou
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico. Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Av. Reina Mercedes 10, E-41012, Sevilla, Spain; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany
| | - Siyue Li
- School of Environmental Ecology and Biological Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Hao Jiang
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan, 430074, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, the Chinese Academy of Sciences & Hubei Province, Wuhan, 430074, China
| | - Chen Ye
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan, 430074, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, the Chinese Academy of Sciences & Hubei Province, Wuhan, 430074, China; Key Laboratory of Lake and Watershed Science for Water Security, Chinese Academy of Sciences, Wuhan 430074, China.
| | - Quanfa Zhang
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan, 430074, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, the Chinese Academy of Sciences & Hubei Province, Wuhan, 430074, China
| |
Collapse
|
4
|
Zhao J, Jiang P, Shen T, Zhang R, Zhang D, Zhang N, Ting N, Ding K, Yang B, Tan C, Yu Z. Data-driven assessment of soil total nitrogen on the Qinghai-Tibet Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169993. [PMID: 38215840 DOI: 10.1016/j.scitotenv.2024.169993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
The investigation of soil total nitrogen (STN) holds significant importance in the preservation and sustainability of Earth's ecosystems. The Qinghai-Tibet Plateau (QTP), renowned as the world's most expansive plateau and characterized by its exceptionally delicate ecosystem, demands an in-depth exploration of its STN content. In this study, we use a machine learning approach to extrapolate point-scale measured STN stocks to the entire QTP and calculated STN storage from 0 to 2 m. Our results show that the XGB algorithm performs well in modeling STN despite variations in simulation accuracy for specific depth ranges. The spatial distribution of STN across the QTP exhibits pronounced heterogeneity, especially for the 0-50 cm soil layer, with relatively higher STN stocks in the southeast and lower stocks in the northwest of QTP. The vertical distribution reveals a gradual decrease in STN storage with increasing depth. The 0-50 cm soil layer holds the highest STN stocks, averaging around 0.78 kg/m2, which is almost the sum of STN stocks in the 50-100 cm and 100-200 cm soil layers. Meanwhile, the STN stocks are smaller in permafrost zone than that in non-permafrost zone. We also investigate the impact factors that control the spatiotemporal distribution of STN. It indicates that vegetation, precipitation, temperature, and elevation are the major factors for STN distribution, while physical properties of the soil have a relatively smaller impact. These findings are crucial for understanding the distribution and evolution of STN on the QTP.
Collapse
Affiliation(s)
- Jiahui Zhao
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China; College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Peng Jiang
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China; College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China; Key Laboratory of Natural Resource Coupling Process and Effects, Beijing 100055, China; The Middle Reaches of Yarlung Zangbo River, Natural Resources, Observation and Research Station of Tibet Autonomous Region, Research Center of Applied Geology of China Geological Survey, Chengdu 610036, China; Joint International Research Laboratory of Global Change and Water Cycle, Hohai University, Nanjing 210098, China.
| | - Tongqing Shen
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China; College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Rongrong Zhang
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China; Key Laboratory of Natural Resource Coupling Process and Effects, Beijing 100055, China; Joint International Research Laboratory of Global Change and Water Cycle, Hohai University, Nanjing 210098, China
| | - Dawei Zhang
- China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Nana Zhang
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Nie Ting
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Kunqi Ding
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Bin Yang
- The Middle Reaches of Yarlung Zangbo River, Natural Resources, Observation and Research Station of Tibet Autonomous Region, Research Center of Applied Geology of China Geological Survey, Chengdu 610036, China
| | - Changhai Tan
- Research Center of Applied Geology of China Geological Survey, Chengdu 610036, China
| | - Zhongbo Yu
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China; College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu 210098, China; Joint International Research Laboratory of Global Change and Water Cycle, Hohai University, Nanjing 210098, China
| |
Collapse
|
5
|
Cao H, Ding R, Du T, Kang S, Tong L, Chen J, Gao J. A meta-analysis highlights the cross-resistance of plants to drought and salt stresses from physiological, biochemical, and growth levels. PHYSIOLOGIA PLANTARUM 2024; 176:e14282. [PMID: 38591354 DOI: 10.1111/ppl.14282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 04/10/2024]
Abstract
In nature, drought and salt stresses often occur simultaneously and affect plant growth at multiple levels. However, the mechanisms underlying plant responses to drought and salt stresses and their interactions are still not fully understood. We performed a meta-analysis to compare the effects of drought, salt, and combined stresses on plant physiological, biochemical, morphological and growth traits, analyze the different responses of C3 and C4 plants, as well as halophytes and non-halophytes, and identify the interactive effects on plants. There were numerous similarities in plant responses to drought, salt, and combined stresses. C4 plants had a more effective antioxidant defense system, and could better maintain above-ground growth. Halophytes could better maintain photosynthetic rate (Pn) and relative water content (RWC), and reduce growth as an adaptation strategy. The responses of most traits (Pn, RWC, chlorophyll content, soluble sugar content, H2O2 content, plant dry weight, etc.) to combined stress were less-than-additive, indicating cross-resistance rather than cross-sensitivity of plants to drought and salt stresses. These results are important to improve our understanding of drought and salt cross-resistance mechanisms and further induce resistance or screen-resistant varieties under stress combination.
Collapse
Affiliation(s)
- Heli Cao
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, China
- State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing, China
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture, Wuwei, Gansu Province, China
| | - Risheng Ding
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, China
- State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing, China
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture, Wuwei, Gansu Province, China
| | - Taisheng Du
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, China
- State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing, China
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture, Wuwei, Gansu Province, China
| | - Shaozhong Kang
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, China
- State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing, China
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture, Wuwei, Gansu Province, China
| | - Ling Tong
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, China
- State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing, China
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture, Wuwei, Gansu Province, China
| | - Jinliang Chen
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, China
- State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing, China
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture, Wuwei, Gansu Province, China
| | - Jia Gao
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, China
- State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing, China
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture, Wuwei, Gansu Province, China
| |
Collapse
|
6
|
Lin Z, Shi L, Wei X, Han B, Peng C, Yao Z, He Y, Xiao Q, Lu X, Deng Y, Zhou H, Liu K, Shao X. Soil properties and fungal community jointly explain N 2O emissions following N and P enrichment in an alpine meadow. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123344. [PMID: 38215869 DOI: 10.1016/j.envpol.2024.123344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/14/2024]
Abstract
Nutrient enrichment, such as nitrogen (N) and phosphorus (P), typically affects nitrous oxide (N2O) emissions in terrestrial ecosystems, predominantly via microbial nitrification and denitrification processes in the soil. However, the specific impact of soil property and microbial community alterations under N and P enrichment on grassland N2O emissions remains unclear. To address this, a field experiment was conducted in an alpine meadow of the northeastern Qinghai-Tibetan Plateau. This study aimed to unravel the mechanisms underlying N and P enrichment effects on N2O emissions by monitoring N2O fluxes, along with analyzing associated microbial communities and soil physicochemical properties. We observed that N enrichment individually or in combination with P enrichment, escalated N2O emissions. P enrichment dampened the stimulatory effect of N enrichment on N2O emissions, indicative of an antagonistic effect. Structural equation modeling (SEM) revealed that N enrichment enhanced N2O emissions through alterations in fungal community composition and key soil physicochemical properties such as pH, ammonium nitrogen (NH4+-N), available phosphorus (AP), microbial biomass carbon (MBC), and microbial biomass nitrogen (MBN)). Notably, our findings demonstrated that N2O emissions were significantly more influenced by fungal activities, particularly genera like Fusarium, rather than bacterial processes in response to N enrichment. Overall, the study highlights that N enrichment intensifies the role of fungal attributes and soil properties in driving N2O emissions. In contrast, P enrichment exhibited a non-significant effect on N2O emissions, which highlights the critical role of the fungal community in N2O emissions responses to nutrient enrichments in alpine grassland ecosystems.
Collapse
Affiliation(s)
- Zhenrong Lin
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Lina Shi
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Xiaoting Wei
- Institute of Ecological Protection and Restoration, Chinese Academy of Forestry, Beijing, 100091, PR China
| | - Bing Han
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Cuoji Peng
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Zeying Yao
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, PR China; College of Practaculture, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Yicheng He
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Qing Xiao
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Xinmin Lu
- Tianshui Institute of Pomology, Tianshui, 741002, PR China
| | - Yanfang Deng
- Qilian Mountain National Park Qinghai Service Guarantee Center, Xining, 810001, PR China
| | - Huakun Zhou
- Northwest Institute of Plateau Biology, Chinese Academy of Science, Key Laboratory of Restoration Ecology of Cold Area in Qinghai Province, Xining, 810001, PR China
| | - Kesi Liu
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Xinqing Shao
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, PR China.
| |
Collapse
|
7
|
Wang Z, Xing A, Shen H. Effects of nitrogen addition on the combined global warming potential of three major soil greenhouse gases: A global meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:121848. [PMID: 37244533 DOI: 10.1016/j.envpol.2023.121848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/01/2023] [Accepted: 05/18/2023] [Indexed: 05/29/2023]
Abstract
Increased nitrogen (N) deposition has a great impact on soil greenhouse gas (GHG) emissions, and numerous studies have revealed the individual effects of N addition on three major GHGs (CO2, CH4, and N2O). Nevertheless, quantitative evaluation of the effects of N addition on the global warming potential (GWP) of GHGs based on simultaneous measurements is needed not only to better understand the comprehensive effect of N deposition on GHGs but also for precise estimation of ecosystem GHG fluxes in response to N deposition. Here, we conducted a meta-analysis using a dataset with 124 simultaneous measurements of the three major GHGs from 54 studies to assess the effects of N addition on the combined global warming potential (CGWP) of these soil GHGs. The results showed that the relative sensitivity of the CGWP to N addition was 0.43%/kg N ha-1 yr-1, indicating an increase in the CGWP. Among the ecosystems studied, wetlands are considerable GHG sources with the highest relative sensitivity to N addition. Overall, CO2 contributed the most to the N addition-induced CGWP change (72.61%), followed by N2O (27.02%) and CH4 (0.37%), but the contributions of the three GHGs varied across ecosystems. Moreover, the effect size of the CGWP had a positive relationship with N addition rate and mean annual temperature and a negative relationship with mean annual precipitation. Our findings suggest that N deposition may influence global warming from the perspective of the CGWP of CO2, CH4, and N2O. Our results also provide reference values that may reduce uncertainties in future projections of the effects of N deposition on GHGs.
Collapse
Affiliation(s)
- Zixuan Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Aijun Xing
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Haihua Shen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
8
|
Zhang X, Liu M, Zheng F, Dong Y, Hua Y, Chu J, He M, Dai X. Optimizing sowing patterns in winter wheat can reduce N 2O emissions and improve grain yield and NUE by enhancing N uptake. FRONTIERS IN PLANT SCIENCE 2023; 14:1176293. [PMID: 37324671 PMCID: PMC10264632 DOI: 10.3389/fpls.2023.1176293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/04/2023] [Indexed: 06/17/2023]
Abstract
Increasing nitrogen (N) input is essential to satisfy the rising global wheat demand, but this increases nitrous oxide (N2O) emissions, thereby exacerbating global climate change. Higher yields accompanied by reduced N2O emissions are essential to synergistically reduce greenhouse warming and ensure global food security. In this study, we conducted a trial using two sowing patterns (conventional drilling sowing [CD] and wide belt sowing [WB], with seedling belt widths of 2-3 and 8-10 cm, respectively) with four N rates (0, 168, 240, and 312 kg ha-1, hereafter N0, N168, N240, and N312, respectively) during the 2019-2020 and 2020-2021 growing seasons. We investigated the impacts of growing season, sowing pattern, and N rate on N2O emissions, N2O emissions factors (EFs), global warming potential (GWP), yield-scaled N2O emissions, grain yield, N use efficiency (NUE), plant N uptake and soil inorganic N concentrations at jointing, anthesis, and maturity. The results showed that sowing pattern and N rate interactions influenced the N2O emissions markedly. Compared to CD, WB significantly reduced cumulative N2O emissions, N2O EFs, GWP, and yield-scaled N2O emissions for N168, N240, and N312, with the largest reduction seen at N312. Furthermore, WB markedly improved plant N uptake and reduced soil inorganic N compared to CD at each N rate. Correlation analyses indicated that WB mitigated the N2O emissions at various N rates mainly through efficient N uptake and reduced soil inorganic N. The highest grain yield occurred under a combination of WB and N312, under which the yield-scaled N2O emissions were equal to the local management (sowing with CD at N240). In conclusion, WB sowing could synergistically decrease N2O emissions and obtain high grain yields and NUEs, especially at higher N rates.
Collapse
Affiliation(s)
- Xiu Zhang
- College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, China
| | - Manyu Liu
- College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, China
- Agricultural and Rural Bureau of Mengyin County, Linyi, Shandong, China
| | - Feina Zheng
- College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, China
| | - Yuanjie Dong
- College of Resources and Environment, Shandong Agricultural University, Tai’an, Shandong, China
| | - Yifan Hua
- College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, China
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jinpeng Chu
- College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, China
| | - Mingrong He
- College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, China
| | - Xinglong Dai
- College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, China
| |
Collapse
|
9
|
Hao Z, Dong Z, Han S, Zhang A. Effects of biochar and arbuscular mycorrhizal fungi on winter wheat growth and soil N 2O emissions in different phosphorus environments. FRONTIERS IN PLANT SCIENCE 2022; 13:1069627. [PMID: 36589067 PMCID: PMC9795251 DOI: 10.3389/fpls.2022.1069627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
INTRODUCTION Promoting crop growth and regulating denitrification process are two main ways to reduce soil N2O emissions in agricultural systems. However, how biochar and arbuscular mycorrhizal fungi (AMF) can regulate crop growth and denitrification in soils with different phosphorus (P) supplies to influence N2O emission remains largely unknown. METHOD Here, an eight-week greenhouse and one-year field experiments biochar and/or AMF (only in greenhouse experiment) additions under low and high P environments were conducted to characterize the effects on wheat (Triticum aestivum L.) growth and N2O emission. RESULTS With low P supply, AMF addition decreased leaf Mn concentration (indicates carboxylate-releasing P-acquisition strategies), whereas biochar addition increased leaf Mn concentration, suggesting biochar and AMF addition regulated root morphological and physiological traits to capture P. Compared with low P supply, the high P significantly promoted wheat growth (by 16-34%), nutrient content (by 33-218%) and yield (by 33-41%), but suppressed soil N2O emissions (by 32-95%). Biochar and/or AMF addition exhibited either no or negative effects on wheat biomass and nutrient content in greenhouse, and biochar addition promoted wheat yield only under high P environment in field. However, biochar and/or AMF addition decreased soil N2O emissions by 24-93% and 32% in greenhouse and field experiments, respectively. This decrease was associated mainly with the diminished abundance of N2O-producing denitrifiers (nirK and nirS types, by 17-59%, respectively) and the increased abundance of N2O-consuming denitrifiers (nosZ type, by 35-65%), and also with the increased wheat nutrient content, yield and leaf Mn concentration. DISCUSSION These findings suggest that strengthening the plant-soil-microbe interactions can mitigate soil N2O emissions via manipulating plant nutrient acquisition and soil denitrification.
Collapse
|
10
|
Zhai J, Luo B, Li A, Dong H, Jin X, Wang X. Unlocking All-Solid Ion Selective Electrodes: Prospects in Crop Detection. SENSORS (BASEL, SWITZERLAND) 2022; 22:5541. [PMID: 35898054 PMCID: PMC9331676 DOI: 10.3390/s22155541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
This paper reviews the development of all-solid-state ion-selective electrodes (ASSISEs) for agricultural crop detection. Both nutrient ions and heavy metal ions inside and outside the plant have a significant influence on crop growth. This review begins with the detection principle of ASSISEs. The second section introduces the key characteristics of ASSISE and demonstrates its feasibility in crop detection based on previous research. The third section considers the development of ASSISEs in the detection of corps internally and externally (e.g., crop nutrition, heavy metal pollution, soil salinization, N enrichment, and sensor miniaturization, etc.) and discusses the interference of the test environment. The suggestions and conclusions discussed in this paper may provide the foundation for additional research into ion detection for crops.
Collapse
Affiliation(s)
- Jiawei Zhai
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.Z.); (B.L.); (A.L.); (H.D.); (X.J.)
- College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China
| | - Bin Luo
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.Z.); (B.L.); (A.L.); (H.D.); (X.J.)
| | - Aixue Li
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.Z.); (B.L.); (A.L.); (H.D.); (X.J.)
| | - Hongtu Dong
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.Z.); (B.L.); (A.L.); (H.D.); (X.J.)
| | - Xiaotong Jin
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.Z.); (B.L.); (A.L.); (H.D.); (X.J.)
| | - Xiaodong Wang
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.Z.); (B.L.); (A.L.); (H.D.); (X.J.)
| |
Collapse
|
11
|
Responses of Soil N2O Emission and CH4 Uptake to N Input in Chinese Forests across Climatic Zones: A Meta-Study. ATMOSPHERE 2022. [DOI: 10.3390/atmos13071145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Enhanced nitrogen (N) deposition has shown significant impacts on forest greenhouse gas emissions. Previous studies have suggested that Chinese forests may exhibit stronger N2O sources and dampened CH4 sinks under aggravated N saturation. To gain a common understanding of the N effects on forest N2O and CH4 fluxes, many have conducted global-scale meta-analyses. However, such effects have not been quantified particularly for China. Here, we present a meta-study of the N input effects on soil N2O emission and CH4 uptake in Chinese forests across climatic zones. The results suggest that enhanced N inputs significantly increase soil N2O emission (+115.8%) and decrease CH4 uptake (−13.4%). The mean effects were stronger for N2O emission and weaker for CH4 uptake in China compared with other global sites, despite being statistically insignificant. Subtropical forest soils have the highest emission factor (2.5%) and may respond rapidly to N inputs; in relatively N-limited temperate forests, N2O and CH4 fluxes are less sensitive to N inputs. Factors including forest type, N form and rate, as well as soil pH, may also govern the responses of N2O and CH4 fluxes. Our findings pinpoint the important role of Southern Chinese forests in the regional N2O and CH4 budgets.
Collapse
|
12
|
Effects of Nitrogen and Phosphorus Additions on Soil N2O Emissions and CH4 Uptake in a Phosphorus-Limited Subtropical Chinese Fir Plantation. FORESTS 2022. [DOI: 10.3390/f13050772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Increased nitrogen (N) inputs in subtropical forest ecosystems were widely reported. Extra N additions were reported to cause nutrient imbalance and phosphorus (P) limitation in many tropical and subtropical forests, and further result in changes in soil nitrous oxide (N2O) and methane (CH4) fluxes. Here, we conducted experiments with N (high N addition: 15 g N/m2, HN), P (low: 5 g P/m2, LP; high: 15 g P/m2, HP) and their interactive (HNLP and HNHP) treatments to investigate how N and P additions affected CH4 and N2O exchanges in an N-rich Chinese fir plantation (Cunninghamia lanceolata), and further explored the underlying mechanisms through the structural equation model (SEM) analysis. The results indicated that N addition alone (HN) significantly (p < 0.05) increased the soil N2O emissions by 30.15% and 80.47% over annual and 4-month periods, mainly owing to the elevated NH4+-N content. P addition alone (LP and HP) did not significantly affect the soil N2O emissions as compared with the control. The SEM analysis indicated that increased N2O emissions under N addition were primarily explained by the increase in available N and contributed more to the stimulated NH4+-N contents. N and P interactive additions slightly (not significant) stimulated the N2O emissions as compared with that under the N addition alone treatment. High-dose P addition significantly increased the soil CH4 uptake by 15.80% and 16.23% under the HP and HNHP treatments, respectively, while N addition alone and low P addition (LP and HNLP) did not significantly affect CH4 uptake as compared with the control. The increased water-soluble organic carbon and microbial biomass carbon explained the increased CH4 uptake under high P addition. The fertilization effects on N2O emissions and CH4 uptake mainly occurred in the first 4 months and diminished after that. Our results suggested that the direction, magnitude and timing of the N and P addition effects on N2O emissions and CH4 uptake would depend on the soil nutrient status and plant–microbial competition for N and P in subtropical forests.
Collapse
|