1
|
Zhu M, Chen J, He C, Ren S, Liu G. Multi-method characterization of groundwater nitrate and sulfate contamination by karst mines in southwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174375. [PMID: 38960175 DOI: 10.1016/j.scitotenv.2024.174375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
Groundwater contamination by nitrate and sulfate in mining areas is a significant challenge. Consequently, the inputs sources of these contaminants and their evolution have received considerable attention, with the knowledge gained critical for improved management of water quality. This study integrated data on multiple stable isotopes and water chemistry data and a Bayesian isotope mixing model to investigate the relative contributions of inputs sources of sulfate and nitrate sources to bodies of water in a karst mining area in southwest China. The outcomes indicated that hydrochemical component in the water bodies of the study area is mainly derived from the dissolution of silicate rocks, carbonate rocks and sulfate minerals as well as the oxidation of sulfides. The human and agricultural wastewater, soil nitrogen, and fertilizers were the predominant inputs sources of nitrate to the mine water environment; the predominant inputs sources of sulfide were mineral oxidation, evaporite dissolution, atmospheric deposition, and sewage. Groundwater is mainly recharged from atmospheric precipitation, and surface water is closely hydraulically connected to groundwater. Nitrogen and oxygen isotope composition and water chemistry indicative of nitrification dominate the nitrogen cycle in the study area. The oxidation of pyrite and bacterial sulfate reduction (SRB) had no significant impact on the stable isotopes of groundwater. The results of this study demonstrate the inputs of different sources to nitrate and sulfate in karst mines and associated transformation processes. The results of this study can assist in the conservation of groundwater quality in mining areas and can act as a reference for future related studies.
Collapse
Affiliation(s)
- Mingtan Zhu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu 610059, PR China; College of Environment Civil Engineering, Chengdu University of Technology, Chengdu 610059, PR China
| | - Jiajing Chen
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Changlong He
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Shuang Ren
- College of Environment Civil Engineering, Chengdu University of Technology, Chengdu 610059, PR China
| | - Guo Liu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu 610059, PR China; College of Environment Civil Engineering, Chengdu University of Technology, Chengdu 610059, PR China; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China.
| |
Collapse
|
2
|
Xu Q, Zhai L, Guo S, Wang C, Yin Y, Min X, Liu H. Using surface runoff to reveal the mechanisms of landscape patterns driving on various forms of nitrogen in non-point source pollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176338. [PMID: 39299310 DOI: 10.1016/j.scitotenv.2024.176338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/12/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
Non-point source (NPS) pollution directly threatens river water quality, constrains sustainable economic development, and poses hazards to human health. Comprehension of the impact factors on NPS pollution is essential for scientific river water quality management. Despite the landscape pattern being considered to have a significant impact on NPS pollution, the driving mechanism of landscape patterns on NPS pollution remains unclear. Therefore, this study coupled multi-models including the Soil and Water Assessment Tool (SWAT), Random Forest, and Partial Least Squares Structural Equation Modeling (PLS-SEM) to construct the connection between landscape patterns, NPS pollution, and surface runoff. The results suggested that increased runoff during the wet season enhances the link between landscape patterns and NPS pollution, and the explained NPS pollution variation by landscape pattern increased from 59.6 % (dry season) to 84.9 % (wet season). Furthermore, from the impact pathways, we find that the sink landscape pattern can significantly and indirectly influence NPS pollution by regulating surface runoff during the wet season (0.301*). Meanwhile, the sink and source landscape patterns significantly and directly impact NPS pollution during different seasons. Moreover, we further find that the percentage of paddy land use (Pad_PLAND) and grassland patch density (Gra_PD) metrics can significantly predict the dissolved total nitrogen (DTN) and nitrate nitrogen (NO3--N) variation. Thus, controlling the runoff migration process by guiding the rational evolution of watershed landscape patterns is an important development direction for watershed NPS pollution management.
Collapse
Affiliation(s)
- Qiyu Xu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Limei Zhai
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Shufang Guo
- Institute of Agricultural Environment and Resources, Yunnan Academy of Agricultural Sciences, Kunming 650201, China
| | - Chenyang Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yinghua Yin
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xinyue Min
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongbin Liu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
3
|
Wang C, Wang X, Xu YJ, Lv Q, Ji X, Jia S, Liu Z, Mao B. Multi-evidences investigation into spatiotemporal variety, sources tracing, and health risk assessment of surface water nitrogen contamination in China. ENVIRONMENTAL RESEARCH 2024; 262:119906. [PMID: 39233034 DOI: 10.1016/j.envres.2024.119906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/27/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
A comprehensive understanding of nitrogen pollution status, especially the identification of sources and fate of nitrate is essential for effective water quality management at the local scale. However, the nitrogen contamination of surface water across China was poorly understood at the national scale. A dataset related to nitrogen was established based on 111 pieces of literature from 2000 to 2020 in this study. The spatiotemporal variability, source tracing, health risk assessment, and drivers of China's surface water nitrogen pollution were analyzed by integrating multiple methods. These results revealed a significant spatiotemporal heterogeneity in the nitrogen concentration of surface water across China. Spatially, the Haihe River Basin and Yellow River Basin were the basins where surface water was seriously contaminated by nitrogen in China, while the surface water of Southwest Basin was less affected. Temporally, significant differences were observed in the nitrogen content of surface water in the Songhua and Liaohe River Basin, Pearl River Basin, Southeast Basin, and Yellow River Basin. There were 1%, 1%, 12%, and 46% probability exceeding the unacceptable risk level (HI>1) for children in the Songhua and Liaohe River Basin, Pearl River Basin, Haihe River Basin, and Yellow River Basin, respectively. The primary sources of surface water nitrate in China were found to be domestic sewage and manure (37.7%), soil nitrogen (31.7%), and chemical fertilizer (26.9%), with a limited contribution from atmospheric precipitation (3.7%). Human activities determined the current spatiotemporal distribution of nitrogen contamination in China as well as the future development trend. This research could provide scientifically reasonable recommendations for the containment of surface water nitrogen contamination in China and even globally.
Collapse
Affiliation(s)
- Cong Wang
- College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xihua Wang
- College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China; Department of Earth and Environmental Sciences, University of Waterloo, ON N2L 3G1, Canada.
| | - Y Jun Xu
- School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA, USA
| | - Qinya Lv
- College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xuming Ji
- College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Shunqing Jia
- College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Zejun Liu
- College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Boyang Mao
- College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| |
Collapse
|
4
|
Ding H, Gao H, Zhu M, Yu M, Sun Y, Zheng M, Su J, Xi B. Spectral and molecular insights into the characteristics of dissolved organic matter in nitrate-contaminated groundwater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124202. [PMID: 38788994 DOI: 10.1016/j.envpol.2024.124202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/11/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024]
Abstract
The characteristics of dissolved organic matter (DOM) serve as indicators of nitrate pollution in groundwater. However, the specific DOM components associated with nitrate in groundwater systems remain unclear. In this study, dual isotopes of nitrate, three-dimensional Excitation emission matrices (EEMs) and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) were utilized to uncover the sources of nitrate and their associations with DOM characteristics. The predominant nitrate in the targeted aquifer was derived from soil organic nitrogen (mean 46.0%) and manure &sewage (mean 34.3%). The DOM in nitrate-contaminated groundwater (nitrate-nitrogen >20 mg/L) exhibited evident exogenous characteristics, with a bioavailable content 2.58 times greater than that of uncontaminated groundwater. Regarding the molecular characteristics, DOM molecules characterized by CHO + 3N, featuring lower molecular weights and H/C ratios, indicated potential for mineralization, while CHONS formulas indicated the exogenous features, providing the potential for accurate traceability. These findings provided insights at the molecular level into the characterization of DOM in nitrate-contaminated groundwater and offer scientific guidance for decision-making regarding the remediation of groundwater nitrate pollution.
Collapse
Affiliation(s)
- Hongyu Ding
- College of Water Science, Beijing Normal University, Beijing, 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Huan Gao
- CCCC Water Transportation Consultants Co., Ltd, Beijing, 100010, China
| | - Mingtan Zhu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Minda Yu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yuanyuan Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Mingxia Zheng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Jing Su
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Beidou Xi
- College of Water Science, Beijing Normal University, Beijing, 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
5
|
Tian S, Liu Z, Mao Q, Ye H, Tian C, Zhu Y, Zhang L. Leaching characteristics and environmental impact of heavy metals in tailings under rainfall conditions: A case study of an ion-adsorption rare earth mining area. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116642. [PMID: 38941660 DOI: 10.1016/j.ecoenv.2024.116642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 06/30/2024]
Abstract
Following ion-adsorption rare earth mining, the residual tailings experience considerable heavy metal contamination and gradually evolve into a pollution source. Therefore, the leaching characteristics and environmental impact of heavy metals in ion-adsorption rare earth tailings require immediate and thorough investigation. This study adopted batch and column experiments to investigate the leaching behaviour of heavy metals in tailings and assess the impact of tailings on paddy soil, thereby providing a scientific basis for environmental protection in mining areas. The results showed that Mn, Zn, and Pb contents were 431.67, 155.05, and 264.33 mg·kg-1, respectively, which were several times higher than their respective background values, thereby indicating significant heavy metal contamination in the tailings. The batch leaching experiment indicated that Mn and Pb were priority control heavy metals. Heavy metals were divided into fast and slow leaching stages. The Mn and Pb leaching concentrations far exceeded environmental limits. The DoseResp model perfectly fitted the leaching of all heavy metals from the tailings (R2 > 0.99). In conjunction with the findings of the column experiment and correlation analysis, the chemical form, rainfall pH, ammonia nitrogen, and mineral properties were identified as the primary factors controlling heavy metal release from tailings. Rainfall primarily caused heavy metal migration in the acid-extraction form from the tailings. The tailing leachate not only introduced heavy metals into the paddy soil but also caused the transformation of the chemical form of heavy metals in the paddy soil, further exacerbating the environmental risk posed by heavy metals. The study findings are significant for environmental conservation in mining areas and implementing environmentally friendly practices in rare earth mining.
Collapse
Affiliation(s)
- Shuai Tian
- Jiangxi Provincial Key Laboratory of Environmental Pollution Prevention and Control in Mining and Metallurgy, Jiangxi University of Science and Technology, Ganzhou 341000, China; School of Resources Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Zuwen Liu
- Jiangxi Provincial Key Laboratory of Environmental Pollution Prevention and Control in Mining and Metallurgy, Jiangxi University of Science and Technology, Ganzhou 341000, China; School of Resources Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China; Jiangxi Province Key Laboratory of Environmental Geotechnical Engineering and Hazards Control, Jiangxi University of Science and Technology, Ganzhou 341000, China; National-local Joint Engineering Laboratory of Water Engineering Safety and Efficient Utilization of Resources in Poyang Lake Watershed, Nanchang Institute of Technology, Nanchang 330099, China.
| | - Qing Mao
- Jiangxi Province Key Laboratory of Environmental Geotechnical Engineering and Hazards Control, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Hongmei Ye
- Jiangxi Provincial Key Laboratory of Environmental Pollution Prevention and Control in Mining and Metallurgy, Jiangxi University of Science and Technology, Ganzhou 341000, China; School of Resources Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Changshun Tian
- School of Resources and Architectural Engineering, Gannan University of Science and Technology, Ganzhou 341000, China.
| | - Yichun Zhu
- School of Resources Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China; Jiangxi Province Key Laboratory of Environmental Geotechnical Engineering and Hazards Control, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Linan Zhang
- Jiangxi Provincial Key Laboratory of Environmental Pollution Prevention and Control in Mining and Metallurgy, Jiangxi University of Science and Technology, Ganzhou 341000, China; School of Resources Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| |
Collapse
|
6
|
Gao H, Wang G, Fan Y, Wu J, Yao M, Zhu X, Guo X, Long B, Zhao J. Tracing groundwater nitrate sources in an intensive agricultural region integrated of a self-organizing map and end-member mixing model tool. Sci Rep 2024; 14:16873. [PMID: 39043782 PMCID: PMC11266494 DOI: 10.1038/s41598-024-67735-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024] Open
Abstract
The traceability of groundwater nitrate pollution is crucial for controlling and managing polluted groundwater. This study integrates hydrochemistry, nitrate isotope (δ15N-NO3- and δ18O-NO3-), and self-organizing map (SOM) and end-member mixing (EMMTE) models to identify the sources and quantify the contributions of nitrate pollution to groundwater in an intensive agricultural region in the Sha River Basin in southwestern Henan Province. The results indicate that the NO3--N concentration in 74% (n = 39) of the groundwater samples exceeded the WHO standard of 10 mg/L. According to the results of EMMTE modeling, soil nitrogen (68.4%) was the main source of nitrate in Cluster-1, followed by manure and sewage (16.5%), chemical fertilizer (11.9%) and atmospheric deposition (3.3%). In Cluster-2, soil nitrogen (60.1%) was the main source of nitrate, with a significant increase in the contribution of manure and sewage (35.5%). The considerable contributions of soil nitrogen may be attributed to the high nitrogen fertilizer usage that accumulated in the soil in this traditional agricultural area. Moreover, it is apparent that most Cluster-2 sampling sites with high contributions of manure and sewage are located around residential land. Therefore, the arbitrary discharge and leaching of domestic sewage may be responsible for these results. Therefore, this study provides useful assistance for the continuous management and pollution control of groundwater in the Sha River Basin.
Collapse
Affiliation(s)
- Hongbin Gao
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China
- Henan International Joint Laboratory of Green Low Carbon Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Gang Wang
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China
- Henan International Joint Laboratory of Green Low Carbon Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China
- School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Yanru Fan
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China.
- Henan International Joint Laboratory of Green Low Carbon Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China.
| | - Junfeng Wu
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China.
- Henan International Joint Laboratory of Green Low Carbon Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China.
| | - Mengyang Yao
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China
- Henan International Joint Laboratory of Green Low Carbon Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Xinfeng Zhu
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China
- Henan International Joint Laboratory of Green Low Carbon Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Xiang Guo
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China
- Henan International Joint Laboratory of Green Low Carbon Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Bei Long
- School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Jie Zhao
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China
- Henan International Joint Laboratory of Green Low Carbon Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China
| |
Collapse
|
7
|
Shi H, Du Y, Xiong Y, Deng Y, Li Q. Source-oriented health risk assessment of groundwater nitrate by using EMMTE coupled with HHRA model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173283. [PMID: 38759927 DOI: 10.1016/j.scitotenv.2024.173283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/20/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Conventional concentration-oriented approaches for nitrate risk diagnosis only provide overall risk levels without identifying risk values of individual sources or sources accountable for potential health risks. Therefore, a hybrid model combining the end-member mixing model tool on Excel™ (EMMTE) with human health risk assessment (HHRA) was developed to assess the source-oriented health risks for groundwater nitrate, particularly in the Poyang Lake Plain (PLP) region. The results indicated that the EMMTE and the Bayesian stable isotope mixing model (MixSIAR) exhibited remarkable consistency in source apportionment of groundwater nitrate. The source contribution of groundwater nitrate in PLP was related to land use types, hydrogeological conditions, and soil properties. Notably, manure and sewage sources, contributing up to 53.4 %, represented the largest nitrate pollution sources, with a significant contribution of soil nitrogen and nitrogen fertilizers. The non-carcinogenic risk for four potential sources was below the acceptable threshold of 1. Given the factors including rainfall dilution and economic development, attention should be directed towards mitigating the health risks posed by manure and sewage. This study can verify the efficacy of EMMTE in source apportionment and offer valuable insights for decision-makers to regulate the largest sources of nitrate contamination and enhance groundwater management efficiency.
Collapse
Affiliation(s)
- Huanhuan Shi
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan, 430078, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan, 430078, China; School of Environmental Studies, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China
| | - Yao Du
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan, 430078, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan, 430078, China; School of Environmental Studies, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China.
| | - Yaojin Xiong
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan, 430078, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan, 430078, China; School of Environmental Studies, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China
| | - Yamin Deng
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan, 430078, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan, 430078, China; School of Environmental Studies, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China
| | - Qinghua Li
- Wuhan Center of China Geological Survey, Wuhan 430205, China.
| |
Collapse
|
8
|
Guan Y, Zhang N, Chu C, Xiao Y, Niu R, Shao C. Health impact assessment of the surface water pollution in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173040. [PMID: 38729374 DOI: 10.1016/j.scitotenv.2024.173040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/26/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
China suffers from severe surface water pollution. Health impact assessment could provide a novel and quantifiable metric for the health burden attributed to surface water pollution. This study establishes a health impact assessment method for surface water pollution based on classic frameworks, integrating the multi-pollutant city water quality index (CWQI), informative epidemiological findings, and benchmark public health information. A relative risk level assignment approach is proposed based on the CWQI, innovatively addressing the challenge in surface water-human exposure risk assessment. A case study assesses the surface water pollution-related health impact in 336 Chinese cities. The results show (1) between 2015 and 2022, total health impact decreased from 3980.42 thousand disability-adjusted life years (DALYs) (95 % Confidence Interval: 3242.67-4339.29) to 3260.10 thousand DALYs (95 % CI: 2475.88-3641.35), measured by total cancer. (2) The annual average health impacts of oesophageal, stomach, colorectal, gallbladder, and pancreatic cancers added up to 2621.20 thousand DALYs (95 % CI: 2095.58-3091.10), revealing the significant health impact of surface water pollution on digestive cancer. (3) In 2022, health impacts in the Beijing-Tianjin-Hebei and surroundings, the Yangtze River Delta, and the middle reaches of the Yangtze River added up to 1893.06 thousand DALYs (95 % CI: 1471.82-2097.88), showing a regional aggregating trend. (4) Surface water pollution control has been the primary driving factor to health impact improvement, contributing -3.49 % to the health impact change from 2015 to 2022. It is the first city-level health impact map for China's surface water pollution. The methods and findings will support the water management policymaking in China and other countries suffering from water pollution.
Collapse
Affiliation(s)
- Yang Guan
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Nannan Zhang
- Institute of Strategic Planning, Chinese Academy of Environmental Planning, Beijing 100041, China
| | - Chengjun Chu
- Center of Environmental Status and Plan Assessment, Chinese Academy of Environmental Planning, Beijing 100041, China
| | - Yang Xiao
- Institute of Strategic Planning, Chinese Academy of Environmental Planning, Beijing 100041, China; The Center for Beautiful China, Chinese Academy of Environmental Planning, Beijing 100041, China
| | - Ren Niu
- Institute of Strategic Planning, Chinese Academy of Environmental Planning, Beijing 100041, China
| | - Chaofeng Shao
- Department of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
9
|
Wang S, Chen J, Zhang S, Bai Y, Zhang X, Chen D, Hu J. Groundwater hydrochemical signatures, nitrate sources, and potential health risks in a typical karst catchment of North China using hydrochemistry and multiple stable isotopes. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:173. [PMID: 38592592 DOI: 10.1007/s10653-024-01964-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 03/20/2024] [Indexed: 04/10/2024]
Abstract
Nitrate pollution in aquatic ecosystems has received growing concern, particularly in fragile karst basins. In this study, hydrochemical compositions, multiple stable isotopes (δ2H-H2O, δ18Ο-Η2Ο, δ15Ν-ΝΟ3-, and δ18Ο-ΝΟ3-), and Bayesian stable isotope mixing model (MixSIAR) were applied to elucidate nitrate pollution sources in groundwater of the Yangzhuang Basin. The Durov diagram identified the dominant groundwater chemical face as Ca-HCO3 type. The NO3- concentration ranged from 10.89 to 90.45 mg/L (average 47.34 mg/L), showing an increasing trend from the upstream forest and grassland to the downstream agricultural dominant area. It is worth noting that 47.2% of groundwater samples exceeded the NO3- threshold value of 50 mg/L for drinking water recommended by the World Health Organization. The relationship between NO3-/Cl- and Cl- ratios suggested that most groundwater samples were located in nitrate mixed endmember from agricultural input, soil organic nitrogen, and manure & sewage. The Self-Organizing Map (SOM) and Pearson correlations analysis further indicated that the application of calcium fertilizer, sodium fertilizer, and livestock and poultry excrement in farmland elevated NO3- level in groundwater. The output results of the MixSIAR model showed that the primary sources of NO3- in groundwater were soil organic nitrogen (55.3%), followed by chemical fertilizers (28.5%), sewage & manure (12.7%), and atmospheric deposition (3.4%). Microbial nitrification was a dominant nitrogen conversion pathway elevating NO3- levels in groundwater, while the denitrification can be neglectable across the study area. The human health risk assessment (HHRA) model identified that about 88.9%, 77.8%, 72.2%, and 50.0% of groundwater samples posing nitrate's non-carcinogenic health hazards (HQ > 1) through oral intake for infants, children, females, and males, respectively. The findings of this study can offer useful biogeochemical information on nitrogen pollution in karst groundwater to support sustainable groundwater management in similar human-affected karst regions.
Collapse
Affiliation(s)
- Shou Wang
- College of Agricultural Science and Engineering, Hohai University, No. 8 Focheng West Road, Nanjing, 211100, Jiangsu, China
| | - Jing Chen
- College of Agricultural Science and Engineering, Hohai University, No. 8 Focheng West Road, Nanjing, 211100, Jiangsu, China.
| | - Shuxuan Zhang
- College of Agricultural Science and Engineering, Hohai University, No. 8 Focheng West Road, Nanjing, 211100, Jiangsu, China
| | - Yanjie Bai
- Nanjing Hydraulic Research Institute, State Key Laboratory of Hydrology Water Resources and Hydraulic Engineering, Nanjing, 210029, China
| | - Xiaoyan Zhang
- College of Agricultural Science and Engineering, Hohai University, No. 8 Focheng West Road, Nanjing, 211100, Jiangsu, China
| | - Dan Chen
- College of Agricultural Science and Engineering, Hohai University, No. 8 Focheng West Road, Nanjing, 211100, Jiangsu, China
| | - Jiahong Hu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology of CAS, Shijiazhuang, 050021, Hebei, China
| |
Collapse
|
10
|
Shu L, Chen W, Liu Y, Shang X, Yang Y, Dahlgren RA, Chen Z, Zhang M, Ji X. Riverine nitrate source identification combining δ 15N/δ 18O-NO 3- with Δ 17O-NO 3- and a nitrification 15N-enrichment factor in a drinking water source region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170617. [PMID: 38311089 DOI: 10.1016/j.scitotenv.2024.170617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/15/2024] [Accepted: 01/30/2024] [Indexed: 02/06/2024]
Abstract
Dual nitrate isotopes (δ15N/δ18O-NO3-) are an effective tool for tracing nitrate sources in freshwater systems worldwide. However, the initial δ15N/δ18O values of different nitrate sources might be altered by isotopic fractionation during nitrification, thereby limiting the efficiency of source apportionment results. This study integrated hydrochemical parameters, site-specific isotopic compositions of potential nitrate sources, multiple stable isotopes (δD/δ18O-H2O, δ15N/δ18O-NO3- and Δ17O-NO3-), soil incubation experiments assessing the nitrification 15N-enrichment factor (εN), and a Bayesian mixing model (MixSIAR) to reduce/eliminate the influence of 15N/18O-fractionations on nitrate source apportionment. Surface water samples from a typical drinking water source region were collected quarterly (June 2021 to March 2022). Nitrate concentrations ranged from 0.35 to 3.06 mg/L (mean = 0.78 ± 0.46 mg/L), constituting ∼70 % of total nitrogen. A MixSIAR model was developed based on δ15N/δ18O-NO3- values of surface waters and the incorporation of a nitrification εN (-6.9 ± 1.8 ‰). Model source apportionment followed: manure/sewage (46.2 ± 10.7 %) > soil organic nitrogen (32.3 ± 18.5 %) > nitrogen fertilizer (19.7 ± 13.1 %) > atmospheric deposition (1.8 ± 1.6 %). An additional MixSIAR model coupling δ15N/δ18O-NO3- with Δ17O-NO3- and εN was constructed to estimate the potential nitrate source contributions for the June 2021 water samples. Results revealed similar nitrate source contributions (manure/sewage = 43.4 ± 14.1 %, soil organic nitrogen = 29.3 ± 19.4 %, nitrogen fertilizer = 19.8 ± 13.8 %, atmospheric deposition = 7.5 ± 1.6 %) to the original MixSIAR model based on εN and δ15N/δ18O-NO3-. Finally, an uncertainty analysis indicated the MixSIAR model coupling δ15N/δ18O-NO3- with Δ17O-NO3- and εN performed better as it generated lower uncertainties with uncertainty index (UI90) of 0.435 compared with the MixSIAR model based on δ15N/δ18O-NO3- (UI90 = 0.522) and the MixSIAR model based on δ15N/δ18O-NO3- and εN (UI90 = 0.442).
Collapse
Affiliation(s)
- Lielin Shu
- Key Laboratory of Watershed Science and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Wenli Chen
- Key Laboratory of Watershed Science and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Yinli Liu
- Key Laboratory of Watershed Science and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Xu Shang
- Key Laboratory of Watershed Science and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China; Southern Zhejiang Water Research Institute (iWATER), Wenzhou 325035, China
| | - Yue Yang
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Southern Zhejiang Water Research Institute (iWATER), Wenzhou 325035, China
| | - Randy A Dahlgren
- Department of Land, Air and Water Resources, University of California, Davis, California 95616, USA
| | - Zheng Chen
- Key Laboratory of Watershed Science and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China.
| | - Minghua Zhang
- Key Laboratory of Watershed Science and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China; Department of Land, Air and Water Resources, University of California, Davis, California 95616, USA
| | - Xiaoliang Ji
- Key Laboratory of Watershed Science and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
11
|
Shu W, Zhang Q, Audet J, Li Z, Leng P, Qiao Y, Tian C, Chen G, Zhao J, Cheng H, Li F. Non-negligible N 2O emission hotspots: Rivers impacted by ion-adsorption rare earth mining. WATER RESEARCH 2024; 251:121124. [PMID: 38237464 DOI: 10.1016/j.watres.2024.121124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 12/06/2023] [Accepted: 01/08/2024] [Indexed: 02/12/2024]
Abstract
Rare earth mining causes severe riverine nitrogen pollution, but its effect on nitrous oxide (N2O) emissions and the associated nitrogen transformation processes remain unclear. Here, we characterized N2O fluxes from China's largest ion-adsorption rare earth mining watershed and elucidated the mechanisms that drove N2O production and consumption using advanced isotope mapping and molecular biology techniques. Compared to the undisturbed river, the mining-affected river exhibited higher N2O fluxes (7.96 ± 10.18 mmol m-2d-1 vs. 2.88 ± 8.27 mmol m-2d-1, P = 0.002), confirming that mining-affected rivers are N2O emission hotspots. Flux variations scaled with high nitrogen supply (resulting from mining activities), and were mainly attributed to changes in water chemistry (i.e., pH, and metal concentrations), sediment property (i.e., particle size), and hydrogeomorphic factors (e.g., river order and slope). Coupled nitrification-denitrification and N2O reduction were the dominant processes controlling the N2O dynamics. Of these, the contribution of incomplete denitrification to N2O production was greater than that of nitrification, especially in the heavily mining-affected reaches. Co-occurrence network analysis identified Thiomonas and Rhodanobacter as the key genus closely associated with N2O production, suggesting their potential roles for denitrification. This is the first study to elucidate N2O emission and influential mechanisms in mining-affected rivers using combined isotopic and molecular techniques. The discovery of this study enhances our understanding of the distinctive processes driving N2O production and consumption in highly anthropogenically disturbed aquatic systems, and also provides the foundation for accurate assessment of N2O emissions from mining-affected rivers on regional and global scales.
Collapse
Affiliation(s)
- Wang Shu
- Shandong Yucheng Agro-Ecosystem National Observation and Research Station, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; Sino-Danish College of University of Chinese Academy of Sciences, Beijing 101408, China; Sino-Danish Centre for Education and Research, Beijing 101408, China
| | - Qiuying Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Joachim Audet
- Department of Ecoscience, Aarhus University, C.F. Møllers Allé, Aarhus 8000, Denmark
| | - Zhao Li
- Shandong Yucheng Agro-Ecosystem National Observation and Research Station, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Peifang Leng
- Shandong Yucheng Agro-Ecosystem National Observation and Research Station, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yunfeng Qiao
- Shandong Yucheng Agro-Ecosystem National Observation and Research Station, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Chao Tian
- Shandong Yucheng Agro-Ecosystem National Observation and Research Station, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Gang Chen
- Department of Civil and Environmental Engineering, Florida A&M University (FAMU)-Florida State University (FSU) Joint College of Engineering, 32310, United States
| | - Jun Zhao
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China
| | - Hefa Cheng
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Fadong Li
- Shandong Yucheng Agro-Ecosystem National Observation and Research Station, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; Sino-Danish College of University of Chinese Academy of Sciences, Beijing 101408, China.
| |
Collapse
|
12
|
Zaryab A, Alijani F, Knoeller K, Minet E, Musavi SF, Ostadhashemi Z. Identification of groundwater nitrate sources in an urban aquifer (Alborz Province, Iran) using a multi-parameter approach. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:100. [PMID: 38407701 DOI: 10.1007/s10653-024-01872-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/12/2024] [Indexed: 02/27/2024]
Abstract
High concentrations of NO3̄ in water resources are detrimental to both human health and aquatic ecosystems. Identification of NO3̄ sources and biogeochemical processes is a crucial step in managing and controlling NO3̄ pollution. In this study, land use, hydrochemical data, dual stable isotopic ratios and Bayesian Stable Isotope Mixing Models (BSIMM) were integrated to identify NO3̄ sources and estimate their proportional contributions to the contamination of the Karaj Urban Aquifer (Iran). Elevated NO3̄ concentrations indicated a severe NO3̄ pollution, with 39 and 52% of groundwater (GW) samples displaying the concentrations of NO3̄ in exceedance of the World Health Organization (WHO) standard of 50 mg NO3̄ L-1 in the rainy and dry seasons, respectively. Dual stable isotopes inferred that urban sewage is the main NO3̄ source in the Karaj Plain. The diagram of NO3̄/Cl‾ versus Cl‾ confirmed that municipal sewage is the major source of NO3̄. Results also showed that biogeochemical nitrogen dynamics are mainly influenced by nitrification, while denitrification is minimal. The BSIMM model suggested that NO3̄ originated predominantly from urban sewage (78.2%), followed by soil organic nitrogen (12.2%), and chemical fertilizer (9.5%) in the dry season. In the wet season, the relative contributions of urban sewage, soil nitrogen and chemical fertilizer were 87.5, 6.7, and 5.5%, respectively. The sensitivity analysis for the BSIMM modeling indicates that the isotopic signatures of sewage had the major impact on the overall GW NO3̄ source apportionment. The findings provide important insights for local authorities to support effective and sustainable GW resources management in the Karaj Urban Aquifer. It also demonstrates that employing Bayesian models combined with multi-parameters can improve the accuracy of NO3̄ source identification.
Collapse
Affiliation(s)
- Abdulhalim Zaryab
- Engineering Geology and Hydrogeology, Faculty of Geology and Mines, Kabul Polytechnic University, District 5, Kabul, Afghanistan
| | - Farshad Alijani
- Department of Minerals and Groundwater Resources, Faculty of Earth Sciences, Shahid Beheshti University, Evin Ave, Tehran, Iran.
| | - Kay Knoeller
- Department Catchment Hydrology Helmholtz-Centre for Environmental Research-UFZ, 06120, Halle, Germany
| | - Eddy Minet
- Environmental Protection Agency (EPA), Dublin, Ireland
| | | | | |
Collapse
|
13
|
Hu J, Wan K, Deng X, Liu X, Fang Y, Zhou F, Yu J, Chi R, Xiao C. Metagenomic analysis revealed the evolution of microbial communities, metabolic pathways, and functional genes in the heterotrophic nitrification-aerobic denitrification process under La 3+ stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169243. [PMID: 38101649 DOI: 10.1016/j.scitotenv.2023.169243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
Trivalent lanthanum (La3+) exists widely in ammonia nitrogen (NH4+-N) tailing water from ionic rare earth mines; however, its effect on heterotrophic nitrification-aerobic denitrification (HN-AD) is unknown, thereby limiting the application of the HN-AD process in this field. In this study, we conducted an HN-AD process using a sequencing batch reactor (5 L) that was continuously operated to directly treat acidic (NH4)2SO4 wastewater (influent NH4+-N concentration of approximately 110 mg/L and influent pH of 5) containing different La3+ concentrations (0-100 mg/L). The NH4+-N removal efficiency of the reactor reached 98.25 % at a La3+ concentration of 100 mg/L. The reactor was in a neutral-to-alkaline environment, which favored La3+ precipitation and complexation. Metagenomic analysis revealed that the relative abundance of Thauera in the reactor remained high (88.62-92.27 %) under La3+ stress. The relative abundances of Pannonobacter and Hyphomonas significantly increased, whereas that of Azoarcus significantly decreased. Metabolic functions in the reactor were mainly contributed by Thauera, and the abundance of metabolic functions under low La3+ stress (≤5 mg/L) significantly differed from that under high La3+ stress (≥10 mg/L). The relative abundance of ammonia assimilation-related genes in the reactor was high and significantly correlated with ammonia removal. However, traditional ammonia oxidation genes were not annotated, and unknown ammonia oxidation pathways may have been present in the reactor. Moreover, La3+ stimulated amino acid biosynthesis and translocation, the citrate cycle, sulfur metabolism, and oxidative phosphorylation and promoted the overproduction of extracellular polymeric substances, which underwent complexation and adsorbed La3+ to reduce its toxicity. Our results showed that the HN-AD process had a strong tolerance to La3+, stable NH4+-N removal efficiency, the potential to recover La3+, and considerable application prospects in treating NH4+-N tailing water from ionic rare earth mines.
Collapse
Affiliation(s)
- Jingang Hu
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Kai Wan
- Hubei Three Gorges Laboratory, Yichang 443007, China
| | - Xiangyi Deng
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Xuemei Liu
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yun Fang
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Fang Zhou
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Junxia Yu
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Ruan Chi
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China; Hubei Three Gorges Laboratory, Yichang 443007, China
| | - Chunqiao Xiao
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China; Hubei Three Gorges Laboratory, Yichang 443007, China.
| |
Collapse
|
14
|
Wang D, Li P, Mu D, Liu W, Chen Y, Fida M. Unveiling the biogeochemical mechanism of nitrate in the vadose zone-groundwater system: Insights from integrated microbiology, isotope techniques, and hydrogeochemistry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167481. [PMID: 37788773 DOI: 10.1016/j.scitotenv.2023.167481] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/09/2023] [Accepted: 09/28/2023] [Indexed: 10/05/2023]
Abstract
Clarifying the biogeochemical mechanism of nitrate (NO3-) in the vadose zone-groundwater system, particularly in agricultural contexts, is crucial for mitigating groundwater NO3- pollution. However, comprehensive studies on the impacts of changes in chemical indicators and microbial communities on NO3- are still lacking. This paper aims to address this gap by employing hydrogeochemistry, stable isotopes, and microbial techniques to assess the NO3- biogeochemical processes in the vadose zone-groundwater system. The findings suggested that NO3- in upper soil layers was primarily influenced by plant root absorption, assimilation, and nitrification processes. The oxygen contents gradually decreased with the nitrification process, resulting in the occurrence of the denitrification. However, denitrification predominantly occurred in the 60-80 cm soil layer in the study area. The limited thickness of the denitrification layer results in less NO3- consumption, leading to increased NO3- leaching into groundwater. Hydrochemical and isotopic characteristics further indicated that groundwater NO3- concentrations were mainly controlled by nitrification, followed by denitrification and mixing processes. The 16S rRNA sequencing analysis revealed great influences of soil sampling depths and groundwater NO3- concentrations on the microbial community structure. Additionally, the PICRUSt2-based prediction results demonstrated a stronger potential for dissimilatory reduction of NO3- to ammonium (DNRA) in both soil and groundwater compared to the other processes, potentially due to the widespread presence of the nrfH functional genes. However, the chemical indicators and isotopes used in this study did not support the occurrence of DNRA process in the vadose zone-groundwater system. This finding highlights the importance of an integrated approach combining microbiological, isotopic, and hydrogeochemical data to comprehensive understanding biogeochemical processes. The study developed a conceptual model elucidating the NO3- biogeochemical processes in the vadose zone-groundwater system within an agricultural area, contributing to enhanced comprehension and advancement of sustainable management practices for groundwater nitrogen.
Collapse
Affiliation(s)
- Dan Wang
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China
| | - Peiyue Li
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China.
| | - Dawei Mu
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China
| | - Weichao Liu
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China
| | - Yinfu Chen
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China
| | - Misbah Fida
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China
| |
Collapse
|
15
|
Wu S, Zheng H, Wang Y, Wang L, Chen W. Cyanobacterial bioreporter of nitrate bioavailability in aquatic ecosystems. WATER RESEARCH 2023; 247:120749. [PMID: 37918203 DOI: 10.1016/j.watres.2023.120749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023]
Abstract
The water eutrophication, resulting from the discharge of industrial and agricultural wastewater, leads to ecological degradation. However, to date, how to assess and manage the risks of water pollution, especially nitrogen pollution, remains a particularly noteworthy issue. Nitrate, the most important nitrogen compound, has become a bottleneck restricting total nitrogen management. The development of bioreporters monitoring nitrate pollution contributes to the estimation of water quality, especially the availability of nutrients. In this study, we obtained 9 bioreporters from 40 cyanobacterial derivatives which were constructed based on different hosts, copy numbers, and sensing elements and evaluated the performance of bioreporters. The results showed that single-celled Synechocystis was more sensitive to nitrate than filamentous Anabaena, that the reporter gene luxABCDE responded faster than sfgfp in most bioreporters, and that relatively medium-copy plasmid improved the performance of sensing elements. Nine bioreporters performed well in bioavailable nitrate detection, of which AD-AS-X and AR-NI-X, activated by nitrate repletion, had the shortest response time (2 h) and the widest response range (20-800 μM), respectively. Moreover, SR-GLN-SG, activated by nitrate deficiency, exhibited the best linear response (R2 = 0.998). After parameter optimization, exponential growth phase bioreporters, culture temperature of 30 °C, sample volume of 200 μL were determined as optimal monitoring conditions. We found that common water contaminants (copper, cadmium, and phosphorus) had no impact on the performance of bioreporters, indicating the stability of bioreporters. Six out of 9 bioreporters, especially the SR-NB-X, were highly effective in detecting the bioavailable nitrate in wastewater sample. This study provides valuable references for developing more cyanobacterial bioreporters and their practical application in nitrate detection.
Collapse
Affiliation(s)
- Shanyu Wu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Hongyan Zheng
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yuwei Wang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Li Wang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Wenli Chen
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
16
|
Ou X, Chen Z, Hong B, Wang H, Feng L, Liu Y, Zhu M, Chen Z. Transport and distribution of residual nitrogen in ion-adsorption rare earth tailings. ENVIRONMENTAL RESEARCH 2023; 237:116975. [PMID: 37640094 DOI: 10.1016/j.envres.2023.116975] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/11/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
A large amount of nitrogen remains in ion-absorption rare earth tailings with in-situ leaching technology, and it continually ends up in groundwater sources. However, the distribution and transport of ammonium nitrogen (NH4+-N) and nitrate nitrogen (NO3--N) across tailings with both depth and hill slopes is still unknown. In this study, the amount of NH4+-N and nitrate nitrogen (NO3--N) was determined in tailings, and a soil column leaching experiment, served to assess the transport and distribution following mine closure. Firstly, a high concentration of NH4+-N in the leachate at the initial leaching stage was detected, up to 2000 mg L-1, and the concentration of NH4+-N clearly diminished as time passed. Meanwhile, the NH4+-N contents remained relatively high in soil. Secondly, both the content of NH4+-N and NO3--N varied greatly according to vertical distribution after leaching lasting several years. The amounts of NH4+-N and NO3--N in surface soil were much smaller than those in deep soil, with 3-4 orders of magnitude variation with depth. Thirdly, when disturbed by NH4+-N, the pH not only diminished but also changed irregularly as depth increased. Fourthly, although the amount of NO3--N was smaller than that of NH4+-N, both their distribution trend was similar with depth. In fact, NH4+-N and NO3--N were significantly correlated but this declined from the knap to the piedmont. Based on these results, it is suggested that mining activity could cause nitrogen to be dominated by NH4+-N and acidification in a tailing even if leaching occurs over several years. NO3--N derived from NH4+-N transports easily and it becomes the main nitrogen pollutant with the potential to be a long-lasting threat to the environment around a mine.
Collapse
Affiliation(s)
- Xiaolin Ou
- School of Geography and Tourism, Jiaying University, Meizhou, 514015, Guangdong, China; Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Zhibiao Chen
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, 350117, Fujian, China; School of Geographical Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China.
| | - Bengen Hong
- Xiamen Tungsten Co Ltd, 361026, Fujian, China
| | - Haiyan Wang
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, 350117, Fujian, China; School of Geographical Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Liujun Feng
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, 350117, Fujian, China; School of Geographical Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Youcun Liu
- School of Geography and Tourism, Jiaying University, Meizhou, 514015, Guangdong, China
| | - Mingyong Zhu
- School of Geography and Tourism, Jiaying University, Meizhou, 514015, Guangdong, China
| | - Zuliang Chen
- School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China.
| |
Collapse
|
17
|
Chen X, Wang G, Sheng Y, Liao F, Mao H, Li B, Zhang H, Qiao Z, He J, Liu Y, Lin Y, Yang Y. Nitrogen species and microbial community coevolution along groundwater flowpath in the southwest of Poyang Lake area, China. CHEMOSPHERE 2023; 329:138627. [PMID: 37031839 DOI: 10.1016/j.chemosphere.2023.138627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/02/2023] [Accepted: 04/04/2023] [Indexed: 05/03/2023]
Abstract
Nitrate and ammonia overload in groundwater can lead to eutrophication of surface water in areas where surface water is recharged by groundwater. However, this process remained elusive due to the complicated groundwater N cycling, which is governed by the co-evolution of hydrogeochemical conditions and N-cycling microbial communities. Herein, this process was studied along a generalized groundwater flowpath in Ganjing Delta, Poyang Lake area, China. From groundwater recharge to the discharge area near the lake, oxidation-reduction potential (ORP), NO3-N, and NO2-N decreased progressively, while NH3-N, total organic carbon (TOC), Fe2+, sulfide, and TOC/NO3- ratio accumulated in the lakeside samples. The anthropogenic influences such as sewage and agricultural activities drove the nitrate distribution, as observed by Cl- vs. NO3-/Cl- ratio and isotopic composition of nitrate. The hydrogeochemical evolution was intimately coupled with the changes in microbial communities. Variations in microbial community structures was significantly explained by Fe2+, NH3-N, and sulfide, while TOC/NO3- controlled the distribution of predicted N cycling gene. The absence of NH3-N in groundwater upstream was accompanied by the enrichment in Acinetobacter capable of nitrification and aerobic denitrification. These two processes were also supported by Ca2+ + Mg2+ vs. HCO3- ratio and isotopic composition of NO3-. The DNRA process downstream was revealed by both the presence of DNRA-capable microbes such as Arthrobacter and the isotopic composition of NH4+ in environments with high concentrations of NH3-N, TOC/NO3-, Fe2+, and sulfide. This coupled evolution of N cycling and microbial community sheds new light on the N biogeochemical cycle in areas where surface water is recharged by groundwater.
Collapse
Affiliation(s)
- Xianglong Chen
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China
| | - Guangcai Wang
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China.
| | - Yizhi Sheng
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China.
| | - Fu Liao
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China
| | - Hairu Mao
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China
| | - Bo Li
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China
| | - Hongyu Zhang
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China
| | - Zhiyuan Qiao
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China
| | - Jiahui He
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China
| | - Yingxue Liu
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China
| | - Yilun Lin
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China
| | - Ying Yang
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China
| |
Collapse
|
18
|
Shu W, Li F, Zhang Q, Li Z, Qiao Y, Audet J, Chen G. Pollution caused by mining reshaped the structure and function of bacterial communities in China's largest ion-adsorption rare earth mine watershed. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131221. [PMID: 36934702 DOI: 10.1016/j.jhazmat.2023.131221] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/21/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Ion-adsorption rare earth mining results in the production of high levels of nitrogen, multiple metals, and strong acidic mine drainage (AMD), the impacts of which on microbial assembly and ecological functions remain unclear. To address this knowledge gap, we collected river sediments from the watershed of China's largest ion-adsorption rare earth mine and analyzed the bacterial community's structure, function, and assembly mechanisms. Results showed that bacterial community assembly was weakly affected by spatial dispersion, and dispersal limitation and homogeneous selection were the dominant ecological processes, with the latter increasing with pollution gradients. Bacterial alpha diversity decreased with pollution, which was mainly influenced by lead (Pb), pH, rare earth elements (REEs), and electrical conductivity (EC). However, bacteria developed survival strategies (i.e., enhanced acid tolerance and interspecific competition) to adapt to extreme environments, sustaining species diversity and community stability. Community structure and function showed a consistent response to the polluted environment (r = 0.662, P = 0.001). Enhanced environmental selection reshaped key microbial-mediated biogeochemical processes in the mining area, in particular weakening the potential for microbial denitrification. These findings provide new insights into the ecological response of microbes to compound pollution and offer theoretical support for proposing effective remediation and management strategies for polluted areas.
Collapse
Affiliation(s)
- Wang Shu
- Shandong Yucheng Agro-Ecosystem National Observation and Research Station, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 100101 Beijing, China; Sino-Danish College of University of Chinese Academy of Sciences, 101408 Beijing, China; Sino-Danish Centre for Education and Research, 101408 Beijing, China
| | - Fadong Li
- Shandong Yucheng Agro-Ecosystem National Observation and Research Station, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 100101 Beijing, China; Sino-Danish College of University of Chinese Academy of Sciences, 101408 Beijing, China
| | - Qiuying Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012 Beijing, China.
| | - Zhao Li
- Shandong Yucheng Agro-Ecosystem National Observation and Research Station, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 100101 Beijing, China
| | - Yunfeng Qiao
- Shandong Yucheng Agro-Ecosystem National Observation and Research Station, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 100101 Beijing, China
| | - Joachim Audet
- Department of Ecoscience, Aarhus University, C.F. Møllers Allé, 8000 Aarhus, Denmark
| | - Gang Chen
- Department of Civil and Environmental Engineering, Florida A&M University (FAMU)-Florida State University (FSU) Joint College of Engineering, 32310, United States
| |
Collapse
|
19
|
Li T, Yu X, Li M, Rong L, Xiao X, Zou X. Ecological insight into antibiotic resistome of ion-adsorption rare earth mining soils from south China by metagenomic analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162265. [PMID: 36801324 DOI: 10.1016/j.scitotenv.2023.162265] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/01/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Antibiotic resistome has led to growing global threat to public health. Rare earth elements play important roles in modern society and mining activity for them has caused serious impact on soil ecosystems. However, antibiotic resistome in, especially, ion-adsorption rare earth-related soils is still poorly understood. In this work, soils were collected from ion-adsorption rare earth mining areas and adjacent regions of south China and metagenomic analysis was employed for profile, driving factors and ecological assembly of antibiotic resistome in the soils. Results show prevalence of antibiotic resistance genes conferring resistance to tetracycline/fluoroquinolone (adeF), peptide (bcrA), aminoglycoside (rpsL), tetracycline (tet(A)) and mupirocin (mupB) in ion-adsorption rare earth mining soils. Profile of antibiotic resistome is accompanied by its driving factors, i.e., physicochemical properties (La, Ce, Pr, Nd and Y of rare earth elements in 12.50-487.90 mg kg-1), taxonomy (Proteobacteria, Actinobacteria) and mobile genetic elements (MGEs, plasmid pYP1, Transposase_20). Variation partitioning analysis and partial least-squares-path modeling demonstrate that taxonomy is the most important individual contributor and pose most direct/indirect effect to antibiotic resistome. Further, null model analysis reveals stochastic processes as dominant ecological assembly of antibiotic resistome. This work advances our knowledge on antibiotic resistome with emphasis on ecological assembly in ion-adsorption rare earth-related soils for ARGs mitigation, mining management and mine restoration.
Collapse
Affiliation(s)
- Taijia Li
- School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China; School of Life Science, Jinggangshan University, Ji'an 343009, China
| | - Xinyang Yu
- School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Mi Li
- School of Life Science, Jinggangshan University, Ji'an 343009, China
| | - Lingling Rong
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Xiaoyu Xiao
- School of Life Science, Jinggangshan University, Ji'an 343009, China
| | - Xiaoming Zou
- School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China.
| |
Collapse
|
20
|
Dai W, Liu R, Yang F, He G, Wei C. Denitrifying bacteria agent together with composite materials enhanced soil chemical properties and denitrifying functions in rare earth tailings: A field study. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130913. [PMID: 36758437 DOI: 10.1016/j.jhazmat.2023.130913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
The exploitation of ionic rare earth ore using ammonium sulfate extractant in China caused serious soil degradation and nitrogen compounds pollution in surrounding water. It was critical to improve soil properties and eliminate the nitrogen compounds and prevent their diffusion from the rare earth tailings. Here, we addressed this issue by conducting a field experiment for six months through four different treatments including control (CK), denitrifying bacteria agent mainly consisted of Bacillus (DBA), composite materials (CM) and denitrifying bacteria agent together with composite materials (DBA+CM). Besides, the treatments except CK were also amended with basic soil conditioners. DBA+CM could significantly increase soil pH from 5.01 to 6.84 (p ≤ 0.05). Cation exchange capacity in DBA+CM increased from below detection limit to 2.79 cmol+/kg. DBA+CM possessed the highest removal rate of soil NH4+ (95.14 %) and soil NO3- (66.46 %). Compared to CK, DBA+CM significantly increased the absolute abundance of nirS genes and relative abundance of denitrification, nitrate respiration, and nitrite respiration the most (p ≤ 0.05). Denitrification, nitrate respiration and nirS genes were negatively correlated with soil NO3- (p ≤ 0.05). This study demonstrates denitrifying bacteria agent together with composite materials can be a promising approach to control the pollution of nitrogen compounds in ionic rare earth tailings.
Collapse
Affiliation(s)
- Weijie Dai
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Renlu Liu
- School of Life Sciences, Key Laboratory of Agricultural Environmental Pollution Prevention and Control in Red Soil Hilly Region of Jiangxi Province, Jinggangshan University, Jian 343009, China
| | - Fen Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Genhe He
- School of Life Sciences, Key Laboratory of Agricultural Environmental Pollution Prevention and Control in Red Soil Hilly Region of Jiangxi Province, Jinggangshan University, Jian 343009, China.
| | - Chaoyang Wei
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
21
|
Wang M, Yang M, Fan T, Wang D, He J, Wu H, Si D, Wang M, Wu S, Zhou D. Activating soil nitrification by co-application of peanut straw biochar and organic fertilizer in a rare earth mining soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161506. [PMID: 36626999 DOI: 10.1016/j.scitotenv.2023.161506] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/20/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
The intensive mining activities to extract rare earth elements from ion-adsorption rare earth deposits have introduced massive amounts of ammonium into the tailing soils in southern China. Compared to the ubiquitous soil nitrification in cropland, forest, and grassland soils, however, there is no feasible strategy to alleviate the ammonium contamination in tailing soil. Herein, the feasibility to remove ammonium by adding ammonium adsorbents (e.g., biochar, activated carbon, and zeolite), alkaline materials, and organic fertilizer to the rare earth mining soil was explored. The amendment of rice straw biochar, activated carbon, or zeolite in combination with CaCO3 and organic fertilizer showed no significant effect on ammonium removal due to their limited capacity to elevate soil pH. However, the co-application of peanut straw biochar (PSBC), CaCO3, and organic fertilizer activated both the ammonia volatilization and soil nitrification processes. Specifically, the three components functioned as follows: organic fertilizer supplied active ammonia-oxidizing bacteria (AOB); PSBC stimulated AOB proliferation by elevating soil pH above 7.75; CaCO3 ameliorated soil acidity and reduced the lag time for activating soil nitrification. The soil ammonium removal and nitrate accumulation rates were positively correlated to the acid neutralization capacity of PSBC prepared at 400 °C-800 °C. The qPCR and microbial community analysis results indicated that Nitrosomonas europaea was the dominant AOB that was responsible for enhanced soil nitrification. Our findings pave the way for developing cost-effective strategies to remediate ammonium contamination in rare earth mining soils.
Collapse
Affiliation(s)
- Min Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Min Yang
- Ministry of Environmental Protection of the People's Republic of China, Nanjing Institute of Environmental Sciences, Nanjing 210008, China
| | - Tingting Fan
- Ministry of Environmental Protection of the People's Republic of China, Nanjing Institute of Environmental Sciences, Nanjing 210008, China
| | - Dengjun Wang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Jianzhou He
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Haotian Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Dunfeng Si
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Mei Wang
- College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Song Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
22
|
Mao H, Wang G, Liao F, Shi Z, Zhang H, Chen X, Qiao Z, Li B, Bai Y. Spatial variability of source contributions to nitrate in regional groundwater based on the positive matrix factorization and Bayesian model. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130569. [PMID: 37055948 DOI: 10.1016/j.jhazmat.2022.130569] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 06/19/2023]
Abstract
Groundwater nitrate (NO3-) pollution has attracted widespread attention; however, accurately evaluating the sources of NO3- and their contribution patterns in regional groundwater is difficult in areas with multiple sources and complex hydrogeological conditions. In this study, 161 groundwater samples were collected from the Poyang Lake Basin for hydrochemical and dual NO3- isotope analyses to explore the sources of NO3- and their spatial contribution using the Positive Matrix Factorization (PMF) and Bayesian stable isotope mixing (MixSIAR) models. The results revealed that the enrichment of NO3- in groundwater was primarily attributed to sewage/manure (SM), which accounted for more than 50 %. The contributions of nitrogen fertilizer and soil organic nitrogen should also be considered. Groundwater NO3- sources showed obvious spatial differences in contributions. Regions with large contributions of SM (>90 %) were located in the southeastern part of the study area and downstream of Nanchang, which are areas with relatively high population density. Nitrogen fertilizer and soil organic nitrogen showed concentrated contributions in paddy soil in the lower reaches of the Gan and Rao Rivers, and these accumulations were mainly driven by the soil type, land use type, and topography. This study provides insight into groundwater NO3- contamination on a regional scale.
Collapse
Affiliation(s)
- Hairu Mao
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
| | - Guangcai Wang
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China.
| | - Fu Liao
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
| | - Zheming Shi
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
| | - Hongyu Zhang
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
| | - Xianglong Chen
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
| | - Zhiyuan Qiao
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
| | - Bo Li
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
| | - Yunfei Bai
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
| |
Collapse
|
23
|
Mao H, Wang C, Qu S, Liao F, Wang G, Shi Z. Source and evolution of sulfate in the multi-layer groundwater system in an abandoned mine-Insight from stable isotopes and Bayesian isotope mixing model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160368. [PMID: 36414065 DOI: 10.1016/j.scitotenv.2022.160368] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
The source and evolution of sulfate (SO42-) in groundwater from abandoned mines are widely concerned environmental issues. Herein, major dissolved ions, multi-isotopes (δ34S, δ18Osulfate, δ2H and δ18Owater), machine learning (Self-organizing maps) and Bayesian isotope mixing model were used to identify the source and evolution of SO42- in an abandoned mine (Fengfeng mine, northern China) with a multi-layer groundwater system. Groundwater in the study area was mainly divided into three clusters (Cluster I, Cluster II and Cluster III), dominated by Na-SO4, Ca-SO4 and Ca-HCO3 types, respectively. According to δ2H and δ18Owater, groundwater in the study area mainly originated from atmospheric precipitation. δ34S, δ18Osulfate and SO42- suggested that bacterial sulfate reduction did not affect the SO42- isotopic composition. Dual SO42- isotopes, and MixSIAR model revealed that the main source of SO42- in the study area was pyrite oxidation/gypsum dissolution, accounting for an average of 57.4 % (gypsum), 71.24 % (pyrite oxidation) and 52.93 % (pyrite oxidation) of SO42- in the samples of Clusters I-III, respectively. Combined with the hydrochemical diagrams, the evolution of SO42- in different clusters of samples was derived. Cluster I was mainly gypsum dissolution; In contrast, Clusters II and III were mainly pyrite oxidation accompanied by carbonate dissolution, and Cluster II was also influenced by cation exchange. These findings will help in developing management strategies for protecting groundwater quality, which will provide a reference for the study of solute sources and S cycling in abandoned mines.
Collapse
Affiliation(s)
- Hairu Mao
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China
| | - Chenyu Wang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China
| | - Shen Qu
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China.
| | - Fu Liao
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China
| | - Guangcai Wang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China.
| | - Zheming Shi
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China
| |
Collapse
|
24
|
Yoshihara N, Matsumoto S, Machida I, Uchida Y. Deciphering natural and anthropogenic effects on the groundwater chemistry of Nago City, Okinawa Island, Japan. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120917. [PMID: 36563985 DOI: 10.1016/j.envpol.2022.120917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/02/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
A qualitative assessment of groundwater resources is significant in islands that largely depend on individual aquifers. In Okinawa Island, Japan, limestone aquifers are valuable groundwater reservoirs. However, these aquifers are sensitive to contamination due to high permeability in the conduit network. Although human activity has increased in recent decades, there remains insufficient hydrological information to assess the impact of anthropogenic loading on groundwater quality in Okinawa Island. To address this, we analyzed 4 seepage, 16 river, and 14 shallow (<10 m in depth) groundwater samples to obtain baseline chemistry and anthropogenic impact information on groundwater resources in central Nago City, northern Okinawa Island. We divided the region into three landscape units: lowland (<30 m asl), eastern, and western areas. Except for a limited number of water samples collected in the eastern mountain and coastal section of the lowland, the hydrochemistry was characterized by Ca-HCO3 type, indicating carbonate weathering within limestone-bearing lithology and Quaternary deposits. Divergent water 87Sr/86Sr values (0.707723-0.712102) with lower Sr concentrations (0.1-1.6 μmol/L) in the mountains and convergent values (0.708859-0.709184) with higher Sr concentrations (0.3-17.6 μmol/L) in the lowland suggest that the water-rock interactions in the lowland aquifer composed of Quaternary deposits are mostly responsible for the hydrochemistry of groundwater resources. The local meteoric water line (δD = 6.38 δ18O + 3.36) indicated that the water originates from precipitation, the altitude effect, and evaporation. The δ15N and δ18O in NO3- indicated the addition of manure and septic waste in the lowland aquifer. The results imply that detecting source areas of anthropogenic NO3- prior to serious groundwater pollution is important (regardless of the NO3- concentration), and isotope analyses would aid in developing appropriate action plans to mitigate or prevent future water pollution by NO3- in island regions.
Collapse
Affiliation(s)
- Naoyuki Yoshihara
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan.
| | - Shinji Matsumoto
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan
| | - Isao Machida
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan
| | - Youhei Uchida
- Renewable Energy Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 2-2-9 Machi-ikedai, Koriyama, 963-0298 Japan
| |
Collapse
|
25
|
Qiu H, Gui H, Xu H, Cui L, Yu H. Occurrence, controlling factors and noncarcinogenic risk assessment based on Monte Carlo simulation of fluoride in mid-layer groundwater of Huaibei mining area, North China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159112. [PMID: 36181800 DOI: 10.1016/j.scitotenv.2022.159112] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/03/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Fluoride groundwater pollution is a major challenge to ensuring a safe groundwater supply for the global community. This study emphasized mid-layer groundwater (MG) as the main water supply source in the Huaibei mining area, North China. A total of 74 groundwater samples were taken to determine the hydrochemistry, source provenance, driving forces of high-fluoride groundwater, and associated probabilistic health risk using Monte Carlo simulation. The fluoride concentration in 55.56 % of the MG samples exceeded the Chinese drinking water permissible limit of 1 mg/L. In addition, MG is characterized by the hydrochemical faces of HCO3- type and Na+ type, lower Ca2+ and higher TDS concentration. Fluoride enrichment was predominantly controlled by the geogenic sources of fluorite dissolution, silicate weathering and lateral supply from the Carboniferous Taiyuan Formation limestone aquifer (CLA). In addition, the driving forces of high-fluoride groundwater were an alkaline environment, low Ca2+ concentration, high Na+ and HCO3- concentration, cation exchange between Ca2+ and Na+ on the surface of clay minerals, and competitive adsorption of HCO3-. The health risk assessment of F- for noncarcinogenic risk showed that the HQ values of 28.16 % of groundwater samples exceeded the safety limit of 1 for infants, followed by 2.1 % for children and 0 % for both adult females and males. Infants and children are more prone to the impact of excessive F-. The findings of this study will provide new insights into the geochemical behavior of F- and the safety of drinking water.
Collapse
Affiliation(s)
- Huili Qiu
- National Engineering Research Center of Coal Mine Water Hazard Controlling, Suzhou University, Suzhou 234000, PR China; School of Information Engineering, Suzhou University, Suzhou 234000, PR China; Key Laboratory of Mine Water Resource Utilization of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, PR China
| | - Herong Gui
- National Engineering Research Center of Coal Mine Water Hazard Controlling, Suzhou University, Suzhou 234000, PR China; Key Laboratory of Mine Water Resource Utilization of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, PR China.
| | - Haifeng Xu
- School of Information Engineering, Suzhou University, Suzhou 234000, PR China
| | - Lin Cui
- School of Information Engineering, Suzhou University, Suzhou 234000, PR China
| | - Hao Yu
- National Engineering Research Center of Coal Mine Water Hazard Controlling, Suzhou University, Suzhou 234000, PR China; Key Laboratory of Mine Water Resource Utilization of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, PR China
| |
Collapse
|
26
|
Qiu H, Gui H, Xu H, Cui L, Li Z, Yu H. Quantifying nitrate pollution sources of shallow groundwater and related health risks based on deterministic and Monte Carlo models: A study in Huaibei mining area, Huaibei coalfield, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114434. [PMID: 38321656 DOI: 10.1016/j.ecoenv.2022.114434] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/22/2022] [Accepted: 12/12/2022] [Indexed: 02/08/2024]
Abstract
Nitrate pollution in groundwater is a global environmental concern. As a result, accurate identification of potential sources for such pollution is of critical significance to the effective control of groundwater quality. In this study, forty-nine shallow groundwater samples were collected from the Huaibei mining area. Hydro-chemical characterization, geospatial analysis technique, dual nitrate isotopes (δ15N-NO3- and δ18O-NO3-), Bayesian model and health risk assessment model were adopted for exploring the conditions, sources, proportion, and potential health risks of nitrate pollution for the first time in the study area. The results showed that the nitrate concentration ranged from 0.00 to 293.21 mg/L, and that 18.37% groundwater samples exceeded the standard of drinking water in China (GB 5749-2006). Based on the dual isotopic values of nitrate, it could be concluded that nitrification was dominated migration and transformation process of nitrogen. The results of Bayesian model showed that the proportional contributions of the potential nitrate pollution sources in shallow groundwater were manure and sewage (M&S) (39.54 %), NH4+ in fertilizer and precipitation (NHF&P) (34.93 %), soil nitrogen (SN) (14.89 %), and NO3- in atmospheric deposition (NAD) (10.64 %). The health risk assessment indicated that non-carcinogenic risks posed by NO3--N was higher for children than adults. The primary exposure pathway was oral ingestion. Monte Carlo simulation were applied to evaluate model uncertainty. The probabilities of non-carcinogenic risks were up to 12.54 % for children and 5.22 % for adults. In order to protect water quality and drinking water safety, it was suggested that effective nitrate reduction strategies and better management practices can be implemented.
Collapse
Affiliation(s)
- Huili Qiu
- National Engineering Research Center of Coal Mine Water Hazard Controlling, Suzhou University, Suzhou 234000, PR China; School of Information Engineering, Suzhou University, Suzhou 234000, PR China; Key Laboratory of Mine Water Resource Utilization of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, PR China
| | - Herong Gui
- National Engineering Research Center of Coal Mine Water Hazard Controlling, Suzhou University, Suzhou 234000, PR China; Key Laboratory of Mine Water Resource Utilization of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, PR China.
| | - Haifeng Xu
- School of Information Engineering, Suzhou University, Suzhou 234000, PR China.
| | - Lin Cui
- School of Information Engineering, Suzhou University, Suzhou 234000, PR China
| | - Zhichun Li
- National Engineering Research Center of Coal Mine Water Hazard Controlling, Suzhou University, Suzhou 234000, PR China
| | - Hao Yu
- National Engineering Research Center of Coal Mine Water Hazard Controlling, Suzhou University, Suzhou 234000, PR China
| |
Collapse
|
27
|
Li Z, Yang Q, Xie C, Lu X. Source identification and health risks of nitrate contamination in shallow groundwater: a case study in Subei Lake basin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:13660-13670. [PMID: 36136183 DOI: 10.1007/s11356-022-23129-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Nitrate pollution of groundwater has become a global concern as it can affect drinking water quality and human health. In this paper, an extensive hydrochemical investigation was performed to assess the spatial distribution, source identification, and health risk of groundwater nitrate pollution in the Subei Lake basin. The prevalent pollutant, nitrate (NO3-), was identified based on descriptive statistical method and box plots, and most of the other parameters of groundwater samples met water standards and can be used for drinking purpose. The results showed that nearly 23.53% of groundwater samples displays the NO3- concentrations higher than the limit of 50 mg/L recommended by the World Health Organization, and the highest nitrate content (199 mg/L) is mainly distributed around the Mukai Lake. Piper triangle diagram demonstrated that the dominated anions of hydrochemical types exhibit a gradual evolving trend from HCO3- to SO42- and Cl- with increasing nitrate concentration. The correspondence analysis suggested that agricultural activities are identified as the most possible source of nitrate contamination, while the higher content of other parameters in individual groundwater samples may be controlled by natural factors. The impacts of pollutant NO3- on human health were quantified using human health risk assessment method, and results showed that the order of non-carcinogenic health risk values through drinking water intake is Infants>Children>Adult males>Adult females, and 65%, 53%, 41%, and 35% of samples exceed the acceptable risk level (hazard quotient=1), respectively. The main findings obtained from this study can provide valuable insight on drinking water safety and groundwater pollution prevention.
Collapse
Affiliation(s)
- Zijun Li
- School of Geographical Sciences, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Key Laboratory of Environment Change and Ecological Construction, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Technology Innovation Center for provided in the referenceRemote Sensing Identification of Environmental Change Hebei Normal University, Shijiazhuang, 050024, China
| | - Qingchun Yang
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun, 130021, People's Republic of China.
| | - Chuan Xie
- Geothermal Institute of Hydrological Engineering Geological Survey, Shijiazhuang, 050000, People's Republic of China
| | - Xingyu Lu
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun, 130021, People's Republic of China
| |
Collapse
|
28
|
Shu W, Wang P, Zhao J, Ding M, Zhang H, Nie M, Huang G. Sources and migration similarly determine nitrate concentrations: Integrating isotopic, landscape, and biological approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158216. [PMID: 36028031 DOI: 10.1016/j.scitotenv.2022.158216] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/04/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Rapid land use change has significantly increased nitrate (NO3-) loading to rivers, leading to eutrophication, and posing water security problems. Determining the sources of NO3- to waters and the underlying influential factors is critical for effectively reducing pollution and better managing water resources. Here, we identified the sources and influencing mechanisms of NO3- in a mixed land-use watershed by integrating stable isotopes (δ15N-NO3- and δ18O-NO3-), molecular biology, water chemistry, and landscape metrics measurements. Weak transformation processes of NO3- were identified in the river, as evinced by water chemistry, isotopes, species compositions, and predicted microbial genes related to nitrogen metabolism. NO3- concentrations were primarily influenced by exogenous inputs (i.e., from soil nitrogen (NS), nitrogen fertilizer (NF), and manure & sewage (MS)). The proportions of NO3- sources seasonally varied. In the wet season, the source contributions followed the order of NS (38.6 %) > NF (31.4 %) > atmospheric deposition (ND, 16.2 %) > MS (13.8 %). In the dry season, the contributions were in the order of MS (39.2 %) > NS (29.2 %) > NF (29 %) > ND (2.6 %). Farmland and construction land were the original factors influencing the spatial distribution of NO3- in the wet and dry seasons, respectively, while slope, basin relief (HD), hypsometric integral (HI), and COHESION, HD were the primary indicators associated with NO3- transport in the wet and dry seasons, respectively. Additionally, spatial scale differences were observed for the effects of landscape structure on NO3- concentrations, with the greatest effect at the 1000-m buffer zone scale in the wet season and at the sub-basin scale in the dry season. This study overcomes the limitation of isotopes in identifying nitrate sources by combining multiple approaches and provides new research perspectives for the determination of nitrate sources and migration in other watersheds.
Collapse
Affiliation(s)
- Wang Shu
- School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, Jiangxi, China; Sino-Danish College of University of Chinese Academy of Sciences, Beijing 101408, China; Sino-Danish Centre for Education and Research, Beijing 101408, China
| | - Peng Wang
- School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, Jiangxi, China.
| | - Jun Zhao
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China
| | - Minjun Ding
- School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| | - Hua Zhang
- School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| | - Minghua Nie
- School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| | - Gaoxiang Huang
- School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| |
Collapse
|
29
|
Fan J, Deng L, Wang W, Yi X, Yang Z. Contamination, Source Identification, Ecological and Human Health Risks Assessment of Potentially Toxic-Elements in Soils of Typical Rare-Earth Mining Areas. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15105. [PMID: 36429823 PMCID: PMC9690513 DOI: 10.3390/ijerph192215105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
The mining and leaching processes of rare-earth mines can include the entry of potentially toxic elements (PTEs) into the environment, causing ecological risks and endangering human health. However, the identification of ecological risks and sources of PTEs in rare-earth mining areas is less comprehensive. Hence, we determine the PTE (Co, Cr, Cu, Mn, Ni, Pb, Zn, V) content in soils around rare-earth mining areas in the south and analyze the ecological health risks, distribution characteristics, and sources of PTEs in the study area using various indices and models. The results showed that the average concentrations of Co, Mn, Ni, Pb and Zn were higher than the soil background values, with a maximum of 1.62 times. The spatial distribution of PTEs was not homogeneous and the hot spots were mostly located near roads and mining areas. The ecological risk index and the non-carcinogenic index showed that the contribution was mainly from Co, Pb, and Cr, which accounted for more than 90%. Correlation analysis and PMF models indicated that eight PTEs were positively correlated, and rare-earth mining operations (concentration of 22.85%) may have caused Pb and Cu enrichment in soils in the area, while other anthropogenic sources of pollution were industrial emissions and agricultural pollution. The results of the study can provide a scientific basis for environmental-pollution assessment and prevention in rare-earth mining cities.
Collapse
Affiliation(s)
- Jiajia Fan
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang’an University, Xi’an 710064, China
| | - Li Deng
- Ecological Environment Planning and Environmental Protection Technology Center of Qinghai Province, Xining 810007, China
| | - Weili Wang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Xiu Yi
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang’an University, Xi’an 710064, China
| | - Zhiping Yang
- Jiangxi Research Academy of Ecological Civilization, Nanchang 330036, China
| |
Collapse
|