1
|
Zhou J, Liang C, Li J, Gu J, Salamova A, Liu L. Consumer products are important reservoirs and sources of organophosphate tri-esters and di-esters: Characteristics, mass inventory, and implication for waste management. J Environ Sci (China) 2025; 151:550-559. [PMID: 39481961 DOI: 10.1016/j.jes.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 11/03/2024]
Abstract
Numerous studies documented the occurrence of organophosphate tri-esters (tri-OPEs) and di-esters (di-OPEs) in the environment. Little information is available on their occurrence in waste consumer products, reservoirs and sources of these chemicals. This study collected and analyzed 92 waste consumer products manufactured from diverse polymers, including polyurethane foam (PUF), polystyrene (PS), acrylonitrile butadiene styrene (ABS), polypropylene (PP), and polyethylene (PE) to obtain information on the occurrence and profiles of 16 tri-OPEs and 10 di-OPEs. Total concentrations of di-OPEs (18-370,000 ng/ g, median 1,700 ng/g) were one order of magnitude lower than those of tri-OPEs (94-4,500,000 ng/g, median 5,400 ng/g). The concentrations of both tri- and di-OPEs in products made of PUF, PS, and ABS were orders of magnitude higher than those made of PP and PE. The compositional patterns of OPEs varied among different polymer types but were generally dominated by bisphenol A bis(diphenyl phosphate), triphenyl phosphate, tris(1-chloro-2-propyl) phosphate, di-phenyl phosphate (DPHP), and bis (2-ethylhexyl) phosphate. Two industrially applied di-OPEs (di-n-butyl phosphate and DPHP) exhibited higher levels than their respective tri-OPEs, contrary to their production volumes. Some non-industrially applied chlorinated di-OPEs were also detected, with concentrations up to 97,000 ng/g. These findings suggest that degradation of tri-OPEs during the manufacturing and use of products is an important source of di-OPEs. The mass inventories of tri-OPEs and di-OPEs in consumer products were estimated at 3,100 and 750 tons/year, respectively. This study highlights the importance of consumer products as emission sources of a broad suite of OPEs.
Collapse
Affiliation(s)
- Jie Zhou
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Chan Liang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Jinyun Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Jiayi Gu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Amina Salamova
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Georgia 30322, USA
| | - Liangying Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China.
| |
Collapse
|
2
|
Zhang Q, Zheng S, Shi X, Luo C, Huang W, Huang Y, Wu W, Wu K. Physiological and transcriptomic changes of zebrafish (Danio rerio) in response to Isopropylate Triphenyl Phosphate (IPPP) exposure. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 110:104528. [PMID: 39121912 DOI: 10.1016/j.etap.2024.104528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Isopropylate Triphenyl Phosphate (IPPP), a novel organophosphorus flame retardant, has become a widespread environmental pollutant. However, the toxic effects and mechanisms of IPPP remain unclear. In this study, we evaluated the neurodevelopmental toxicity effects of IPPP on zebrafish embryonic development, neurobehavior, and physiological and transcriptomic changes. The results showed that IPPP induced adverse developments such as low survival rates and hatching rates, decreased body length and eye distance, and also led to increased heart rates and embryonic malformation rates. The developmental defects mainly included typical pericardial edema, eye deformities, and a reduction in the number of newborn neurons. Mitochondrial energy metabolism disorders and apoptosis of cardiomyocytes may be responsible for heart malformation. Behavioral results showed that IPPP caused abnormal changes in swimming speed, total swimming distance and trajectory, and showed a low-dose effect. In addition, the decreased activity of neurotransmitters such as acetylcholinesterase (AchE) and dopamine (DA), and the changes in genes related to the central nervous system (CNS) and metabolism pathway may be the causes of neurodevelopmental toxicity of IPPP. Meanwhile, IPPP induced oxidative stress and apoptosis, and changed the ATPase activity of zebrafish larvae by altering nuclear factor erythroid2-related factor 2 (Nrf2) and mitochondrial signaling pathways, respectively. Transcriptome sequencing results indicated that Cytochrome P450 and drug metabolism, Energy metabolism-related pathways, Glutathione metabolism, Retinoid acid (RA) and REDOX signaling pathways were significantly enriched, and most of the genes in these pathways were up-regulated after IPPP treatment, which may be new targets for IPPP-induced neurodevelopment. In summary, the results of this study provide an important reference for a comprehensive assessment of the toxic effects and health risks of the new pollutant IPPP.
Collapse
Affiliation(s)
- Qiong Zhang
- Department of Preventive Medicine, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Shukai Zheng
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Xiaoling Shi
- Department of Preventive Medicine, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Congying Luo
- Department of Preventive Medicine, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Wenlong Huang
- Department of Forensic Medicine, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Yanhong Huang
- Shantou University Medical College-Faculty of Medicine of University of Manitoba Joint Laboratory of Biological Psychiatry, Mental Health Center of Shantou University, Shantou, Guangdong 515065, China
| | - Wenying Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Kusheng Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou, Guangdong 515041, China.
| |
Collapse
|
3
|
Gao M, Zhang Q, Wu S, Wu L, Cao P, Zhang Y, Rong L, Fang B, Yuan C, Yao Y, Wang Y, Sun H. Contamination Status of Novel Organophosphate Esters Derived from Organophosphite Antioxidants in Soil and the Effects on Soil Bacterial Communities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10740-10751. [PMID: 38771797 DOI: 10.1021/acs.est.3c10611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
The contamination status of novel organophosphate esters (NOPEs) and their precursors organophosphite antioxidants (OPAs) and hydroxylated/diester transformation products (OH-OPEs/di-OPEs) in soils across a large-scale area in China were investigated. The total concentrations of the three test NOPEs in soil were 82.4-716 ng g-1, which were considerably higher than those of traditional OPEs (4.50-430 ng g-1), OPAs (n.d.-30.8 ng g-1), OH-OPEs (n.d.-0.49 ng g-1), and di-OPEs (0.57-21.1 ng g-1). One NOPE compound, i.e., tris(2,4-di-tert-butylphenyl) phosphate (AO168 = O) contributed over 65% of the concentrations of the studied OPE-associated contaminants. A 30-day soil incubation experiment was performed to confirm the influence of AO168 = O on soil bacterial communities. Specific genera belonging to Proteobacteria, such as Lysobacter and Ensifer, were enriched in AO168 = O-contaminated soils. Moreover, the ecological function of methylotrophy was observed to be significantly enhanced (t-test, p < 0.01) in soil treated with AO168 = O, while nitrogen fixation was significantly inhibited (t-test, p < 0.01). These findings comprehensively revealed the contamination status of OPE-associated contaminants in the soil environment and provided the first evidence of the effects of NOPEs on soil microbial communities.
Collapse
Affiliation(s)
- Meng Gao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qiuyue Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shanxing Wu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lina Wu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Peiyu Cao
- Department of Global Development, College of Agriculture and Life Science, and Cornell Atkinson Center for Sustainability, Cornell University, Ithaca, New York 14850, United States
| | - Yaozhi Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lili Rong
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Bo Fang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Chaolei Yuan
- School of Agriculture, Sun Yat-sen University, Shenzhen 518107, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
4
|
Zhang R, Xie S, Li J, Jiang H, Zhang ZE, Liu F, Zhao S, Wang Y, Yu K, Zhang G. Occurrence, distribution, and sources of organophosphate esters (OPEs) in the air of the Indo-China Peninsula Based on a Passive Air Monitoring Network. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172762. [PMID: 38670350 DOI: 10.1016/j.scitotenv.2024.172762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Organophosphate esters (OPEs) are a class of emerging and ubiquitous contaminants that are attracting increasing attention, and their large-scale use as flame retardants and plasticizers has led to their pervasive presence in the environment, although their broader impacts remain unknown. In this study, 11 OPEs were measured in the atmosphere of Southeast Asia and Southwest China during 2016. The ∑11OPEs were higher in this region (78.0-1670 pg/m3, mean 458 pg/m3) than in many remote areas, lower than in developed regions, and comparable to levels in many developing country cities. Generally, the ∑11OPEs were higher in urban (105-1670 pg/m3, mean 538 pg/m3) than in suburban (78.0-1350 pg/m3, mean 388 pg/m3). Seasonal variations of OPEs in the air were more pronounced in Cambodia and Laos, especially for Triphenyl Phosphate (TPHP). Seasonal variations of ∑11OPEs in most regions correspond to changes in temperature and rainfall. Biomass burning may be also a factor in facilitating OPE emissions from biomass materials or soil into the atmosphere of Southeast Asia. The random forest analysis showed that among these, rainfall had the greatest effect on the seasonal variation of atmospheric OPE concentrations, followed by biomass burning and temperature. The inter-regional variation of ∑11OPEs in Southeast Asia was related to population and economic development in each region. Airflow trajectories indicated that the OPEs in this region were mainly from local sources. The health risk assessment revealed that the inhalation exposure risks of OPEs to the residents in the study areas were very low during the sampling period, but may be increasing.
Collapse
Affiliation(s)
- Ruijie Zhang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, PR China.
| | - Songlin Xie
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, PR China
| | - Jun Li
- State Key Laboratory of Organic Geochemistry, Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Haoyu Jiang
- State Key Laboratory of Organic Geochemistry, Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Zheng-En Zhang
- State Key Laboratory of Organic Geochemistry, Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Fang Liu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, PR China
| | - Shizhen Zhao
- State Key Laboratory of Organic Geochemistry, Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Yinghui Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, PR China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, PR China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, PR China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| |
Collapse
|
5
|
Hoang AQ, Tue NM, Goto A, Karyu R, Tuyen LH, Viet PH, Matsukami H, Suzuki G, Takahashi S, Kunisue T. Bioaccessibility of halogenated flame retardants and organophosphate esters in settled dust: Influences of specific dust matrices from informal e-waste and end-of-life vehicle processing areas in Vietnam. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172045. [PMID: 38554968 DOI: 10.1016/j.scitotenv.2024.172045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Bioaccessibility of halogenated flame retardants (HFRs) and organophosphorus esters (OPEs) is necessarily investigated to provide more accurate risk assessment and information about absorption behavior of these pollutants. In this study, total and bioaccessible concentrations of HFRs (including legacy and alternative substances) and OPEs were determined in settled dust samples collected from Vietnamese e-waste and end-of-life vehicle (ELV) processing areas. Concentrations of both HFRs and OPEs were significantly higher in the e-waste dust than ELV dust. Bioavailability of HFRs and OPEs in dust was determined by using an in vitro assay with human-simulated digestive fluids, dialysis membrane, and Tenax® TA sorptive sink. Bioaccessibility of HFRs was markedly lower than that of OPEs, which could be largely due to higher hydrophobicity of HFRs compared to OPEs. Bioaccessibility of almost hydrophobic compounds were markedly lower in the e-waste dust (containing micronized plastic debris) than in the ELV dust (containing oily materials), suggesting the influence of specific dust matrices on pollutant bioaccessibility. Although the daily uptake doses of selected HFRs and OPEs from dust were markedly higher in the e-waste sites compared to the ELV sites, the direct exposure risk was not significant. Our results suggest that bioaccessibility can partly explain the differences between dust and uptake profiles, which may relate to accumulation profiles of HFRs and OPEs in human samples.
Collapse
Affiliation(s)
- Anh Quoc Hoang
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi 11000, Viet Nam
| | - Nguyen Minh Tue
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan; Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi 11400, Viet Nam
| | - Akitoshi Goto
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Ryogo Karyu
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Le Huu Tuyen
- University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi 11400, Viet Nam
| | - Pham Hung Viet
- Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi 11400, Viet Nam
| | - Hidenori Matsukami
- Material Cycles Division, National Institute for Environmental Studies, Tsukuba 305-8506, Japan
| | - Go Suzuki
- Material Cycles Division, National Institute for Environmental Studies, Tsukuba 305-8506, Japan
| | - Shin Takahashi
- Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan
| | - Tatsuya Kunisue
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan.
| |
Collapse
|
6
|
Wei L, Li S, Ma Y, Ye S, Yuan Y, Zeng Y, Raza T, Xiao F. Curcumin attenuates diphenyl phosphate-induced apoptosis in GC-2spd(ts) cells through activated autophagy via the Nrf2/P53 pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:2032-2042. [PMID: 38095090 DOI: 10.1002/tox.24092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/19/2023] [Accepted: 12/01/2023] [Indexed: 03/09/2024]
Abstract
Diphenyl phosphate (DPhP) is one of the frequently used derivatives of aryl phosphate esters and is used as a plasticizer in industrial production. Like other plasticizers, DPhP is not chemically bound and can easily escape into the environment, thereby affecting human health. DPhP has been associated with developmental toxicity, reproductive toxicity, neurodevelopmental toxicity, and interference with thyroid homeostasis. However, understanding of the underlying mechanism of DPhP on the reproductive toxicity of GC-2spd(ts) cells remains limited. For the first time, we investigated the effect of DPhP on GC-2spd(ts) cell apoptosis. By decreasing nuclear factor erythroid-derived 2-related factor (Nrf2)/p53 signaling, DPhP inhibited autophagy and promoted apoptosis. DPhP reduced total antioxidant capacity and nuclear Nrf2 and its downstream target gene expression. In addition, we investigated the protective effects of Curcumin (Cur) against DPhP toxicity. Cur attenuated the DPhP-induced rise in p53 expression while increasing Nrf2 expression. Cur inhibited DPhP-induced apoptosis in GC-2spd(ts) cells by activating autophagy via Nrf2/p53 signaling. In conclusion, our study provides new insights into the reproductive toxicity hazards of DPhP and demonstrates that Cur is an important therapeutic agent for alleviating DPhP-induced reproductive toxicity by regulating Nrf2/p53 signaling.
Collapse
Affiliation(s)
- Lai Wei
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, People's Republic of China
| | - Siwen Li
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, People's Republic of China
| | - Yu Ma
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, People's Republic of China
| | - Shuzi Ye
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, People's Republic of China
| | - Yu Yuan
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, People's Republic of China
| | - Yuan Zeng
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, People's Republic of China
| | - Tausif Raza
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, People's Republic of China
| | - Fang Xiao
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, People's Republic of China
| |
Collapse
|
7
|
Folarin BT, Poma G, Yin S, Altamirano JC, Oluseyi T, Badru G, Covaci A. Assessment of legacy and alternative halogenated organic pollutants in outdoor dust and soil from e-waste sites in Nigeria: Concentrations, patterns, and implications for human exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123032. [PMID: 38036088 DOI: 10.1016/j.envpol.2023.123032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/10/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023]
Abstract
E-waste is often processed informally, particularly in developing countries, resulting in the release of harmful chemicals into the environment. This study investigated the co-occurrence of selected persistent organic pollutants (POPs), including legacy and alternative halogenated flame retardants (10 polybrominated diphenyl ethers (PBDEs), decabromodiphenyl ethane (DBDPE), syn and anti-dechlorane plus (DP)), 32 polychlorinated biphenyls (PCBs) and 12 organochlorine pesticides (OCPs), in 20 outdoor dust and 49 soil samples from 7 e-waste sites in Nigeria. This study provides the first report on alternative flame retardants (DBDPE and DP) in Nigeria. The total concentration range of the selected classes of compounds was in the order: ∑10PBDEs (44-12300 ng/g) > DBDPE (4.9-3032 ng/g) > ∑2DP (0.7-278 ng/g) > ∑32PCBs (4.9-148 ng/g) > ∑12OCPs (1.9-25 ng/g) for dust, and DBDPE (4.9-9647 ng/g) > ∑10PBDEs (90.3-7548 ng/g) > ∑32PCBs (6.1-5025 ng/g) > ∑12OCPs (1.9-250 ng/g) > ∑2DP (2.1-142 ng/g) for soil. PBDEs were the major contributors to POP pollution at e-waste dismantling sites, while PCBs were the most significant contributors at e-waste dumpsites. DBDPE was found to be significantly associated with pollution at both e-waste dismantling and dumpsites. Estimated daily intake (EDI) via dust and soil ingestion and dermal adsorption routes ranged from 1.3 to 2.8 ng/kg bw/day and 0.2-2.9 ng/kg bw/day, respectively. In the worst-case scenario, EDI ranged from 2.9 to 10 ng/kg bw/day and 0.8-5.8 ng/kg bw/day for dust and soil, respectively. The obtained intake levels posed no non-carcinogenic risk, but could increase the incidence of cancer at some of the studied e-waste sites, with values exceeding the USEPA cancer risk lower limit (1.0 × 10-6). Overall, our results suggest that e-waste sites act as emission point sources of POPs.
Collapse
Affiliation(s)
- Bilikis T Folarin
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium; Department of Chemistry, University of Lagos, Lagos State, Nigeria; Chemistry Department, Chrisland University, Ogun State, 23409, Nigeria
| | - Giulia Poma
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Shanshan Yin
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China.
| | - Jorgelina C Altamirano
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium; Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA), CONICET-UNCuyo-Government of Mendoza, P.O. Box. 331, (5500), Mendoza, Argentina; Universidad Nacional de Cuyo, Facultad de Ciencias Exactas y Naturales, (5500), Mendoza, Argentina
| | - Temilola Oluseyi
- Department of Chemistry, University of Lagos, Lagos State, Nigeria
| | - Gbolahan Badru
- Department of Geographical and Environmental Education, Lagos State University of Education, Oto-Ijanikin, Lagos State, Nigeria
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| |
Collapse
|
8
|
Liu B, Ding L, Lv L, Yu Y, Dong W. Organophosphate esters (OPEs) and novel brominated flame retardants (NBFRs) in indoor dust: A systematic review on concentration, spatial distribution, sources, and human exposure. CHEMOSPHERE 2023; 345:140560. [PMID: 37898464 DOI: 10.1016/j.chemosphere.2023.140560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/14/2023] [Accepted: 10/26/2023] [Indexed: 10/30/2023]
Abstract
In recent years, the indoor exposure of organophosphate esters (OPEs) and novel brominated flame retardants (NBFRs) has received widespread attention worldwide. Using published data on 6 OPEs in 23 countries (n = 1437) and 2 NBFRs in 18 countries (n = 826) in indoor dust, this study systematically reviewed the concentrations, spatial distribution, sources and exposure risk of 8 flame retardants (FRs) worldwide. Tris(chloroisopropyl)phosphate (TCIPP) is the predominant FR with a median concentration of 1050 ng g-1 ΣCl-OPEs are significantly higher than Σnon-Cl-OPEs (p < 0.05). ΣOPEs in indoor dust from industrially-developed countries are higher than those from the countries lacking industrial development. Household appliances, electronics and plastic products are the main sources of non-Cl-OPEs and NBFRs, while interior decorations and materials contribute abundant Cl-OPEs in indoor dust. The mean hazard index (HI) of TCIPP for children is greater than 1, possibly posing non-cancer risk for children in some countries. The median ILCRs for 3 carcinogenic OPEs are all less than 10-6, suggesting no cancer risk induced by these compounds for both adults and children. This review helps to understand the composition, spatial pattern and human exposure risk of OPEs and NBFRs in indoor dust worldwide.
Collapse
Affiliation(s)
- Baolin Liu
- College of Chemistry, Changchun Normal University, Changchun, 130032, China
| | - Lingjie Ding
- College of Chemistry, Changchun Normal University, Changchun, 130032, China
| | - Linyang Lv
- College of Chemistry, Changchun Normal University, Changchun, 130032, China
| | - Yong Yu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
| | - Weihua Dong
- College of Geographical Sciences, Changchun Normal University, Changchun, 130032, China.
| |
Collapse
|
9
|
Yang S, Wu J, Wang H, Yang Q, Zhang H, Yang L, Li D, Deng Y, Zhong Y, Peng P. New dechlorination products and mechanisms of tris(2-chloroethyl) phosphate by an anaerobic enrichment culture from a vehicle dismantling site. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122704. [PMID: 37806429 DOI: 10.1016/j.envpol.2023.122704] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/15/2023] [Accepted: 10/04/2023] [Indexed: 10/10/2023]
Abstract
End-of-life vehicles (ELVs) dismantling sites are the notorious hotspots of chlorinated organophosphate esters (Cl-OPEs). However, the microbial-mediated dechlorination of Cl-OPEs at such sites has not yet been explored. Herein, the dechlorination products, pathways and mechanisms of tris(2-chloroethyl) phosphate (TCEP, a representative Cl-OPE) by an anaerobic enrichment culture (ZNE) from an ELVs dismantling plant were investigated. Our results showed that dechlorination of TCEP can be triggered by reductive transformation to form bis(2-chloroethyl) phosphate (BCEP), mono-chloroethyl phosphate (MCEP) and by hydrolytic dechlorination to form bis(2-chloroethyl) 2-hydroxyethyl phosphate (TCEP-OH), 2-chloroethyl bis(2-hydroxyethyl) phosphate (TCEP-2OH), 2-chloroethyl (2-hydroxyethyl) hydrogen phosphate (BCEP-OH). The combination of 16S rRNA gene amplicon sequencing, quantitative real-time PCR (qPCR) and metagenomics revealed that the Dehalococcoides played an important role in the reductive transformation of TCEP to BCEP and MCEP. A high-quality metagenome-assembled genome (completeness >99% and contamination <1%) of Dehalococcoides was obtained. The sulfate-reducing bacteria harboring haloacid dehalogenase genes (had) may be responsible for the hydrolytic dechlorination of TCEP. These findings provide insights into microbial-mediated anaerobic transformation products and mechanisms of TCEP at ELVs dismantling sites, having implications for the environmental fate and risk assessment of Cl-OPEs at those sites.
Collapse
Affiliation(s)
- Sen Yang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Maco Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Junhong Wu
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Maco Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Heli Wang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Maco Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qian Yang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Maco Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huanheng Zhang
- Guangzhou Environmental Protection Investment Group Co., Ltd., Guangzhou, 510016, China
| | - Lihua Yang
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Dan Li
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Yirong Deng
- Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangdong Provincial Academy of Environmental Science, Guangzhou, 510045, China
| | - Yin Zhong
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Maco Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou, 510640, China.
| | - Ping'an Peng
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Maco Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou, 510640, China
| |
Collapse
|
10
|
Hoang MTT, Le GT, Kiwao K, Duong HT, Nguyen TQ, Phan TQ, Bui MQ, Truong DA, Trinh HT. Occurrence and risk of human exposure to organophosphate flame retardants in indoor air and dust in Hanoi, Vietnam. CHEMOSPHERE 2023; 328:138597. [PMID: 37028719 DOI: 10.1016/j.chemosphere.2023.138597] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 03/07/2023] [Accepted: 04/02/2023] [Indexed: 06/19/2023]
Abstract
The presence and distribution of thirteen organophosphate flame retardants (OPFRs) were investigated in indoor air and dust samples collected in Hanoi, Vietnam. The total OPFRs (ƩOPFRs) concentrations in indoor air and dust samples were 42.3-358 ng m-3 (median 101 ng m-3) and 1290-17,500 ng g-1 (median 7580 ng g-1), respectively. The profile of OPFRs in both indoor air and dust indicated that tris(1-chloro-2-propyl) phosphate (TCIPP) was the most dominant compound with a median concentration of 75.3 ng m-3 and 3620 ng g-1, contributing 75.2% and 46.1% to ƩOPFRs concentrations in indoor air and dust, respectively, followed by tris(2-butoxyethyl) phosphate (TBOEP), with a median concentration of 16.3 ng m-3 and 2500 ng g-1, contributing 14.1% and 33.6% to ƩOPFRs concentrations in indoor air and dust, respectively. The levels of OPFRs in the indoor air samples and corresponding indoor dust samples showed a strong positive correlation. The total estimated daily intakes (EDItotal) of ƩOPFRs (via air inhalation, dust ingestion, and dermal absorption) for adults and toddlers under the median and high exposure scenarios were 36.7 and 160 ng kg-1 d-1, and 266 and 1270 ng kg-1 d-1, respectively. Among the investigated exposure pathways, dermal absorption was a primary exposure pathway to OPFRs for both toddlers and adults. The hazard quotients (HQ) ranged from 5.31 × 10-8 to 6.47 × 10-2 (<1), and the lifetime cancer risks (LCR) were from 2.05 × 10-11 to 7.37 × 10-8 (<10-6), indicating that human health risks from exposure to OPFRs in indoor environments are not significant.
Collapse
Affiliation(s)
- Minh Tue Thi Hoang
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 10000, Viet Nam; Le Quy Don Technical University, 236 Hoang Quoc Viet, Hanoi, 10000, Viet Nam
| | - Giang Truong Le
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 10000, Viet Nam
| | - Kadokami Kiwao
- The University of Kitakyushu, 1-1 Hibikino, Kitakyushu, 808-0135, Japan
| | - Hanh Thi Duong
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 10000, Viet Nam
| | - Trung Quang Nguyen
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 10000, Viet Nam
| | - Thang Quang Phan
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 10000, Viet Nam
| | - Minh Quang Bui
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 10000, Viet Nam
| | - Dung Anh Truong
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 10000, Viet Nam
| | - Ha Thu Trinh
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 10000, Viet Nam.
| |
Collapse
|
11
|
Hoang AQ, Takahashi S, Tuyen LH, Tue NM, Tu NM, Nguyen TTT, Tu MB. Polycyclic Aromatic Hydrocarbons in Air and Dust Samples from Vietnamese End-of-life Vehicle Processing Workshops: Contamination Status, Sources, and Exposure Risks. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 110:110. [PMID: 37306801 DOI: 10.1007/s00128-023-03757-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 06/01/2023] [Indexed: 06/13/2023]
Abstract
Concentrations of 18 unsubstituted polycyclic aromatic hydrocarbons (PAHs) and 11 methylated derivatives (Me-PAHs) were measured in polyurethane foam-based passive air (PUF-PAS) and settled dust samples collected from end-of-life vehicle (ELV) processing workshops in northern Vietnam. Concentrations of total 29 PAHs ranged from 42 to 95 (median 57) ng/m3 and from 860 to 18,000 (median 5700) ng/g in air and dust samples, respectively. PAH levels in ELV air and dust samples were 1.5 ± 0.4 and 9.4 ± 7.9 times higher than levels found in a control house, suggesting ELV processing as potential PAH emission sources. Concentrations and proportions of Me-PAHs in total PAHs of the ELV air (26% ± 7%) and dust (41% ± 14%) were higher than those found in control house (18% in both air and dust). The occurrence of PAHs and Me-PAHs in the ELV workshops are attributed to not only pyrogenic but also petrogenic sources (i.e., improper treatment and management of fuels, lubricants, and vehicle oils).
Collapse
Affiliation(s)
- Anh Quoc Hoang
- University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi, 10000, Vietnam.
| | - Shin Takahashi
- Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, 790-8566, Japan
| | - Le Huu Tuyen
- University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi, 10000, Vietnam
| | - Nguyen Minh Tue
- University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi, 10000, Vietnam
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan
| | - Nhat Minh Tu
- University of Science and Technology of Hanoi (USTH), 18 Hoang Quoc Viet, Hanoi, 10000, Vietnam
| | - Thuy Thi Thu Nguyen
- Faculty of Chemistry, TNU University of Science, Thai Nguyen University, Thai Nguyen, 24000, Vietnam
| | - Minh Binh Tu
- University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi, 10000, Vietnam
| |
Collapse
|
12
|
Hoang AQ, Tue NM, Tu MB, Suzuki G, Matsukami H, Tuyen LH, Viet PH, Kunisue T, Sakai SI, Takahashi S. A review on management practices, environmental impacts, and human exposure risks related to electrical and electronic waste in Vietnam: findings from case studies in informal e-waste recycling areas. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:2705-2728. [PMID: 36194303 DOI: 10.1007/s10653-022-01408-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/19/2022] [Indexed: 06/01/2023]
Abstract
Electrical and electronic waste (e-waste) has become a global concern, especially in developing countries. In this review, we conducted a literature survey of e-waste management practices, processing activities, and adverse effects in Vietnam, an emerging country in Southeast Asia, by gathering data from peer-reviewed articles published between 2009 and 2021. This is the first review paper to comprehensively discuss management and research aspects regarding e-waste in an Asian developing country. Due to the lack of an effective management and recycling system, a certain portion of Vietnamese e-waste has been processed by informal sectors without appropriate recycling and pollution control technology, resulting in localized contamination and human exposure to toxic chemicals. Primitive processing activities, such as manual dismantling, open burning, and plastic recycling, have been identified as important contributors to the environmental emission and human exposure to toxic elements (notably As, Mn, Ni, Pb, Zn) and organic pollutants like flame retardants, PAHs, PCBs, and dioxin-related compounds. Informal e-waste processing from these small-scale workshops can release pollutants at similar levels compared to large-scale facilities in developed countries. This fact suggests an urgent need to develop management best practices for e-waste in Vietnam as well as other emerging and developing countries, in order to increase recycling efficiency and minimize their adverse impacts on environmental and human health.
Collapse
Affiliation(s)
- Anh Quoc Hoang
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, 11000, Vietnam.
| | - Nguyen Minh Tue
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577, Japan
- Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi, 11400, Vietnam
| | - Minh Binh Tu
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, 11000, Vietnam
| | - Go Suzuki
- Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies (NIES), Tsukuba, 305-8506, Japan
| | - Hidenori Matsukami
- Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies (NIES), Tsukuba, 305-8506, Japan
| | - Le Huu Tuyen
- University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi, 11400, Vietnam
| | - Pham Hung Viet
- Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi, 11400, Vietnam
| | - Tatsuya Kunisue
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577, Japan
| | - Shin-Ichi Sakai
- Advanced Science, Technology and Management Research Institute of KYOTO, Kyoto, 600-8813, Japan
| | - Shin Takahashi
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, 790-8566, Japan
| |
Collapse
|
13
|
Brindhadevi K, Barceló D, Lan Chi NT, Rene ER. E-waste management, treatment options and the impact of heavy metal extraction from e-waste on human health: Scenario in Vietnam and other countries. ENVIRONMENTAL RESEARCH 2023; 217:114926. [PMID: 36435494 DOI: 10.1016/j.envres.2022.114926] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
Ho Chi Minh (HCM) City is the most important urban region of Vietnam, Southeast Asia. In recent times, the quantity of electronic waste (e-waste) has been growing by several thousand tonnes every year. In this research, some of the existing and developing technologies being employed for the recycling of e-waste have been reviewed. Accordingly, the paper has been divided into three sections namely, e-waste treatment technologies in Ho Chi Minh City, the effect of heavy metals on human health and the extraction of metals from e-waste using pyrolysis, hydrometallurgy, bioleaching, mechanical, and air classifier methods, respectively. The extraction of precious metals and heavy metals such as Cd, Cr, Pb, Hg, Cu, Se, and Zn from e-waste can be hazardous to human health. For example, lead causes hazards to the central and peripheral nervous systems, blood system and kidneys; copper causes liver damage; chronic exposure to cadmium ends up causing lung cancer and kidney damage, and mercury can cause brain damage. Thus, this study examines the key findings of many research and review articles published in the field of e-waste management and the health impacts of metal pollution.
Collapse
Affiliation(s)
- Kathirvel Brindhadevi
- Computational Engineering and Design Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam.
| | - Damià Barceló
- Catalan Institute for Water Research (ICRA-CERCA), C. Emili Grahit 101, 17003, Girona, Spain; IDAEA-CSIC, Department of Environmental Chemistry, C/Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Nguyen Thuy Lan Chi
- School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2601DA Delft, the Netherlands.
| |
Collapse
|