1
|
Gomes DS, Miranda FR, Fernandes KM, Farder-Gomes CF, Bastos DSS, Bernardes RC, Serrão JE. Acute exposure to fungicide fluazinam induces cell death in the midgut, oxidative stress and alters behavior of the stingless bee Partamona helleri (Hymenoptera: Apidae). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116677. [PMID: 38971098 DOI: 10.1016/j.ecoenv.2024.116677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/26/2024] [Accepted: 06/30/2024] [Indexed: 07/08/2024]
Abstract
Stingless bees (Hymenoptera: Meliponini) are pollinators of both cultivated and wild crop plants in the Neotropical region. However, they are susceptible to pesticide exposure during foraging activities. The fungicide fluazinam is commonly applied in bean and sunflower cultivation during the flowering period, posing a potential risk to the stingless bee Partamona helleri, which serves as a pollinator for these crops. In this study, we investigated the impact of acute oral exposure (24 h) fluazinam on the survival, morphology and cell death signaling pathways in the midgut, oxidative stress and behavior of P. helleri worker bees. Worker bees were exposed for 24 h to fluazinam (field concentrations 0.5, 1.5 and 2.5 mg a.i. mL-1), diluted in 50 % honey aqueous solution. After oral exposure, fluazinam did not harm the survival of worker bees. However, sublethal effects were revealed using the highest concentration of fluazinam (2.5 mg a.i. mL-1), particularly a reduction in food consumption, damage in the midgut epithelium, characterized by degeneration of the brush border, an increase in the number and size of cytoplasm vacuoles, condensation of nuclear chromatin, and an increase in the release of cell fragments into the gut lumen. Bees exposed to fluazinam exhibited an increase in cells undergoing autophagy and apoptosis, indicating cell death in the midgut epithelium. Furthermore, the fungicide induced oxidative stress as evidenced by an increase in total antioxidant and catalase enzyme activities, along with a decrease in glutathione S-transferase activity. And finally, fluazinam altered the walking behavior of bees, which could potentially impede their foraging activities. In conclusion, our findings indicate that fluazinam at field concentrations is not lethal for workers P. helleri. Nevertheless, it has side effects on midgut integrity, oxidative stress and worker bee behavior, pointing to potential risks for this pollinator.
Collapse
Affiliation(s)
- Davy Soares Gomes
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Franciane Rosa Miranda
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Kenner Morais Fernandes
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Cliver Fernandes Farder-Gomes
- Departamento de Ciências Naturais, Matemática e Educação, Universidade Federal de São Carlos, Campus Araras, Araras, São Paulo 13.600-970, Brazil
| | - Daniel Silva Sena Bastos
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | | | - José Eduardo Serrão
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil.
| |
Collapse
|
2
|
Wueppenhorst K, Alkassab AT, Beims H, Ernst U, Friedrich E, Illies I, Janke M, Kirchner WH, Seidel K, Steinert M, Yurkov A, Erler S, Odemer R. Honey bee colonies can buffer short-term stressor effects of pollen restriction and fungicide exposure on colony development and the microbiome. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116723. [PMID: 39024947 DOI: 10.1016/j.ecoenv.2024.116723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
Honey bees (Apis mellifera) have to withstand various environmental stressors alone or in combination in agriculture settings. Plant protection products are applied to achieve high crop yield, but residues of their active substances are frequently detected in bee matrices and could affect honey bee colonies. In addition, intensified agriculture could lead to resource limitation for honey bees. This study aimed to compare the response of full-sized and nucleus colonies to the combined stressors of fungicide exposure and resource limitation. A large-scale field study was conducted simultaneously at five different locations across Germany, starting in spring 2022 and continuing through spring 2023. The fungicide formulation Pictor® Active (active ingredients boscalid and pyraclostrobin) was applied according to label instructions at the maximum recommended rate on oil seed rape crops. Resource limitation was ensured by pollen restriction using a pollen trap and stressor responses were evaluated by assessing colony development, brood development, and core gut microbiome alterations. Furthermore, effects on the plant nectar microbiome were assessed since nectar inhabiting yeast are beneficial for pollination. We showed, that honey bee colonies were able to compensate for the combined stressor effects within six weeks. Nucleus colonies exposed to the combined stressors showed a short-term response with a less favorable brood to bee ratio and reduced colony development in May. No further impacts were observed in either the nucleus colonies or the full-sized colonies from July until the following spring. In addition, no fungicide-dependent differences were found in core gut and nectar microbiomes, and these differences were not distinguishable from local or environmental effects. Therefore, the provision of sufficient resources is important to increase the resilience of honey bees to a combination of stressors.
Collapse
Affiliation(s)
- Karoline Wueppenhorst
- Institute for Bee Protection, Julius Kuehn-Institute, Messeweg 11-12, Braunschweig 38104, Germany; Zoological Institute, Technische Universität Braunschweig, Mendelsohnstraße 4, Braunschweig 38106, Germany.
| | - Abdulrahim T Alkassab
- Institute for Bee Protection, Julius Kuehn-Institute, Messeweg 11-12, Braunschweig 38104, Germany
| | - Hannes Beims
- Fachberatung für Imkerei, Bezirk Oberbayern, Prinzregentenstraße 14, München 80538, Germany; Institute for Apicuture, Lower Saxony State Office for Consumer Protection and Food Safety, Herzogin-Eleonore-Allee 5, Celle 29221, Germany
| | - Ulrich Ernst
- State Institute of Bee Research, University of Hohenheim, Erna-Hruschka-Weg 6, Stuttgart 70599, Germany; KomBioTa - Center for Biodiversity and Integrative Taxonomy, University of Hohenheim, Stuttgart, Germany
| | - Elsa Friedrich
- State Institute of Bee Research, University of Hohenheim, Erna-Hruschka-Weg 6, Stuttgart 70599, Germany
| | - Ingrid Illies
- Institute for Bee Research and Beekeeping, Bavarian State Institute for Viticulture and Horticulture, An der Steige 15, Veitshöchheim 97209, Germany
| | - Martina Janke
- Institute for Apicuture, Lower Saxony State Office for Consumer Protection and Food Safety, Herzogin-Eleonore-Allee 5, Celle 29221, Germany
| | - Wolfgang H Kirchner
- Behavioral Biology and Biology Education, Ruhr-University-Bochum, Universitätsstraße 150, Bochum 44780, Germany
| | - Kim Seidel
- Institute for Apicuture, Lower Saxony State Office for Consumer Protection and Food Safety, Herzogin-Eleonore-Allee 5, Celle 29221, Germany
| | - Michael Steinert
- Institute for Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, Braunschweig 38106, Germany
| | - Andrey Yurkov
- DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Leibnitz Institute, Inhoffenstraße 7b, Braunschweig 38124, Germany
| | - Silvio Erler
- Institute for Bee Protection, Julius Kuehn-Institute, Messeweg 11-12, Braunschweig 38104, Germany; Zoological Institute, Technische Universität Braunschweig, Mendelsohnstraße 4, Braunschweig 38106, Germany
| | - Richard Odemer
- Institute for Bee Protection, Julius Kuehn-Institute, Messeweg 11-12, Braunschweig 38104, Germany
| |
Collapse
|
3
|
DesJardins NS, Macias J, Soto Soto D, Harrison JF, Smith BH. 'Inert' co-formulants of a fungicide mediate acute effects on honey bee learning performance. Sci Rep 2023; 13:19458. [PMID: 37945797 PMCID: PMC10636155 DOI: 10.1038/s41598-023-46948-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023] Open
Abstract
Managed honey bees have experienced high rates of colony loss recently, with pesticide exposure as a major cause. While pesticides can be lethal at high doses, lower doses can produce sublethal effects, which may substantially weaken colonies. Impaired learning performance is a behavioral sublethal effect, and is often present in bees exposed to insecticides. However, the effects of other pesticides (such as fungicides) on honey bee learning are understudied, as are the effects of pesticide formulations versus active ingredients. Here, we investigated the effects of acute exposure to the fungicide formulation Pristine (active ingredients: 25.2% boscalid, 12.8% pyraclostrobin) on honey bee olfactory learning performance in the proboscis extension reflex (PER) assay. We also exposed a subset of bees to only the active ingredients to test which formulation component(s) were driving the learning effects. We found that the formulation produced negative effects on memory, but this effect was not present in bees fed only boscalid and pyraclostrobin. This suggests that the trade secret "other ingredients" in the formulation mediated the learning effects, either through exerting their own toxic effects or by increasing the toxicities of the active ingredients. These results show that pesticide co-formulants should not be assumed inert and should instead be included when assessing pesticide risks.
Collapse
Affiliation(s)
| | - Jessalynn Macias
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | | | - Jon F Harrison
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Brian H Smith
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
4
|
Fisher A, Tadei R, Berenbaum M, Nieh J, Siviter H, Crall J, Glass JR, Muth F, Liao LH, Traynor K, DesJardins N, Nocelli R, Simon-Delso N, Harrison JF. Breaking the cycle: Reforming pesticide regulation to protect pollinators. Bioscience 2023; 73:808-813. [PMID: 38125825 PMCID: PMC10728777 DOI: 10.1093/biosci/biad088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/29/2023] [Accepted: 09/08/2023] [Indexed: 12/23/2023] Open
Abstract
Over decades, pesticide regulations have cycled between approval and implementation, followed by the discovery of negative effects on nontarget organisms that result in new regulations, pesticides, and harmful effects. This relentless pattern undermines the capacity to protect the environment from pesticide hazards and frustrates end users that need pest management tools. Wild pollinating insects are in decline, and managed pollinators such as honey bees are experiencing excessive losses, which threatens sustainable food security and ecosystem function. An increasing number of studies demonstrate the negative effects of field-realistic exposure to pesticides on pollinator health and fitness, which contribute to pollinator declines. Current pesticide approval processes, although they are superior to past practices, clearly continue to fail to protect pollinator health. In the present article, we provide a conceptual framework to reform cyclical pesticide approval processes and better protect pollinators.
Collapse
Affiliation(s)
- Adrian Fisher
- School of Life Sciences at Arizona State University, Tempe, Arizona, United States
| | | | - May Berenbaum
- University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| | - James Nieh
- University of California, San Diego, California, United States
| | - Harry Siviter
- University of Texas at Austin, Austin, Texas, United States
- University of Bristol, Bristol, England, United Kingdom
| | - James Crall
- University of Wisconsin-Madison, Madison, Widsconsin, United States
| | - Jordan R Glass
- School of Life Sciences at Arizona State University, Tempe, Arizona, United States
| | - Felicity Muth
- University of Texas at Austin, Austin, Texas, United States
| | - Ling-Hsiu Liao
- University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| | | | - Nicole DesJardins
- School of Life Sciences at Arizona State University, Tempe, Arizona, United States
| | | | - Noa Simon-Delso
- BeeLife European Beekeeping Coordination, Louvain la Neuve, Belgium
| | - Jon F Harrison
- School of Life Sciences at Arizona State University, Tempe, Arizona, United States
| |
Collapse
|
5
|
Dong J, Huang M, Guo H, Zhang J, Tan X, Wang D. Ternary Mixture of Azoxystrobin, Boscalid and Pyraclostrobin Disrupts the Gut Microbiota and Metabolic Balance of Honeybees (Apis cerana cerana). Int J Mol Sci 2023; 24:ijms24065354. [PMID: 36982426 PMCID: PMC10049333 DOI: 10.3390/ijms24065354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/14/2023] Open
Abstract
There is a growing risk of pollinators being exposed to multiple fungicides due to the widespread use of fungicides for plant protection. A safety assessment of honeybees exposed to multiple commonly used fungicides is urgently required. Therefore, the acute oral toxicity of the ternary mixed fungicide of ABP (azoxystrobin: boscalid: pyraclostrobin = 1:1:1, m/m/m) was tested on honeybees (Apis cerana cerana), and its sublethal effect on foragers’ guts was evaluated. The results showed that the acute oral median lethal concentration (LD50) of ABP for foragers was 12.6 μg a.i./bee. ABP caused disorder of the morphological structure of midgut tissue and affected the intestinal metabolism; the composition and structure of the intestinal microbial community was perturbed, which altered its function. Moreover, the transcripts of genes involved in detoxification and immunity were strongly upregulated with ABP treatment. The study implies that exposure to a fungicide mixture of ABP can cause a series of negative effects on the health of foragers. This work provides a comprehensive understanding of the comprehensive effects of common fungicides on non-target pollinators in the context of ecological risk assessment and the future use of fungicides in agriculture.
Collapse
Affiliation(s)
- Jie Dong
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Minjie Huang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Correspondence: (M.H.); (D.W.)
| | - Haikun Guo
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jiawen Zhang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaodong Tan
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Deqian Wang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Correspondence: (M.H.); (D.W.)
| |
Collapse
|