1
|
Savage G, Jones JJ, Muñoz-Pérez JP, Lewis C, Galloway TS. Assessing the chemical landscape of the Galápagos Marine Reserve. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176659. [PMID: 39369998 DOI: 10.1016/j.scitotenv.2024.176659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/20/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024]
Abstract
The Galápagos Archipelago is at the forefront of the Anthropocene, facing intensifying pressures from its growing human footprint and accelerated global connectivity. Despite this, little is currently known of its chemical landscape. This review critically examines the drivers, sources, distribution and fate of oil, plastics, pesticides, persistent organic pollutants and heavy metals in the Galápagos Marine Reserve, identifying pollutant hotspots and evaluating rapid assessment methods and sentinel species that could aid regional monitoring. The cumulative influence of the Galápagos' equatorial position amongst major (and seasonally variable) atmospheric and oceanic circulation patterns, along with its distinctive geophysical and environmental conditions, such as extreme UV radiation and precipitation, likely exacerbates the archipelagos susceptibility to chemicals from both local and continental inputs. Point and diffuse sources identified include wastewater/effluent discharge, agricultural run-off, mismanaged waste, recreational boating, commercial shipping and industrial fishing. Limited spatiotemporal monitoring has hindered the identification of pollution hotspots, except for harbours as aggregates for maritime activities and urban run-off, and eastern-facing coastlines exposed to the Humboldt Current as plastic accumulation zones. Furthermore, the remote nature and vital protected status of the Galápagos National Park has constrained comprehensive assessment of chemical toxicity and its impacts on marine species across the reserve, with studies primarily restricted to Galápagos pinnipeds. Thus, there is currently insufficient knowledge to determine the extent to which the widespread but sporadic presence of chemical contaminants threatens the resilience and adaptive capacity of Galápagos' complex ecosystems, unique biodiversity and interconnected environmental processes. Future efforts are recommended to strengthen environmental monitoring and chemical risk assessment through the utilisation of rapid assessment tools and regional sentinel species, enhancing fundamental understanding of the chemical landscape in this global conservation Hope Spot, as well as the wider implications of the Anthropocene on diverse, dynamic and remote island ecosystems.
Collapse
Affiliation(s)
- Georgie Savage
- Department of Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom.
| | - Jen J Jones
- Galápagos Conservation Trust, 7-14 Great Dover Street, London SE1 4YR, United Kingdom
| | - Juan Pablo Muñoz-Pérez
- Galápagos Science Center, Alsacio Northia Avenue, Puerto Baquerizo Moreno, Galápagos, Ecuador; Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Puerto Baquerizo Moreno, Galápagos, Ecuador; School of Science, Technology & Engineering, University of the Sunshine Coast, Queensland 4556, Australia
| | - Ceri Lewis
- Department of Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom
| | - Tamara S Galloway
- Department of Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom
| |
Collapse
|
2
|
Deakin K, Savage G, Jones JS, Porter A, Muñoz-Pérez JP, Santillo D, Lewis C. Sea surface microplastics in the Galapagos: Grab samples reveal high concentrations of particles <200 μm in size. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171428. [PMID: 38438045 DOI: 10.1016/j.scitotenv.2024.171428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/06/2024]
Abstract
Plastic pollution in the oceans is increasing, yet most global sea surface data is collected using plankton nets which limits our knowledge of the smaller and more bioaccessible size fraction of microplastics (<5 mm). We sampled the biodiverse coastal waters of the Galapagos Island of San Cristobal, comparing two different microplastic sampling methodologies; 1 l whole seawater grab samples filtered to 1.2 μm and sea surface plankton tows with a net mesh size of 200 μm. Our data reveal high concentrations of microplastics in Galapagos coastal waters surrounding the urban area, averaging 11.5 ± 1.48 particles l-1, with a four-order of magnitude increase in microplastic abundance observed using grab sampling compared with 200 μm plankton nets. This increase was greater when including anthropogenic cellulose particles, averaging 19.8 ± 1.86 particles l-1. Microplastic and anthropogenic cellulose particles smaller than 200 μm comprised 44 % of the particles from grab samples, suggesting previous estimates of microplastic pollution based on plankton nets likely miss and therefore underestimate these smaller particles. The particle characteristics and distribution of these smaller particles points strongly to a local input of cellulosic fibres in addition to the microplastic particles transported longer distances via the Humbolt current found across the surface seawater of the Galapagos. Improving our understanding of particle characteristics and distributions to highlight likely local sources will facilitate the development of local mitigation and management plans to reduce the input and impacts of microplastics to marine species, not just in the Galapagos but globally.
Collapse
Affiliation(s)
- Katie Deakin
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Georgie Savage
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Jen S Jones
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter EX4 4QD, UK; Galapagos Conservation Trust, 7-14 Great Dover Street, London SE1 4YR, UK
| | - Adam Porter
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Juan Pablo Muñoz-Pérez
- Colegio de Ciencias Biológicas y Ambientales (COCIBA), Universidad San Francisco de Quito USFQ, Quito, Ecuador; School of Science, Technology and Engineering, University of the Sunshine Coast UniSC, Hervey Bay, QLD, Australia
| | - David Santillo
- Greenpeace Research Laboratories, School of Biosciences, Innovation Centre Phase 2, University of Exeter, Exeter EX4 4RN, UK
| | - Ceri Lewis
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter EX4 4QD, UK.
| |
Collapse
|
3
|
García-Regalado A, Herrera A, Almeda R. Microplastic and mesoplastic pollution in surface waters and beaches of the Canary Islands: A review. MARINE POLLUTION BULLETIN 2024; 201:116230. [PMID: 38479326 DOI: 10.1016/j.marpolbul.2024.116230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/27/2024] [Accepted: 03/03/2024] [Indexed: 04/07/2024]
Abstract
The Canary Archipelago is a group of volcanic islands located in the North Atlantic Ocean with high marine biodiversity. This archipelago intercepts the Canary Current, the easternmost branch of the Azores Current in the North Atlantic Subtropical Gyre, which brings large amounts of litter from remote sources via oceanic transportation. It is, therefore, particularly vulnerable to marine plastic pollution. Here, we present a review of the available studies on mesoplastics and microplastics in the Canary Islands over the last decade to evaluate the level and distribution of plastic pollution in this archipelago. Specifically, we focused on data from beaches and surface waters to assess the pollution level among the different islands as well as between windward and leeward zones, and the main characteristics (size, type, colour, and polymer) of the plastics found in the Canary Islands. The concentrations of meso- and MPs on beaches ranged from 1.5 to 2972 items/m2 with a mean of 381 ± 721 items/m2. The concentration of MPs (>200 μm) in surface waters was highly variable with mean values of 998 × 103 ± 3364 × 103 items/km2 and 10 ± 31 items/m3. Plastic pollution in windward beaches was one order of magnitude significantly higher than in leeward beaches. The accumulation of MPs in surface waters was higher in the leeward zones of the high-elevation islands, corresponding to the Special Areas of Conservation (ZECs) and where the presence of marine litter windrows (MLW) has been reported. Microplastic fragments of polyethylene of the colour category "white/clear/uncoloured" were the most common type of plastic reported in both beaches and surface waters. More studies on the occurrence of MLW in ZECS and plastic pollution in the water column and sediments, including small-size fractions (<200 μm), are needed to better assess the level of plastic pollution and its fate in the Canary Islands. Overall, this review confirms that the Canary Archipelago is a hotspot of oceanic plastic pollution, with concentrations of MPs in surface waters in the highest range reported for oceanic islands and one of the highest recorded mean concentrations of beached meso- and microplastics in the world.
Collapse
Affiliation(s)
| | - Alicia Herrera
- EOMAR, ECOAQUA, Universidad de Las Palmas de Gran Canaria, Spain
| | - Rodrigo Almeda
- EOMAR, ECOAQUA, Universidad de Las Palmas de Gran Canaria, Spain.
| |
Collapse
|
4
|
Hu D, Liang K, Dong Z, Wang J, Zhao Y, He K. Effective multi-modal clustering method via skip aggregation network for parallel scRNA-seq and scATAC-seq data. Brief Bioinform 2024; 25:bbae102. [PMID: 38493338 PMCID: PMC10944573 DOI: 10.1093/bib/bbae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/06/2024] [Accepted: 02/16/2024] [Indexed: 03/18/2024] Open
Abstract
In recent years, there has been a growing trend in the realm of parallel clustering analysis for single-cell RNA-seq (scRNA) and single-cell Assay of Transposase Accessible Chromatin (scATAC) data. However, prevailing methods often treat these two data modalities as equals, neglecting the fact that the scRNA mode holds significantly richer information compared to the scATAC. This disregard hinders the model benefits from the insights derived from multiple modalities, compromising the overall clustering performance. To this end, we propose an effective multi-modal clustering model scEMC for parallel scRNA and Assay of Transposase Accessible Chromatin data. Concretely, we have devised a skip aggregation network to simultaneously learn global structural information among cells and integrate data from diverse modalities. To safeguard the quality of integrated cell representation against the influence stemming from sparse scATAC data, we connect the scRNA data with the aggregated representation via skip connection. Moreover, to effectively fit the real distribution of cells, we introduced a Zero Inflated Negative Binomial-based denoising autoencoder that accommodates corrupted data containing synthetic noise, concurrently integrating a joint optimization module that employs multiple losses. Extensive experiments serve to underscore the effectiveness of our model. This work contributes significantly to the ongoing exploration of cell subpopulations and tumor microenvironments, and the code of our work will be public at https://github.com/DayuHuu/scEMC.
Collapse
Affiliation(s)
- Dayu Hu
- School of Computer, National University of Defense Technology, No. 109 Deya Road, 410073 Changsha, Hunan, China
| | - Ke Liang
- School of Computer, National University of Defense Technology, No. 109 Deya Road, 410073 Changsha, Hunan, China
| | - Zhibin Dong
- School of Computer, National University of Defense Technology, No. 109 Deya Road, 410073 Changsha, Hunan, China
| | - Jun Wang
- School of Computer, National University of Defense Technology, No. 109 Deya Road, 410073 Changsha, Hunan, China
| | - Yawei Zhao
- Medical Big Data Research Center, Chinese PLA General Hospital, No. 28 Fuxing Road, 100853 Beijing, China
| | - Kunlun He
- Medical Big Data Research Center, Chinese PLA General Hospital, No. 28 Fuxing Road, 100853 Beijing, China
| |
Collapse
|
5
|
Vélez-Terreros PY, Romero-Estévez D, Yánez-Jácome GS. Microplastics in Ecuador: A review of environmental and health-risk assessment challenges. Heliyon 2024; 10:e23232. [PMID: 38163182 PMCID: PMC10754870 DOI: 10.1016/j.heliyon.2023.e23232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/26/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024] Open
Abstract
Pollution from plastic debris and microplastics (MPs) is a worldwide issue. Classified as emerging contaminants, MPs have become widespread and have been found not only in terrestrial and aquatic ecosystems but also within the food chain, which affects both the environment and human health. Since the outbreak of COVID-19, the consumption of single-use plastics has drastically increased, intensifying mismanaged plastic waste in countries such as Ecuador. Therefore, the aim of this review is to 1) summarize the state of MP-related knowledge, focusing on studies conducted with environmental matrices, biota, and food, and 2) analyze the efforts by different national authorities and entities in Ecuador to control MP contamination. Results showed a limited number of studies have been done in Ecuador, which have mainly focused on the surface water of coastal areas, followed by studies on sediment and food. MPs were identified in all samples, indicating the lack of wastewater management policies, deficient management of solid wastes, and the contribution of anthropogenic activities such as artisanal fishing and aquaculture to water ecosystem pollution, which affects food webs. Moreover, studies have shown that food contamination can occur through atmospheric deposition of MPs; however, ingredients and inputs from food production, processing, and packaging, as well as food containers, contribute to MP occurrence in food. Further research is needed to develop more sensitive, precise, and reliable detection methods and assess MPs' impact on terrestrial and aquatic ecosystems, biota, and human health. In Ecuador specifically, implementing wastewater treatment plants in major cities, continuously monitoring MP coastal contamination, and establishing environmental and food safety regulations are crucial. Additionally, national authorities need to develop programs to raise public awareness of plastic use and its environmental effects, as well as MP exposure's effects on human health.
Collapse
Affiliation(s)
- Pamela Y. Vélez-Terreros
- Centro de Estudios Aplicados en Química, Pontificia Universidad Católica del Ecuador, Av. 12 de Octubre 1076 y Roca, Quito, Pichincha, 170525, Ecuador
| | | | | |
Collapse
|
6
|
Ramon-Gomez K, Ron SR, Deem SL, Pike KN, Stevens C, Izurieta JC, Nieto-Claudin A. Plastic ingestion in giant tortoises: An example of a novel anthropogenic impact for Galapagos wildlife. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122780. [PMID: 37863249 DOI: 10.1016/j.envpol.2023.122780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
The human population of Galapagos has rapidly increased in the last decades accelerating the anthropogenic pressures on the archipelago's natural resources. The growing human footprint, including inadequate management of garbage, may lead to conservation conflicts. Here, we assessed the ingestion of debris by Western Santa Cruz giant tortoises (Chelonoidis porteri) within human-modified and protected areas. Additionally, we characterized environmental debris and quantified tortoise abundance together with tortoise fecal samples. We processed a total of 6629 fecal samples along a gradient of anthropogenic disturbance based on human debris presence. We found 590 pieces of debris in samples within human-modified areas (mean of 3.97 items/kg of feces) and only two pieces in the protected area (mean of 0.08 items/kg of feces). Plastic waste was the predominant category in feces within the anthropic area (86.3%; n = 511), followed by cloth, metal, paper, synthetic rubber, construction materials, and glass. On average, the proportion of plastic was higher in feces (84%) than it was in environmental debris (67%), denoting that plastics are more readily ingested than other types of debris. We also found that green, white, and light blue plastics were consumed more often than their prevalence in the environment, suggesting color discrimination. Tortoise abundance was higher in the protected area when compared to the human-modified area; however, recapture rates were higher in anthropized landscapes which increases tortoise exposure to plastics and other human associated threats. Our results indicate that plastics are frequently consumed by tortoises in the polluted anthropic areas of western Santa Cruz, but scarce in protected areas. More research is needed to understand the negative impacts associated with plastics for Galapagos terrestrial species. We encourage local stakeholders to implement current policies limiting expansion of urban areas, plastic use, and improving waste management systems to minimize threats to human and animal health.
Collapse
Affiliation(s)
- Karina Ramon-Gomez
- Charles Darwin Foundation, Charles Darwin Avenue, Santa Cruz, 200350, Galapagos Islands, Ecuador; Museo de Zoología, Escuela de Biología, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Santiago R Ron
- Museo de Zoología, Escuela de Biología, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Sharon L Deem
- Charles Darwin Foundation, Charles Darwin Avenue, Santa Cruz, 200350, Galapagos Islands, Ecuador; Saint Louis Zoo Institute for Conservation Medicine, One Government Drive, Saint Louis, MO, 63110, USA
| | - Kyana N Pike
- College of Science and Engineering, James Cook University, Townsville, 4810, Australia
| | - Colton Stevens
- Charles Darwin Foundation, Charles Darwin Avenue, Santa Cruz, 200350, Galapagos Islands, Ecuador
| | - Juan Carlos Izurieta
- Charles Darwin Foundation, Charles Darwin Avenue, Santa Cruz, 200350, Galapagos Islands, Ecuador
| | - Ainoa Nieto-Claudin
- Charles Darwin Foundation, Charles Darwin Avenue, Santa Cruz, 200350, Galapagos Islands, Ecuador; Saint Louis Zoo Institute for Conservation Medicine, One Government Drive, Saint Louis, MO, 63110, USA; Complutense University of Madrid, Veterinary Faculty, Puerta de Hierro Av, Madrid, 28040, Spain.
| |
Collapse
|
7
|
Moreira-Mendieta A, Garcia-Garin O, Muñoz-Pérez JP, Urquía DO, Drago M, Borrell A, Páez-Rosas D. Detection and quantification of microplastic pollution in the endangered Galapagos sea lion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:166223. [PMID: 37586531 DOI: 10.1016/j.scitotenv.2023.166223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023]
Abstract
Marine debris pollution poses a significant global threat to biodiversity, with plastics being the primary debris type found in oceans due to their low-cost production and high demand worldwide. Microplastics (MPs, <5 mm in size) are highly bioavailable to a wide range of marine taxa, including marine mammals, through direct and indirect ingestion routes (i.e., trophic transfer). Recently, MP pollution has been detected on the Galapagos Marine Reserve, so in this study we developed a baseline framework for MP pollution in the Galapagos sea lion (GSL, Zalophus wollebaeki) through scat-based analysis. We collected 180 GSL scat samples from the southeast region following strict quality assurance/quality control protocols to detect, quantify and characterize physical-chemical properties of MPs through visual observations and μFT-IR spectroscopy. We recovered 81 MPs of varying sizes and colors in 37 % of samples (n = 66/180), consisting mostly of fibers (69 %, x¯ = 0.31 ± 0.57 particles scat-1). The number of particles per gram of sample wet weight ranged from 0.02 to 0.22 (x¯ = 0.04 ± 0.05 particles scat wet g-1). El Malecón and Punta Pitt rookeries at San Cristobal Island had the highest number of MPs (x¯ = 0.67 ± 0.51 and 0.43 ± 0.41 particles scat-1, respectively), and blue-colored particles were the most common in all samples. We identified eleven polymers in 46 particles, consisting mostly of polypropylene-polyethylene copolymer, polypropylene, cellulose, polyethylene, and polyvinyl chloride. The textile, fishing, and packaging industries are likely significant sources of microfibers into this insular ecosystem. Our results suggest that the GSL is exposed to MPs due to anthropogenic contamination that is subsequently transferred through trophic processes. These findings provide an important baseline framework and insights for future research on MP pollution in the region, as well as for management actions that will contribute to the long-term conservation of the GSL.
Collapse
Affiliation(s)
- Andrés Moreira-Mendieta
- Universidad San Francisco de Quito USFQ, Maestría en Ecología Tropical y Conservación, Diego de Robles s/n y Pampite, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Galapagos Science Center, Av. Alsacio Northia s/n, Isla San Cristóbal, Galápagos, Ecuador.
| | - Odei Garcia-Garin
- Universitat de Barcelona, Department of Evolutionary Biology, Ecology and Environmental Sciences, Barcelona 08028, Spain; Universitat de Barcelona, Institute of Biodiversity Research (IRBio), Barcelona 08028, Spain
| | - Juan Pablo Muñoz-Pérez
- Universidad San Francisco de Quito USFQ, Galapagos Science Center, Av. Alsacio Northia s/n, Isla San Cristóbal, Galápagos, Ecuador; University of the Sunshine Coast UniSC, School of Science, Technology and Engineering, Hervey Bay, Queensland, Australia
| | - Diego O Urquía
- Universidad San Francisco de Quito USFQ, Maestría en Ecología Tropical y Conservación, Diego de Robles s/n y Pampite, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Galapagos Science Center, Av. Alsacio Northia s/n, Isla San Cristóbal, Galápagos, Ecuador
| | - Massimiliano Drago
- Universitat de Barcelona, Department of Evolutionary Biology, Ecology and Environmental Sciences, Barcelona 08028, Spain; Universitat de Barcelona, Institute of Biodiversity Research (IRBio), Barcelona 08028, Spain
| | - Asunción Borrell
- Universitat de Barcelona, Department of Evolutionary Biology, Ecology and Environmental Sciences, Barcelona 08028, Spain; Universitat de Barcelona, Institute of Biodiversity Research (IRBio), Barcelona 08028, Spain
| | - Diego Páez-Rosas
- Universidad San Francisco de Quito USFQ, Galapagos Science Center, Av. Alsacio Northia s/n, Isla San Cristóbal, Galápagos, Ecuador; Dirección del Parque Nacional Galápagos, Unidad Técnica Operativa San Cristóbal, Isla San Cristóbal, Galápagos, Ecuador
| |
Collapse
|
8
|
Vlachogianni T, Scoullos M. Assessing marine macrolitter on the coastline of the Asterousia Biosphere Reserve: Insights from a community-based study. MARINE POLLUTION BULLETIN 2023; 195:115474. [PMID: 37672921 DOI: 10.1016/j.marpolbul.2023.115474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023]
Abstract
Even in pristine and remote environments of the Mediterranean, marine litter is building up threatening habitats and species and inhibiting sustainable development. The present study reports the findings of beach litter surveys carried out by 250 local community members in nine sites along the coastline of the Asterousia Biosphere Reserve, situated in the southernmost end of Europe. The average recorded litter density along these sites amounted to 125 items per 100 meters of coastline (range: 22-510) and to 0.05 items per square meter of beach (range: 0.01-0.13). Only two of the nine surveyed beaches were found to be in good environmental status, in compliance with the European threshold value for beach litter. The other seven studied beaches surpassed the European threshold value. The primary sources of the litter identified in the study can be attributed to unsustainable practices and inadequate waste management by individuals, communities and municipalities using the coastal and marine environment. Additionally, unsustainable waste management practices within the agricultural sector were also found to be a significant contributor to marine litter pollution.
Collapse
Affiliation(s)
- Thomais Vlachogianni
- Mediterranean Information Office for Environment, Culture and Sustainable Development, Athens, Greece.
| | - Michael Scoullos
- Mediterranean Information Office for Environment, Culture and Sustainable Development, Athens, Greece; Laboratory of Environmental Chemistry, Faculty of Chemistry, University of Athens, Greece
| |
Collapse
|
9
|
Clark L, Allen R, Botterell ZLR, Callejo B, Godley BJ, Henry C, Santillo D, Nelms SE. Using citizen science to understand floating plastic debris distribution and abundance: A case study from the North Cornish coast (United Kingdom). MARINE POLLUTION BULLETIN 2023; 194:115314. [PMID: 37506480 DOI: 10.1016/j.marpolbul.2023.115314] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/13/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023]
Abstract
Citizen science is now commonly employed to collect data on plastic pollution and is recognised as a valuable tool for furthering our understanding of the issue. Few studies, however, use citizen science to gather information on water-borne plastic debris. Here, citizen scientists adopted a globally standardised methodology to sample the sea-surface for small (1-5 mm) floating plastic debris off the Cornish coast (UK). Twenty-eight trawls were conducted along five routes, intersecting two Marine Protected Areas. Of the 509 putative plastic items, fragments were most common (64 %), then line (19 %), foam (7 %), film (6 %), and pellets (4 %). Fourier-transform infrared spectroscopy identified the most common polymer type as polyethylene (31 %), then nylon (12 %), polypropylene (8 %), polyamide (5 %) and polystyrene (3 %). This study provides the first globally comparative baseline of floating plastic debris for the region (mean: 8512 items km-2), whilst contributing to an international dataset aimed at understanding plastic abundance and distribution worldwide.
Collapse
Affiliation(s)
- Liz Clark
- Newquay Marine Group, 54 Bezant Place, Newquay TR7 1SJ, UK
| | - Rebecca Allen
- Newquay University Centre, Cornwall College, Wildflower Lane, Newquay TR7 2LZ, UK
| | - Zara L R Botterell
- Centre for Ecology and Conservation, University of Exeter, Cornwall TR10 9FE, UK
| | - Beatriz Callejo
- Greenpeace Research Laboratories, Innovation Centre Phase 2, University of Exeter, Devon, EX4 4RN, UK
| | - Brendan J Godley
- Centre for Ecology and Conservation, University of Exeter, Cornwall TR10 9FE, UK
| | - Clare Henry
- Greenpeace Research Laboratories, Innovation Centre Phase 2, University of Exeter, Devon, EX4 4RN, UK
| | - David Santillo
- Greenpeace Research Laboratories, Innovation Centre Phase 2, University of Exeter, Devon, EX4 4RN, UK
| | - Sarah E Nelms
- Centre for Ecology and Conservation, University of Exeter, Cornwall TR10 9FE, UK.
| |
Collapse
|