1
|
Gao X, Li Y, Shen J, Huang Y, Wang Y, Niu X. LC-MS untargeted metabolomics reveals metabolic disturbance and ferroptosis in MWCNTs-induced hepatotoxicity of Cyprinus carpio. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 275:107078. [PMID: 39241468 DOI: 10.1016/j.aquatox.2024.107078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/29/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
In recent years, there is a great concern about the potential adverse effects of carbon nanotubes (CNTs) on the aquatic systems due to their increasingly extensive application. In this study, juvenile Cyprinus carpio were exposed to multi-walled CNTs (MWCNTs) at concentrations of 0, 0.25, and 2.5 mg L-1 for 28 days. Then, oxidative stress indicators and metabolite profile of the livers were assessed. Results showed the significant increase of malondialdehyde (MDA) content and decrease of glutathione (GSH) activities in fish treated with 2.5 mg L-1 MWCNTs. LC-MS untargeted metabolomics demonstrated that 406 and 274 metabolites in fish treated with 2.5 mg L-1 MWCNTs were significantly up- and down-regulated, respectively. KEGG functional annotation analysis showed the disturbance of amino acid metabolism, lipid metabolism, and nucleotide metabolism. In addition, ferroptosis signaling pathway was detected. Therefore, iron content analysis and quantitative real-time RT-PCR assay were performed furtherly to validate the contribution of ferroptosis to MWCNTs-induced hepatotoxicity. The iron content increased significantly and the mRNA levels of ferroptosis-related genes including STEAP3, ACSL4, NCOA4, TFR1, NRF2, SLC3A2, SLC7A11, GPX4, and FPN1 were also obviously changed. Taken together, our study suggested that MWCNTs exposure-induced ferroptosis were associated with iron overload and lipid peroxidation via NRF2/SLC7A11/GSH/GPX4 axis. Our findings provide essential information to understand the mechanism of CNTs-induced hepatotoxicity in fish and explore potential biomarkers.
Collapse
Affiliation(s)
- Xiaochan Gao
- School of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China.
| | - Yimin Li
- School of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Jiaqi Shen
- School of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Yong Huang
- School of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Yashuai Wang
- School of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Xuehan Niu
- School of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| |
Collapse
|
2
|
Wang N, Wang Y, Sun A, Zhang Z, Shi X. Accumulation and elimination properties and comparative toxicity of fluxapyroxad in juvenile and adult large yellow croaker (Larimichthys crocea). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168979. [PMID: 38036135 DOI: 10.1016/j.scitotenv.2023.168979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
Fluxapyroxad (FX), a succinate dehydrogenase inhibitor fungicide, has been detected in global marine and aquatic organisms. However, as a new pollutant, its biotoxicity and ecological risks to marine aquatic organisms are unclear. The accumulation and elimination processes and toxic effects of FX on Larimichthys crocea (L. crocea) at environmental concentrations were assessed. FX (1.0 μg/L) was rapidly enriched and persisted prolonged in L. crocea muscle and FX is highly toxic to juvenile L. crocea with the 96 h LC50 of 245.0 μg/L. Furthermore, the toxic effects of FX on juvenile L. crocea and adults L. crocea were compared and analyzed. In contrast to those of adult L. crocea, juvenile L. crocea showed a stronger oxidative stress response and rescued liver damage in terms of antioxidant enzyme activity, energy supply, and liver damage to FX. Transcriptomic analysis also showed that drug metabolism was activated. In the adult L. crocea, the disturbance of the energy metabolism, oxidative respiration, TCA cycle, and lipid metabolism genes were firstly found. The results revealed the accumulation and elimination pattern and ecotoxicological hazards of FX to L. crocea, which provided important theoretical basis for the study of environmental risks caused by new pollutants to marine organisms.
Collapse
Affiliation(s)
- Ningbo Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Yinan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Aili Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Zeming Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Xizhi Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China.
| |
Collapse
|
3
|
Ma J, Xiu W, Diao C, Miao Y, Feng Y, Ding W, Li Y, Sultan Y, Li X. Fenpropathrin induces neurotoxic effects in common carp (Cyprinus carpio L.). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 197:105644. [PMID: 38072519 DOI: 10.1016/j.pestbp.2023.105644] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/10/2023] [Accepted: 10/09/2023] [Indexed: 12/18/2023]
Abstract
Fenpropathrin (FEN) is a synthetic pyrethroid that has been frequently detected in aquatic environments, yet the neurotoxic impacts and underlying mechanisms on nontarget organisms are lacking. In this experiment, common carp were exposed to 0.45 and 1.35 μg/L FEN for 14 d and exhibited abnormal locomotor behaviour. Biochemical and molecular analysis results indicated that FEN altered the contents of tight junction proteins (claudin-1, occludin, and ZO-1), disturbed Na+-K+-ATPase and AChE activities, caused abnormal expression of neurotransmitters (ACh, DA, GABA, 5-HT, and glutamate) and caused histological damage in the brain, suggesting that FEN may damage the blood-brain barrier and induce neurotoxicity in carp. Furthermore, FEN also promoted an increase in ROS, changed SOD and CAT activities, and generally upregulated the contents of MDA, 8-OHdG, and protein carbonyl in the brain, indicating that FEN can induce oxidative stress and cause damage to lipids, DNA, and proteins. Moreover, inflammation-related indicators (TNF-α, IL-1β, IL-6, and IL-10), mitophagy-related genes (PINK1, parkin, ulk1, beclin1, LC3, p62, tfeb, and atg5), and apoptosis-related parameters (p53, bax, bcl-2, caspase-3, caspase-8, and caspase-9) were also significantly changed, suggesting that inflammation, mitophagy, and apoptosis may participate in FEN-induced neurotoxicity in carp. This study refines the understanding of the toxicity mechanism of FEN and thus provides data support for the risk assessment of FEN.
Collapse
Affiliation(s)
- Junguo Ma
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Wenyao Xiu
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Chunyu Diao
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yumeng Miao
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yiyi Feng
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, Henan Normal University, Xinxiang, Henan 453007, China
| | - Weikai Ding
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yuanyuan Li
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yousef Sultan
- Department of Food Toxicology and Contaminants, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Xiaoyu Li
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
4
|
Hu F, Li W, Wang H, Peng H, He J, Ding J, Zhang W. Environmentally relevant concentrations of tris (2-chloroethyl) phosphate (TCEP) induce hepatotoxicity in zebrafish (Danio rerio): a whole life-cycle assessment. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:1421-1433. [PMID: 37950834 DOI: 10.1007/s10695-023-01265-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/05/2023] [Indexed: 11/13/2023]
Abstract
Tris (2-chloroethyl) phosphate (TCEP), a typical organophosphate flame retardant, is of increasingly great concern considering their ubiquitous presence in aquatic environments and potential ecotoxicity. The present work was aimed to investigate the potential growth inhibition and hepatic stress induced by whole life-cycle exposure to TCEP (0.8, 4, 20 and 100 μg/L) in zebrafish. The results revealed that the body length, body mass and hepatic-somatic index (HSI) of zebrafish were significantly declined after exposure to TCEP for 120 days. GPx activity and GSH content were increased in the liver of zebrafish treated with low concentrations (0.8 and 4 μg/L) of TCEP, while exposure to high concentrations (20 and 100 μg/L) of TCEP reduced antioxidative capacity and elevated lipid peroxidation (LPO) levels. Gene transcription analysis demonstrated that the mRNA levels of nrf2 were altered in a similar manner to the transcription of the downstream genes nqo1 and hmox1, suggesting that Nrf2-Keap1 pathway mediated TCEP-induced oxidative stress in zebrafish liver. In addition, TCEP exposure might alleviate inflammatory response through down-regulating transcription of inflammatory cytokines (il-1β, il-6 and inos), and induce apoptosis via activating the p53-Bax pathway. Moreover, whole life-cycle exposure to TCEP caused a series of histopathological anomalies in zebrafish liver. Overall, our results revealed that lifetime exposure to environmentally relevant concentrations of TCEP could result in growth retardation and induce significant hepatotoxicity in zebrafish.
Collapse
Affiliation(s)
- Fengxiao Hu
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Wen Li
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hongkai Wang
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hangke Peng
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jiabo He
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jieyu Ding
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Weini Zhang
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
5
|
Lv H, Liang C, Liu W, Chen N, Li X, Wang Q, Yao X, Wang J, Zhu L, Wang J. Multi-level biological effects of diverse alkyl chains phthalate esters on cotton seedlings (Gossypium hirsutum L.): Insights into individual, physiological-biochemical and molecular perspectives. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132352. [PMID: 37619280 DOI: 10.1016/j.jhazmat.2023.132352] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 08/26/2023]
Abstract
Phthalate esters (PAEs) are organic contaminants that pose environmental threat and safety risks to soil health and crop production. However, the ecological toxicity of different PAEs to cotton and the underlying mechanisms are not clear. This study investigated the ecotoxic effects and potential mechanisms of different alkyl-chain PAEs, including dioctyl phthalate (DOP), dibutyl phthalate (DBP), and diethyl phthalate (DEP) on cotton seedlings at multiple levels. The results showed that PAEs significantly hindered the growth and development of cotton. The chlorophyll content decreased by 1.87-31.66 %, accompanied by non-stomatal photosynthetic inhibition. The antioxidant system was activated by the three PAEs in cotton seedlings, while the osmotic potential was boosted intracellularly. Additionally, PAEs significantly interfered with functional gene expression and exhibited genotoxicity. Risk assessment results indicated that the ecotoxicity was DOP >DBP >DEP, with a "dose-response" relationship. The affinity between the three PAEs and catalase increased as the alkyl chain length increased, further supporting the toxicity sequence. Surprisingly, the bioconcentration factors of short-chain DEP were 8.07 ± 5.89 times and 1837.49 ± 826.83 times higher than those of long-chain DBP and DOP, respectively. These results support the ecological risk assessment of PAEs in cotton and provide new insights into determining the toxicity levels of different PAEs.
Collapse
Affiliation(s)
- Huijuan Lv
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, China
| | - Chunliu Liang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, China
| | - Wenrong Liu
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, China
| | - Na Chen
- Ningyang Environmental Monitoring Centre, Ningyang, Tai'an, Shandong 271400, China
| | - Xianxu Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, China
| | - Qian Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, China
| | - Xiangfeng Yao
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, China
| | - Jinhua Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, China
| | - Lusheng Zhu
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, China
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, China.
| |
Collapse
|