1
|
Zhuge R, Zhang L, Xue Q, Wang R, Xu J, Wang C, Meng C, Lu R, Yin F, Guo L. Ferritinophagy is involved in hexavalent chromium-induced ferroptosis in Sertoli cells. Toxicol Appl Pharmacol 2024; 492:117139. [PMID: 39486596 DOI: 10.1016/j.taap.2024.117139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/22/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Hexavalent chromium [Cr(VI)] has significant adverse effects on the environment and human health, particularly on the male reproductive system. Previously, we observed ferroptosis and autophagy in rat testicular injury induced by Cr(VI). In the present study, we focused on the association between ferroptosis and autophagy in mouse Sertoli cells (TM4) exposed to concentrations of 2.5 μМ, 5 μМ, and 10 μМ Cr(VI). Cr(VI) exposure altered mitochondrial ultrastructure; increased intracellular iron, malondialdehyde, and reactive oxygen species (ROS) levels; decreased glutathione content; increased TfR1 protein expression; and decreased GPX4, FPN1, and SLC7A11 protein expression, ultimately resulting in ferroptosis. Additionally, we observed ferritinophagy, increased expression of BECLIN1, LC3B, and NCOA4, and decreased expression of FTH1 and P62. Inhibition of autophagy and ferritinophagy via 3-MA and small interfering RNA (siRNA)-mediated silencing of NCOA4 ameliorated changes in ferritinophagy- and ferroptosis-associated protein expression, and reduced ROS levels. Rats exposed to Cr(VI) exhibited atrophy of testicular seminiferous tubules, a reduction in germ and Sertoli cells, and the occurrence of ferritinophagy and ferroptosis in cells of the rat testes. These results indicate that ferroptosis, triggered by NCOA4-mediated ferritinophagy, is one of the mechanisms that contribute to Cr(VI)-induced damage in Sertoli cells.
Collapse
Affiliation(s)
- Ruijian Zhuge
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin Province, China
| | - Le Zhang
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin Province, China
| | - Qian Xue
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin Province, China
| | - Rui Wang
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin Province, China
| | - Jiayunzhu Xu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin Province, China
| | - Chaofan Wang
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin Province, China
| | - Chunyang Meng
- Department of Spine Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Rifeng Lu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin Province, China
| | - Fei Yin
- Department of Spine Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Li Guo
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin Province, China.
| |
Collapse
|
2
|
Li Z, Yao YX, Lu X, Peng K, He YZ, Liu ZB, Zhao H, Wang H, Xu DX, Tan ZX. Short-term respiratory cadmium exposure partially activates pulmonary NLRP3 inflammasome by inducing ferroptosis in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117106. [PMID: 39326353 DOI: 10.1016/j.ecoenv.2024.117106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Cadmium (Cd) is a common environmental metal. Previous studies indicated that long-term respiratory Cd exposure caused lung injury and airway inflammation. The purpose of this study was to evaluate whether short-term respiratory Cd exposure induces pulmonary ferroptosis and NLRP3 inflammasome activation. Adult C57BL/6J mice were exposed to Cd by inhaling CdCl2 aerosol (0, 10, or 100 ppm) for 5 days. Serum and lung Fe2+ contents were elevated in Cd-exposed mice. Oxidized AA metabolites, the major oxidized lipids during ferroptosis, were upregulated in Cd-exposed mouse lungs. Pulmonary MDA content and 4-HNE-positive cells were increased in Cd-exposed mice. ACSL4 and COX-2, two lipoxygenases, were upregulated in Cd-exposed mouse lungs. Further analyses found that phosphorylated NF-kB p65 was elevated in Cd-exposed mouse lungs. Innate immune receptor protein NLRP3 and adapter protein ASC were upregulated in Cd-exposed mouse lungs. Caspase-1 was activated and IL-1β and IL-18 were upregulated in Cd-exposed mouse lungs. Fer-1, a specific inhibitor of ferroptosis, attenuated Cd-induced elevation of pulmonary NLRP3 and ASC, caspase-1 activation, and IL-1β and IL-18 upregulation. Finally, mitoquinone (MitoQ), a mitochondria-target antioxidant, suppressed Cd-caused ferroptosis and NLRP3 inflammasome activation. Our results demonstrate that ferroptosis might partially mediate Cd-evoked activation of NLRP3 inflammasome in the lungs.
Collapse
Affiliation(s)
- Zhao Li
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ya-Xin Yao
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xue Lu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
| | - Kun Peng
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yi-Zhang He
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Zhi-Bing Liu
- Department of Blood Transfusion, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Hui Zhao
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
| | - De-Xiang Xu
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, China; Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China.
| | - Zhu-Xia Tan
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
3
|
Li S, Ma S, Wang L, Zhan D, Jiang S, Zhang Z, Xiong M, Jiang Y, Huang Q, Zhang J, Li X. ATF3 as a response factor to regulate Cd-induced reproductive damage by activating the NRF2/HO-1 ferroptosis pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117114. [PMID: 39357374 DOI: 10.1016/j.ecoenv.2024.117114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
Cadmium (Cd) has garnered significant attention due to reproductive toxicity in inducing ferroptosis. However, the specific mechanisms underlying Cd-induced germ cell ferroptosis remain poorly understood. This study aimed to systematically explore the molecular mechanisms of germ cell ferroptosis by investigating differential changes in transcription factors and proteins in male mice treated orally with CdCl2 (0.5 g/L) reaching postnatal day 60, alongside Leydig cell (TM3) and Sertoli cell (TM4) lines. Results demonstrated that Cd exposure led to increased iron overload and oxidative stress in mouse testes, disrupted intracellular mitochondrial morphology characteristic of ferroptosis. RNA sequencing revealed significant upregulation of Atf3 and Hmox1 in Cd-exposed germ cells, along with increased expression of ATF3 and HO-1. Intervention in ferroptosis or HO-1 effectively rescued cells from Cd-induced mortality by breaking the detrimental cycle between lipid peroxidation and HO-1 activation. Further findings showed that NRF2 and HO-1 expression was notably elevated upon ATF3 overexpression in TM3 and TM4 cells, activating the Keap1-Nrf2 pathway and triggering ferroptosis in testes, whereas NRF2 and HO-1 expression levels were reversed when ATF3 was silenced. This study provides novel insights into ATF3-mediated NRF2/HO-1 signaling in Cd-induced mitochondrial ferroptosis in testes, shedding light on the mechanisms underlying Cd-induced ferroptosis and testicular injury.
Collapse
Affiliation(s)
- Sisi Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Key Laboratory for Veterinary and Biotechnology, Shanghai 200240, China
| | - Sheng Ma
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Key Laboratory for Veterinary and Biotechnology, Shanghai 200240, China
| | - Lirui Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Key Laboratory for Veterinary and Biotechnology, Shanghai 200240, China
| | - Dian Zhan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Key Laboratory for Veterinary and Biotechnology, Shanghai 200240, China
| | - Shengyao Jiang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Key Laboratory for Veterinary and Biotechnology, Shanghai 200240, China
| | - Zhenyang Zhang
- Department of Animal Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Manyi Xiong
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Key Laboratory for Veterinary and Biotechnology, Shanghai 200240, China
| | - Yanping Jiang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Key Laboratory for Veterinary and Biotechnology, Shanghai 200240, China
| | - Qixian Huang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Key Laboratory for Veterinary and Biotechnology, Shanghai 200240, China
| | - Jian Zhang
- Department of Agriculture, Hetao College, Bayannur 015000, China
| | - Xinhong Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Key Laboratory for Veterinary and Biotechnology, Shanghai 200240, China.
| |
Collapse
|
4
|
Wu SF, Ga Y, Ma DY, Hou SL, Hui QY, Hao ZH. The Role of Ferroptosis in Environmental Pollution-Induced Male Reproductive System Toxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125118. [PMID: 39414070 DOI: 10.1016/j.envpol.2024.125118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/28/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
This article provides a comprehensive review of the toxic effects of environmental pollution on the male reproductive system, with a particular emphasis on ferroptosis, a form of programmed cell death. Research has shown that environmental pollutants, such as heavy metals, pesticide residues, and plastic additives, can disrupt oxidative stress, increasing the production of reactive oxygen species (ROS) in germ cells. This disruption damages cellular lipids, proteins, and DNA, culminating in cell dysfunction or death. Ferroptosis, a cell death pathway closely linked to oxidative stress, is characterized by the accumulation of intracellular iron ions and elevated levels of lipid ROS. This review also explores the role of ferroptosis in male reproductive disorders, including its contributions to reduced sperm count, decreased motility, and abnormal morphology. Environmental pollutants, particularly heavy metals, can induce ferroptosis by interfering with intracellular antioxidant systems, notably the NRF2, GSH, and GPX4 pathways, accumulating toxic lipid peroxides. Furthermore, the article examines the potential interplay between ferroptosis and other forms of cell death, such as apoptosis, autophagy, pyroptosis, and necrosis, in the context of male reproductive health. The review underscores the critical need for further research into the link between environmental pollutants and male fertility, particularly focusing on ferroptosis. It advocates for targeted research efforts to mitigate the adverse effects of ferroptosis and protect reproductive health, emphasizing that a deeper understanding of these mechanisms could lead to innovative preventive strategies against environmental threats to fertility.
Collapse
Affiliation(s)
- Shao-Feng Wu
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya, 572025, China.
| | - Yu Ga
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya, 572025, China.
| | - Dan-Yang Ma
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya, 572025, China.
| | - Si-Lu Hou
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya, 572025, China.
| | - Qiao-Yue Hui
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya, 572025, China.
| | - Zhi-Hui Hao
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya, 572025, China; Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China; National Center of Technology Innovation for Medicinal Function of Food, National Food and Strategic Reserves Administration, Beijing 100193, China.
| |
Collapse
|
5
|
Zhang XD, Sun J, Zheng XM, Zhang J, Tan LL, Fan LL, Luo YX, Hu YF, Xu SD, Zhou H, Zhang YF, Li H, Yuan Z, Wei T, Zhu HL, Xu DX, Xiong YW, Wang H. Plin4 exacerbates cadmium-decreased testosterone level via inducing ferroptosis in testicular Leydig cells. Redox Biol 2024; 76:103312. [PMID: 39173539 PMCID: PMC11387904 DOI: 10.1016/j.redox.2024.103312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024] Open
Abstract
Strong evidence indicates that environmental stressors are the risk factors for male testosterone deficiency (TD). However, the mechanisms of environmental stress-induced TD remain unclear. Based on our all-cause male reproductive cohort, we found that serum ferrous iron (Fe2⁺) levels were elevated in TD donors. Then, we explored the role and mechanism of ferroptosis in environmental stress-reduced testosterone levels through in vivo and in vitro models. Data demonstrated that ferroptosis and lipid droplet deposition were observed in environmental stress-exposed testicular Leydig cells. Pretreatment with ferrostatin-1 (Fer-1), a specific ferroptosis inhibitor, markedly mitigated environmental stress-reduced testosterone levels. Through screening of core genes involved in lipid droplets formation, it was found that environmental stress significantly increased the levels of perilipins 4 (PLIN4) protein and mRNA in testicular Leydig cells. Further experiments showed that Plin4 siRNA reversed environmental stress-induced lipid droplet deposition and ferroptosis in Leydig cells. Additionally, environmental stress increased the levels of METTL3, METTL14, and total RNA m6A in testicular Leydig cells. Mechanistically, S-adenosylhomocysteine, an inhibitor of METTL3 and METTL14 heterodimer activity, restored the abnormal levels of Plin4, Fe2⁺ and testosterone in environmental stress-treated Leydig cells. Collectively, these results suggest that Plin4 exacerbates environmental stress-decreased testosterone level via inducing ferroptosis in testicular Leydig cells.
Collapse
Affiliation(s)
- Xu-Dong Zhang
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Jian Sun
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Xin-Mei Zheng
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Jin Zhang
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Lu-Lu Tan
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Long-Long Fan
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Ye-Xin Luo
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Yi-Fan Hu
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Shen-Dong Xu
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Huan Zhou
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Yu-Feng Zhang
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Hao Li
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Zhi Yuan
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Tian Wei
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Hua-Long Zhu
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, China
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, China
| | - Yong-Wei Xiong
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, China.
| | - Hua Wang
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, China.
| |
Collapse
|
6
|
Contreras-Mellado P, Bravo A, Zambrano F, Sánchez R, Boguen R, Risopatrón J, Merino O, Uribe P. Oxidative Stress Induces Changes in Molecular Markers Associated with Ferroptosis in Human Spermatozoa. World J Mens Health 2024; 42:42.e83. [PMID: 39344120 DOI: 10.5534/wjmh.240085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/28/2024] [Accepted: 06/28/2024] [Indexed: 10/01/2024] Open
Abstract
PURPOSE Ferroptosis is a type of iron-dependent regulated cell death characterized by increased bioavailability of redox-active iron, loss of GPX4 antioxidant capacity, and oxidation of polyunsaturated fatty acid-containing phospholipids mediated by reactive oxygen species (ROS). The aim of this study was to evaluate the effect of oxidative stress induced by arachidonic acid (AA) on ferroptotic cell death in human spermatozoa. MATERIALS AND METHODS Spermatozoa from normozoospermic donors were exposed to AA (5, 25, and 50 µM) for 1 hour at 37 ℃, including an untreated control. Oxidative stress was confirmed by evaluation of cytosolic and mitochondrial ROS production, viability, mitochondrial membrane potential (ΔΨm) and motility. Subsequently, molecular markers of ferroptosis including iron content, levels of GPX4, SLC7A11, ACSL4, IREB2 and lipid peroxidation were evaluated. The analyses were carried out using either flow cytometry, a microplate reader or confocal laser microscopy. RESULTS AA-induced oxidative stress showed increased cytosolic and mitochondrial ROS production accompanied by impairedΔΨm, viability and motility in human spermatozoa. These results were associated with biochemical and molecular markers related to ferroptotic cell death including an increase in iron content in the form of ferrous (Fe2+) ions, SLC7A11, ACSL4, IREB2, a decrease in the level of GPX4, and an increase in the level of lipid peroxidation compared to the untreated control. CONCLUSIONS This study revealed that AA-induced oxidative stress induces cell death with biochemical characteristics of ferroptosis in human spermatozoa, demonstrating another mechanism of alteration of sperm function induced by oxidative stress and could establish new therapeutic objectives to prevent the decrease in sperm quality mediated by oxidative stress.
Collapse
Affiliation(s)
- Pablo Contreras-Mellado
- Center of Excellence in Translational Medicine-Scientific and Technological Bioresources Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
- Ph.D. Program in Sciences Mention Applied Cell and Molecular Biology, Faculty of Agricultural Sciences and Environment, Universidad de La Frontera, Temuco, Chile
| | - Anita Bravo
- Center of Excellence in Translational Medicine-Scientific and Technological Bioresources Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Fabiola Zambrano
- Center of Excellence in Translational Medicine-Scientific and Technological Bioresources Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
- Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Raúl Sánchez
- Center of Excellence in Translational Medicine-Scientific and Technological Bioresources Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
- Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Rodrigo Boguen
- Department of Diagnostic Processes and Evaluation, Faculty of Health Sciences, Universidad Catolica de Temuco, Temuco, Chile
| | - Jennie Risopatrón
- Center of Excellence of Biotechnology in Reproduction (CEBIOR), Universidad de La Frontera, Temuco, Chile
- Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Osvaldo Merino
- Center of Excellence of Biotechnology in Reproduction (CEBIOR), Universidad de La Frontera, Temuco, Chile
- Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Pamela Uribe
- Center of Excellence in Translational Medicine-Scientific and Technological Bioresources Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
- Department of Internal Medicine, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile.
| |
Collapse
|
7
|
Hao J, Ren J, Chang B, Xu H, Wang H, Ji L. Transcriptome and proteomic analysis reveal the protective mechanism of acupuncture on reproductive function in mice with asthenospermia. Heliyon 2024; 10:e36664. [PMID: 39286182 PMCID: PMC11403502 DOI: 10.1016/j.heliyon.2024.e36664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
Acupuncture is an integral component of complementary and alternative medicine that has been reported to enhance sperm motility, improve semen quality, and consequently augment male fertility. However, the precise mechanisms of action and the underlying molecular pathways remain unclear. In the present study, we aimed to elucidate the potential mechanisms through which acupuncture improves reproductive function in a mouse model of cyclophosphamide-induced asthenozoospermia. We collected sperm from the epididymis for semen analysis, collected serum to determine gonadotropin and oxidative stress marker levels, conducted histological examination of testicular tissue using hematoxylin and eosin (HE) and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, and observed mitochondrial morphology using transmission electron microscopy (TEM). We also assessed oxidative stress levels and total iron content in testicular tissue and validated the proteomic and transcriptomic analysis results of testicular tissue using real-time reverse transcription-quantitative polymerase chain reaction (RT-qPCR), protein imprinting analysis, and immunohistochemistry (IHC). Our results indicate that acupuncture enhances sperm quality in asthenozoospermic mice; increases serum testosterone (T), follicle-stimulating hormone (FSH), and luteinizing hormone (LH) levels; and attenuates oxidative damage, iron accumulation, and mitochondrial injury in mouse testicular tissues. Through protein and transcriptomic analyses, we identified 21 key genes, of which cytochrome b-245 heavy chain (CYBB), glutathione peroxidase 4 (GPX4), acyl-CoA synthetase long-chain family member 1 (ACSL1), and ferritin mitochondria (FTMT) were closely associated with ferroptosis. RT-qPCR, protein imprinting, and immunofluorescence (IF) analyses collectively indicated that acupuncture reduced ACSL1 and CYBB expression, and increased GPX4 and FTMT expression. Overall, the ferroptosis pathway associated with ACSL1/CYBB/FTMT/GPX4 represents a potential strategy through which acupuncture can improve the reproductive function in asthenozoospermic mice.
Collapse
Affiliation(s)
- Jianheng Hao
- College of Acupuncture and Massage, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- The Second Clinical College, Shanxi University of Traditional Chinese Medicine, Jinzhong, 030619, China
| | - Jia Ren
- The Second Clinical College, Shanxi University of Traditional Chinese Medicine, Jinzhong, 030619, China
| | - Boya Chang
- The Second Clinical College, Shanxi University of Traditional Chinese Medicine, Jinzhong, 030619, China
| | - Huichao Xu
- The Second Clinical College, Shanxi University of Traditional Chinese Medicine, Jinzhong, 030619, China
| | - Haijun Wang
- The Second Clinical College, Shanxi University of Traditional Chinese Medicine, Jinzhong, 030619, China
| | - Laixi Ji
- College of Acupuncture and Massage, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- The Second Clinical College, Shanxi University of Traditional Chinese Medicine, Jinzhong, 030619, China
| |
Collapse
|
8
|
Shi Y, Zhang Y, Yuan K, Han Z, Zhao S, Zhang Z, Cao W, Li Y, Zeng Q, Sun S. Exposure to ambient ozone and sperm quality among adult men in China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116753. [PMID: 39083872 DOI: 10.1016/j.ecoenv.2024.116753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Limited evidence exists regarding the association between ozone exposure and adverse sperm quality. We aimed to assess the association between ozone exposure and sperm quality, and identify susceptible exposure windows. METHODS We recruited 32,541 men aged between 22 and 65 years old attending an infertility clinic in Wuhan, Hubei Province, China from 2014 to 2020. Ozone data were obtained from a satellite-based spatiotemporal model. Generalized linear models were used to estimate the association between ozone exposure and sperm quality parameters, including sperm concentration, sperm count, sperm total motility, and sperm progressive motility during the entire stage of sperm development (0-90 days before ejaculation) and three crucial stages (0-9 days, 10-14 days and 70-90 days before ejaculation). Stratified analyses were performed to evaluate whether associations varied by age, body mass index, and education levels. RESULTS The final analysis included 27,854 adult men. A 10 μg/m3 increase in ozone concentrations during the entire stage of sperm development was associated with a -4.17 % (95 % CI: -4.78 %, -3.57 %) decrease in sperm concentration, -6.54 % (95 % CI: -8.03 %, -5.60 %) decrease in sperm count, -0.50 % (95 % CI: -0.66 %, -0.34 %) decrease in sperm total motility, and -0.07 % (95 % CI: -0.22 %, 0.09 %) decrease in sperm progressive motility. The associations were stronger during 70-90 days before ejaculation and among men with middle school and lower education for sperm concentration. CONCLUSIONS Ozone exposure was associated with decreased sperm quality among Chinese adult men attending an infertility clinic. These results suggest that ozone may be a risk factor contributing to decreased sperm quality in Chinese men.
Collapse
Affiliation(s)
- Yadi Shi
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yangchang Zhang
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Kun Yuan
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Ze Han
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Shi Zhao
- School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Zhenyu Zhang
- Department of Global Health, Peking University School of Public Health, Beijing, China; Institute for Global Health and Development, Peking University, Beijing 100191, China
| | - Wangnan Cao
- Department of Social Medicine and Health Education, School of Public Health, Peking University, Beijing 100191, China
| | - Yufeng Li
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue, Wuhan, Hubei 1095, China.
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Shengzhi Sun
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
9
|
Cheng J, Yang L, Zhang Z, Xu D, Hua R, Chen H, Li X, Duan J, Li Q. Diquat causes mouse testis injury through inducing heme oxygenase-1-mediated ferroptosis in spermatogonia. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116562. [PMID: 38850704 DOI: 10.1016/j.ecoenv.2024.116562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/14/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
Diquat dibromide (DQ) is a globally used herbicide in agriculture, and its overuse poses an important public health issue, including male reproductive toxicity in mammals. However, the effects and molecular mechanisms of DQ on testes are limited. In vivo experiments, mice were intraperitoneally injected with 8 or 10 mg/kg/ day of DQ for 28 days. It has been found that heme oxygenase-1 (HO-1) mediates DQ-induced ferroptosis in mouse spermatogonia, thereby damaging testicular development and spermatogenesis. Histopathologically, we found that DQ exposure caused seminiferous tubule disorders, reduced germ cells, and increased sperm malformation, in mice. Reactive oxygen species (ROS) staining of frozen section and transmission electron microscopy (TEM) displayed DQ promoted ROS generation and mitochondrial morphology alterations in mouse testes, suggesting that DQ treatment induced testicular oxidative stress. Subsequent RNA-sequencing further showed that DQ treatment might trigger ferroptosis pathway, attributed to disturbed glutathione metabolism and iron homeostasis in spermatogonia cells in vitro. Consistently, results of western blotting, measurements of MDA and ferrous iron, and ROS staining confirmed that DQ increased oxidative stress and lipid peroxidation, and accelerated ferrous iron accumulation both in vitro and in vivo. Moreover, inhibition of ferroptosis by deferoxamine (DFO) markedly ameliorated DQ-induced cell death and dysfunction. By RNA-sequencing, we found that the expression of HO-1 was significantly upregulated in DQ-treated spermatogonia, while ZnPP (a specific inhibitor of HO-1) blocked spermatogonia ferroptosis by balancing intracellular iron homeostasis. In mice, administration of the ferroptosis inhibitor ferrostatin-1 effectively restored the increase of HO-1 levels in the spermatogonia, prevented spermatogonia death, and alleviated the spermatogenesis disorders induced by DQ. Overall, these findings suggest that HO-1 mediates DQ-induced spermatogonia ferroptosis in mouse testes, and targeting HO-1 may be an effective protective strategy against male reproductive disorders induced by pesticides in agriculture.
Collapse
Affiliation(s)
- Jianyong Cheng
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Li Yang
- Health Management Center, Shenzhen University General Hospital, Shenzhen 518055, China
| | - Zelin Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Dejun Xu
- Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Rongmao Hua
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518000, China
| | - Huali Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621000, China
| | - Xiaoya Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Jiaxin Duan
- College of Animal Science, Shanxi Agricultural University, Taiyuan 030801, China
| | - Qingwang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
10
|
Ali W, Chen Y, Shah MG, Buriro RS, Sun J, Liu Z, Zou H. Ferroptosis: First evidence in premature duck ovary induced by polyvinyl chloride microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173032. [PMID: 38734099 DOI: 10.1016/j.scitotenv.2024.173032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/30/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
Ferroptosis is frequently observed in fibrosis and diseases related to iron metabolism disorders in various mammalian organs. However, research regarding the damage mechanism of ferroptosis in the female reproductive system of avian species remains unclear. In this study, Muscovy female ducks were divided into three groups which were given purified water, 1 mg/L polyvinyl chloride microplastics (PVC-MPs) and 10 mg/L PVC-MPs for two months respectively, to investigate the ferroptosis induced by PVC-MPs caused ovarian tissue fibrosis that lead to premature ovarian failure. The results showed that the high accumulation of PVC-MPs in ovarian tissue affected the morphology and functional activity of ovarian granulosa cells (GCs) and subsequently caused the follicular development disorders and down-regulated the immunosignaling of ovarian steroidogenesis proteins 3β-hydroxysteroid dehydrogenase (3β-HSD), 17β-hydroxysteroid dehydrogenase (17β-HSD), CYP11A1 cytochrome (P450-11A1) and CYP17A1 cytochrome (P450-17A1) suggested impaired ovarian function. In addition, PVC-MPs significantly up-regulated positive expression of collagen fibers, significantly increased lipid peroxidation and malondialdehyde (MDA) level, along with encouraged overload of iron contents in the ovarian tissue were the characteristics of ferroptosis. Further, immunohistochemistry results confirmed that immunosignaling of ferroptosis related proteins Acyl-CoA synthetase (ACSL4), Cyclooxygenase 2 (COX2) and ferritin heavy chain 1 (FTH1) were significantly increased, but solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase (GPX4) were decreased by PVC-MPs in the ovarian tissue. In conclusion, our study demonstrates that PVC-MPs induced ferroptosis in the ovarian GCs, leading to follicle development disorders and ovarian tissue fibrosis, and ultimately contributing to various female reproductive disorders through regulating the proteins expression of ferroptosis.
Collapse
Affiliation(s)
- Waseem Ali
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Yan Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Muhammad Ghiasuddin Shah
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Rehana Shahnawaz Buriro
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Jian Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China.
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
11
|
Zhao Y, Qin G, Jiang B, Huang J, He S, Peng H. Melatonin regulates mitochondrial function to alleviate ferroptosis through the MT2/Akt signaling pathway in swine testicular cells. Sci Rep 2024; 14:15215. [PMID: 38956409 PMCID: PMC11219911 DOI: 10.1038/s41598-024-65666-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/23/2024] [Indexed: 07/04/2024] Open
Abstract
Increasing evidence has shown that many environmental and toxic factors can cause testicular damage, leading to testicular ferroptosis and subsequent male reproductive disorders. Melatonin is a major hormone and plays an vital role in regulating male reproduction. However, there is a lack of research on whether Mel can alleviate testicular cell ferroptosis and its specific mechanism. In this study, the results indicated that Mel could enhance the viability of swine testis cells undergoing ferroptosis, reduce LDH enzyme release, increase mitochondrial membrane potential, and affect the expression of ferroptosis biomarkers. Furthermore, we found that melatonin depended on melatonin receptor 1B to exert these functions. Detection of MMP and ferroptosis biomarker protein expression confirmed that MT2 acted through the downstream Akt signaling pathway. Moreover, inhibition of the Akt signaling pathway can eliminate the protective effect of melatonin on ferroptosis, inhibit AMPK phosphorylation, reduce the expression of mitochondrial gated channel (VDAC2/3), and affect mitochondrial DNA transcription and ATP content. These results suggest that melatonin exerts a beneficial effect on mitochondrial function to mitigate ferroptosis through the MT2/Akt signaling pathway in ST cells.
Collapse
Affiliation(s)
- Yuanjie Zhao
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, Hainan, China
- College of Life and Health, Hainan University, Haikou, 570228, China
| | - Ge Qin
- College of Animal Science and Technology, Southwest University, Chongqing, 404100, China
| | - Biao Jiang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, Hainan, China
| | - Jinglei Huang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, Hainan, China
| | - Shiwen He
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, Hainan, China
| | - Hui Peng
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, Hainan, China.
| |
Collapse
|
12
|
Wang R, Gong W, Jiang Y, Yin Q, Wang Z, Wu J, Zhang M, Li M, Liu Y, Wang J, Chen Y, Ji Y. Fluoride exposure during puberty induces testicular impairment via ER stress-triggered apoptosis in mice. Food Chem Toxicol 2024; 189:114773. [PMID: 38823497 DOI: 10.1016/j.fct.2024.114773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/15/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024]
Abstract
Fluoride, a ubiquitous environmental compound, carries significant health risks at excessive levels. This study investigated the reproductive toxicity of fluoride exposure during puberty in mice, focusing on its impact on testicular development, spermatogenesis, and underlying mechanisms. The results showed that fluoride exposure during puberty impaired testicular structure, induced germ cell apoptosis, and reduced sperm counts in mice. Additionally, the SOD activity and GSH content were significantly decreased, while MDA content was significantly elevated in the NaF group. Immunohistochemistry showed an increase in the number of cells positive for GRP78, a key ER stress marker. Moreover, qRT-PCR and Western blot analyses confirmed the upregulation of both Grp78 mRNA and protein expression, as well as increased mRNA expression of other ER stress-associated genes (Grp94, chop, Atf6, Atf4, and Xbp1) and enhanced protein expression of phosphorylated PERK, IRE1α, eIF2α, JNK, XBP-1, ATF-6α, ATF-4, and CHOP. In conclusion, our findings demonstrate that fluoride exposure during puberty impairs testicular structure, induces germ cell apoptosis, and reduces sperm counts in mice. ER stress may participate in testicular cell apoptosis, and contribute to the testicular damage and decreased sperm counts induced by fluoride.
Collapse
Affiliation(s)
- Rong Wang
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China; School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Wenjing Gong
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yumeng Jiang
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Qizi Yin
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Ziyue Wang
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Jie Wu
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Mingming Zhang
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Mengyuan Li
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yehao Liu
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Juan Wang
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China.
| | - Yuanhua Chen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China.
| | - Yanli Ji
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei Anhui, China.
| |
Collapse
|
13
|
Ouyang KW, Wang TT, Wang H, Luo YX, Hu YF, Zheng XM, Ling Q, Wang KW, Xiong YW, Zhang J, Chang W, Zhang YF, Yuan Z, Li H, Gao L, Xu DX, Zhu HL, Yang L, Wang H. m6A-methylated Lonp1 drives mitochondrial proteostasis stress to induce testicular pyroptosis upon environmental cadmium exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172938. [PMID: 38703850 DOI: 10.1016/j.scitotenv.2024.172938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/15/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Cadmium (Cd) is a widely distributed typical environmental pollutant and one of the most toxic heavy metals. It is well-known that environmental Cd causes testicular damage by inducing classic types of cell death such as cell apoptosis and necrosis. However, as a new type of cell death, the role and mechanism of pyroptosis in Cd-induced testicular injury remain unclear. In the current study, we used environmental Cd to generate a murine model with testicular injury and AIM2-dependent pyroptosis. Based on the model, we found that increased cytoplasmic mitochondrial DNA (mtDNA), activated mitochondrial proteostasis stress occurred in Cd-exposed testes. We used ethidium bromide to generate mtDNA-deficient testicular germ cells and further confirmed that increased cytoplasmic mtDNA promoted AIM2-dependent pyroptosis in Cd-exposed cells. Uracil-DNA glycosylase UNG1 overexpression indicated that environmental Cd blocked UNG-dependent repairment of damaged mtDNA to drive the process in which mtDNA releases to cytoplasm in the cells. Interestingly, we found that environmental Cd activated mitochondrial proteostasis stress by up-regulating protein expression of LONP1 in testes. Testicular specific LONP1-knockdown significantly reversed Cd-induced UNG1 protein degradation and AIM2-dependent pyroptosis in mouse testes. In addition, environmental Cd significantly enhanced the m6A modification of Lonp1 mRNA and its stability in testicular germ cells. Knockdown of IGF2BP1, a reader of m6A modification, reversed Cd-induced upregulation of LONP1 protein expression and pyroptosis activation in testicular germ cells. Collectively, environmental Cd induces m6A modification of Lonp1 mRNA to activate mitochondrial proteostasis stress, increase cytoplasmic mtDNA content, and trigger AIM2-dependent pyroptosis in mouse testes. These findings suggest that mitochondrial proteostasis stress is a potential target for the prevention of testicular injury.
Collapse
Affiliation(s)
- Kong-Wen Ouyang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Center of Prenatal Diagnosis, Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi 214000, China
| | - Tian-Tian Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Department of Respiratory Medicine, Anhui Provincial Children's Hospital, Hefei, Anhui 230000, China
| | - Ye-Xin Luo
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Yi-Fan Hu
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Xin-Mei Zheng
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Qing Ling
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Kai-Wen Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Yong-Wei Xiong
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of The People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Jin Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Wei Chang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Yu-Feng Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Zhi Yuan
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Hao Li
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Lan Gao
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of The People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of The People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Hua-Long Zhu
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of The People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China.
| | - Lan Yang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Center of Prenatal Diagnosis, Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi 214000, China.
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of The People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China.
| |
Collapse
|
14
|
Gu J, Guo C, Ruan J, Li K, Zhou Y, Gong X, Shi H. From ferroptosis to cuproptosis, and calcicoptosis, to find more novel metals-mediated distinct form of regulated cell death. Apoptosis 2024; 29:586-604. [PMID: 38324163 DOI: 10.1007/s10495-023-01927-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2023] [Indexed: 02/08/2024]
Abstract
Regulated cell death (RCD), also known as programmed cell death (PCD), plays a critical role in various biological processes, such as tissue injury/repair, development, and homeostasis. Dysregulation of RCD pathways can lead to the development of many human diseases, such as cancer, neurodegenerative disorders, and cardiovascular diseases. Maintaining proper metal ion homeostasis is critical for human health. However, imbalances in metal levels within cells can result in cytotoxicity and cell death, leading to a variety of diseases and health problems. In recent years, new types of metal overload-induced cell death have been identified, including ferroptosis, cuproptosis, and calcicoptosis. This has prompted us to examine the three defined metal-dependent cell death types, and discuss other metals-induced ferroptosis, cuproptosis, and disrupted Ca2+ homeostasis, as well as the roles of Zn2+ in metals' homeostasis and related RCD. We have reviewed the connection between metals-induced RCD and various diseases, as well as the underlying mechanisms. We believe that further research in this area will lead to the discovery of novel types of metal-dependent RCD, a better understanding of the underlying mechanisms, and the development of new therapeutic strategies for human diseases.
Collapse
Affiliation(s)
- Jie Gu
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Chuanzhi Guo
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Jiacheng Ruan
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Kongdong Li
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Yang Zhou
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Xun Gong
- Department of Rheumatology & Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212013, China.
| | - Haifeng Shi
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
15
|
Jia D, Zhang M, Li M, Gong W, Huang W, Wang R, Chen Y, Yin Q, Wu J, Jin Z, Wang J, Liu Y, Liang C, Ji Y. NCOA4-mediated ferritinophagy participates in cadmium-triggered ferroptosis in spermatogonia. Toxicology 2024; 505:153831. [PMID: 38768701 DOI: 10.1016/j.tox.2024.153831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/30/2024] [Accepted: 05/14/2024] [Indexed: 05/22/2024]
Abstract
Cadmium (Cd) is a common pollutant with reproductive toxicity. Our previous study revealed that Cd triggered spermatogonia ferroptosis. However, the underlying mechanisms remain unclear. Nuclear receptor coactivator 4 (NCOA4) mediates ferritinophagy and specific degradation of ferritin through lysosomes, resulting in the release of ferrous ions. Excessive autophagy can lead to ferroptosis. This study investigated the role of autophagy in Cd-triggered ferroptosis using GC-1 spermatogonial (spg) cells which exposed to CdCl2 (5 μM, 10 μM, or 20 μM) for 24 without/with CQ. The cells which transfected with Ncoa4-siRNA were used to explore the role of NCOA4-mediated ferritinophagy in Cd-triggered ferroptosis. The results revealed that Cd caused mitochondrial swelling, rupture of cristae, and vacuolar-like changes. The Cd-treated cells exhibited more autophagosomes. Simultaneously, Cd increased intracellular iron, reactive oxygen species, and malondialdehyde concentrations while decreasing glutathione content and Superoxide Dismutase-2 activity. Moreover, Cd upregulated mRNA levels of ferritinophagy-associated genes (Ncoa4, Lc3b and Fth1), as well as enhanced protein expression of NCOA4, LC3B, and FTH1. While Cd decreased the mRNA and protein expression of p62/SQSTM1. These results showed that Cd caused ferritinophagy and ferroptosis. The use of chloroquine to inhibit autophagy ameliorated Cd-induced iron overload and ferroptosis. Moreover, Ncoa4 knockdown in spermatogonia significantly reduced intracellular iron concentration and alleviated Cd-triggered ferroptosis. In conclusion, our findings demonstrate that Cd activates the ferritinophagy pathway mediated by NCOA4, resulting in iron accumulation through ferritin degradation. This causes oxidative stress, ultimately initiating ferroptosis in spermatogonia. Our results may provide new perspectives and potential strategies for preventing and treating Cd-induced reproductive toxicity.
Collapse
Affiliation(s)
- Didi Jia
- Department of health inspection and quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China; The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Mingming Zhang
- Department of health inspection and quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Mengyuan Li
- Department of health inspection and quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Wenjing Gong
- Department of health inspection and quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Wei Huang
- Department of health inspection and quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Rong Wang
- Department of health inspection and quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yihang Chen
- Department of health inspection and quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Qizi Yin
- Department of health inspection and quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Jie Wu
- Department of health inspection and quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Zhongxiu Jin
- Department of health inspection and quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University),Ministry of Education of the People's Republic of China, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics / Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, Anhui, China
| | - Juan Wang
- Department of health inspection and quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yehao Liu
- Department of health inspection and quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China.
| | - Chunmei Liang
- Department of health inspection and quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University),Ministry of Education of the People's Republic of China, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics / Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, Anhui, China.
| | - Yanli Ji
- Department of health inspection and quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University),Ministry of Education of the People's Republic of China, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics / Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
16
|
Liu C, Wang Y, Xia H, Liu Y, Yang X, Yuan X, Chen J, Wang M, Li E. High Concentration of Iron Ions Contributes to Ferroptosis-Mediated Testis Injury. Biol Trace Elem Res 2024:10.1007/s12011-024-04192-7. [PMID: 38771434 DOI: 10.1007/s12011-024-04192-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 04/18/2024] [Indexed: 05/22/2024]
Abstract
In order to explore the effect of excessive iron supplementation on ferroptosis in mouse testes, Kunming mice received injections of varying concentrations of iron. The organ weight, sperm density, and malformation rate were measured. Observations of pathological and ultrastructural alterations in spermatogenic tubules were conducted using haematoxylin eosin (HE) staining and transmission electron microscopy(TEM). Transcript levels of related genes and serum biochemical indicators were measured in mouse testicular tissue. The results showed that higher iron concentration inhibited the growth of mice; reduced the organ coefficients of the testis, heart, and liver; and increased the rate of sperm malformation and mortality. Supplementation with high levels of iron ions can adversely affect the male reproductive system by reducing sperm count, damaging the structure of the seminiferous tubules and causing sperm cell abnormalities. In addition, the iron levels also affected the immune response and blood coagulation ability by affecting the red blood cells, white blood cells and platelets. The results showed that iron ions can affect mouse testicular tissue and induce ferroptosis by altering the expression of ferroptosis-related genes. However, the degree of effect was different for the different concentrations of iron ions. The study also revealed the potential role of deferoxamine in inhibiting the occurrence of ferroptosis. Nevertheless, the damage caused to the testis by deferoxamine supplementation suggests the need for further research in this direction. This study provides reference for reproductive toxicity induced by environmental iron exposure and clarifies the mechanism of reproductive toxicity caused by iron overload and the important role of iron in the male reproductive system.
Collapse
Affiliation(s)
- Chaoying Liu
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, 463000, Henan Province, China
- Zhumadian Academy of Industry Innovation and Development, Zhumadian, 463000, Henan Province, China
| | - Ye Wang
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, 463000, Henan Province, China
| | - Huili Xia
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, 463000, Henan Province, China
| | - Yingying Liu
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, 463000, Henan Province, China
| | - Xinfeng Yang
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, 463000, Henan Province, China
| | - Xiongyan Yuan
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, 463000, Henan Province, China
| | - Jiahui Chen
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, 463000, Henan Province, China
| | - Mingcheng Wang
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, 463000, Henan Province, China
| | - Enzhong Li
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, 463000, Henan Province, China.
| |
Collapse
|
17
|
Liu Z, Zhou S, Wang F, Xie H, Zhang J, Wu C, Xu D, Zhu Q. C5b-9 promotes ferritinophagy leading to ferroptosis in renal tubular epithelial cells of trichloroethylene-sensitized mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171378. [PMID: 38447712 DOI: 10.1016/j.scitotenv.2024.171378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
Trichloroethylene (TCE) is a common environmental contaminant that can cause a severe allergic reaction called TCE hypersensitivity syndrome, which often implicates the patient's kidneys. Our previous study revealed that C5b-9-induced tubular ferroptosis is involved in TCE-caused kidney damage. However, the study did not explain how tubule-specific C5b-9 causes free iron overload, a key event in ferroptosis. Here, we aimed to explore the role of NCOA4-mediated ferritinophagy in C5b-9-induced iron overload and ferroptosis in TCE-sensitized mice. Our results showed that TCE sensitization does not affect iron import or export, but does affect iron storage, causing ferritin degradation and free iron overload. In addition, mitochondrial ROS was upregulated, and these changes were blocked by C5b-9 inhibition. Interestingly, TCE-induced ferritin degradation and ferroptosis were significantly antagonized by the application of the mitochondrial ROS inhibitor, Mito-TEMPO. Moreover, all of these modes of action were further verified in C5b-9-attack signalling HK-2 cells. Further investigation demonstrated that C5b-9-upregulated mitochondrial ROS induced a marked increase in nuclear receptor coactivator 4 (NCOA4), a master regulator of ferritinophagy. In addition, the application of NCOA4 small interfering RNA not only significantly reversed ferritinophagy caused by C5b-9 but also reduced C5b-9-induced ferroptosis in HK-2 cells. Taken together, these results suggest that tubule-specific C5b-9 deposition activates NCOA4 through the upregulation of mitochondrial ROS, causing ferritin degradation and elevated free iron, which ultimately leads to tubular epithelial cell ferroptosis and kidney injury in TCE-sensitized mice.
Collapse
Affiliation(s)
- Zhibing Liu
- Department of Blood Transfusion, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Sifan Zhou
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Feng Wang
- Department of Dermatology Venereology, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Haibo Xie
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jiaxiang Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Changhao Wu
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Dexiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Qixing Zhu
- Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China.
| |
Collapse
|
18
|
Zhu J, Dai X, Wang Y, Cui T, Huang B, Wang D, Pu W, Zhang C. Molybdenum and cadmium co-induce apoptosis and ferroptosis through inhibiting Nrf2 signaling pathway in duck (Anas platyrhyncha) testes. Poult Sci 2024; 103:103653. [PMID: 38537407 PMCID: PMC10987903 DOI: 10.1016/j.psj.2024.103653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/04/2024] [Accepted: 03/09/2024] [Indexed: 04/07/2024] Open
Abstract
Cadmium (Cd) and high molybdenum (Mo) are injurious to the body. Previous research has substantiated that Cd and Mo exposure caused testicular injury of ducks, but concrete mechanism is not fully clarified. To further survey the toxicity of co-exposure to Cd and Mo in testis, 40 healthy 8-day-old Shaoxing ducks (Anas platyrhyncha) were stochasticly distributed to 4 groups and raised with basic diet embracing Cd (4 mg/kg Cd) or Mo (100 mg/kg Mo) or both. At the 16th wk, testis tissues were gathered. The characteristic ultrastructural changes related to apoptosis and ferroptosis were observed in Mo or Cd or both groups. Besides, Mo or Cd or both repressed nuclear factor erythroid 2-related factor 2 (Nrf2) pathway via decreasing Nrf2, Heme oxygenase-1 (HO-1), NAD(P)H quinone oxidoreductase 1 (NQO1), Glutamate-cysteine ligase catalytic subunit (GCLC) and Glutamate-cysteine ligase modifier subunit (GCLM) mRNA expression of and Nrf2 protein expression, then stimulated apoptosis by elevating Bcl-2 antagonist/killer-1 (Bak-1), Bcl-2-associated X-protein (Bax), Cytochrome complex (Cyt-C), caspase-3 mRNA expression, cleaved-caspase-3 protein expression and apoptosis rate, as well as reducing B-cell lymphoma-2 (Bcl-2) mRNA expression and ratio of Bcl-2 to Bax, and triggered ferroptosis by upregulating Acyl-CoA Synthetase Long Chain Family Member 4 (ACSL4), transferrin receptor (TFR1) and Prostaglandin-Endoperoxide Synthase 2 (PTGS2) expression levels, and downregulating ferritin heavy chain 1 (FTH1), ferritin light chain 1 (FTL1), ferroportin 1 (FPN1), solute carrier family 7 member 11 (SCL7A11) and glutathione peroxidase 4 (GPX4) expression levels. The most obvious changes of these indexes were observed in co-treated group. Altogether, the results announced that Mo or Cd or both evoked apoptosis and ferroptosis by inhibiting Nrf2 pathway in the testis of ducks, and co-exposure to Mo and Cd exacerbated these variations.
Collapse
Affiliation(s)
- Jiamei Zhu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xueyan Dai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yan Wang
- College of Forestry/School of Landscape and Art, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Ting Cui
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Bingyan Huang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Dianyun Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Wenjing Pu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| |
Collapse
|
19
|
Guo W, Zhang J, Zhang X, Ren Q, Zheng G, Zhang J, Nie G. Environmental cadmium exposure perturbs systemic iron homeostasis via hemolysis and inflammation, leading to hepatic ferroptosis in common carp (Cyprinus carpio L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116246. [PMID: 38537478 DOI: 10.1016/j.ecoenv.2024.116246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/01/2024] [Accepted: 03/20/2024] [Indexed: 04/12/2024]
Abstract
Cadmium (Cd) pollution is considered a pressing challenge to eco-environment and public health worldwide. Although it has been well-documented that Cd exhibits various adverse effects on aquatic animals, it is still largely unknown whether and how Cd at environmentally relevant concentrations affects iron metabolism. Here, we studied the effects of environmental Cd exposure (5 and 50 μg/L) on iron homeostasis and possible mechanisms in common carp. The data revealed that Cd elevated serum iron, transferrin saturation and iron deposition in livers and spleens, leading to the disruption of systemic iron homeostasis. Mechanistic investigations substantiated that Cd drove hemolysis by compromising the osmotic fragility and inducing defective morphology of erythrocytes. Cd concurrently exacerbated hepatic inflammatory responses, resulting in the activation of IL6-Stat3 signaling and subsequent hepcidin transcription. Notably, Cd elicited ferroptosis through increased iron burden and oxidative stress in livers. Taken together, our findings provide evidence and mechanistic insight that environmental Cd exposure could undermine iron homeostasis via erythrotoxicity and hepatotoxicity. Further investigation and ecological risk assessment of Cd and other pollutants on metabolism-related effects is warranted, especially under the realistic exposure scenarios.
Collapse
Affiliation(s)
- Wenli Guo
- College of Fisheries, Henan Normal University, Xinxiang 453007, China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, China
| | - Jinjin Zhang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Xiaoqian Zhang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Quanzhong Ren
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guangzhe Zheng
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Jianxin Zhang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, China
| | - Guoxing Nie
- College of Fisheries, Henan Normal University, Xinxiang 453007, China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
20
|
Yang S, Chen M, Meng J, Hao C, Xu L, Wang J, Chen J. Melatonin alleviates di-butyl phthalate (DBP)-induced ferroptosis of mouse leydig cells via inhibiting Sp2/VDAC2 signals. ENVIRONMENTAL RESEARCH 2024; 247:118221. [PMID: 38246300 DOI: 10.1016/j.envres.2024.118221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/25/2023] [Accepted: 01/14/2024] [Indexed: 01/23/2024]
Abstract
As one of the endocrine-disrupting chemicals (EDCs), dibutyl phthalate (DBP) has been extensively used in industry. DBP has been shown to cause damage to Leydig cells, yet its underlying mechanism remains elusive. In this study, we show that DBP induces ferroptosis of mouse Leydig cells via upregulating the expression of Sp2, a transcription factor. Also, Sp2 is identified to promote the transcription of Vdac2 gene by binding to its promoter and subsequently involved in DBP-induced ferroptosis of Leydig cells. In addition, DBP is proved to induce ferroptosis via inducing oxidative stress, while inhibition of oxidative stress by melatonin alleviates DBP-induced ferroptosis and upregulation of Sp2 and VDAC2. Taken together, our findings demonstrate that melatonin can alleviate DBP-induced ferroptosis of mouse Leydig cells via inhibiting oxidative stress-triggered Sp2/VDAC2 signals.
Collapse
Affiliation(s)
- Si Yang
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Meiwei Chen
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Jiahui Meng
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Chaoju Hao
- Library, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Linlin Xu
- Department of Pathology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Jinglei Wang
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Jiaxiang Chen
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China.
| |
Collapse
|
21
|
Guo W, Kang C, Wang X, Zhang H, Yuan L, Wei X, Xiao Q, Hao W. Chlorocholine chloride exposure induced spermatogenic dysfunction via iron overload caused by AhR/PERK axis-dependent ferritinophagy activation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116193. [PMID: 38460407 DOI: 10.1016/j.ecoenv.2024.116193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/28/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
Chlorocholine chloride (CCC) is a plant growth regulator used worldwide that is detectable in cereals, fruits and animal products. The health effects of CCC exposure have raised public concern. Our previous research showed that CCC exposure decreased testosterone synthesis in pubertal rats. However, little is known about whether and how pubertal CCC exposure impacts spermatogenesis. In this study, we used BALB/c mice and spermatogonia-derived GC-1 cells to examine CCC-induced spermatogenic dysfunction. In vivo, pubertal CCC exposure led to decreased testicular weight, decreased testicular germ cells and poor sperm quality. This effect worsened after cessation of CCC exposure for the next 30 days. RNA-seq and western blot analysis revealed that CCC induced aryl hydrocarbon receptor (AhR) signaling, endoplasmic reticulum stress (ERS) and ferritinophagy. Increased iron content and lipid peroxidation levels were also observed in CCC-treated testes. In vitro, it was identified that iron overload mediated by enhanced ferritinophagy occurred in CCC-treated GC-1 cells, which might be attributed to the PERK pathway in ERS. Further, for the first time, our study elucidated the involvement of AhR in CCC-induced iron overload, which aggravated testicular oxidative damage via lipid peroxidation. Considering the adverse impact of CCC exposure on rodents, supportive evidence from GC-1 cells, and the critical importance of spermatogenesis on male development, the effects of CCC on the male reproduction warrant increased attention.
Collapse
Affiliation(s)
- Wanqian Guo
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Chenping Kang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Xiaoxia Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Haoran Zhang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Lilan Yuan
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Xuetao Wei
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Qianqian Xiao
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China.
| | - Weidong Hao
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China.
| |
Collapse
|
22
|
Wu C, Hu X, Jiang Y, Tang J, Ge H, Deng S, Li X, Feng J. Involvement of ERK and Oxidative Stress in Airway Exposure to Cadmium Chloride Aggravates Airway Inflammation in Ovalbumin-Induced Asthmatic Mice. TOXICS 2024; 12:235. [PMID: 38668459 PMCID: PMC11054730 DOI: 10.3390/toxics12040235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/17/2024] [Accepted: 03/21/2024] [Indexed: 04/29/2024]
Abstract
Inhalation represents a significant route of cadmium (Cd) exposure, which is associated with an elevated risk of lung diseases. This research study aims to evaluate the impact of repeated low-dose cadmium inhalation on exacerbating airway inflammation induced by ovalbumin (OVA) in asthma-afflicted mice. Mice were grouped into four categories: control (Ctrl), OVA, cadmium chloride (CdCl2), and OVA + cadmium chloride (OVA + CdCl2). Mice in the OVA group displayed increased airway mucus secretion and peribronchial and airway inflammation characterized by eosinophil cell infiltration, along with elevated levels of Th2 cytokines (IL-4, IL-5, IL-13) in bronchoalveolar lavage fluids (BALFs). These parameters were further exacerbated in the OVA + CdCl2 group. Additionally, the OVA + CdCl2 group exhibited higher levels of the oxidative stress marker malondialdehyde (MDA), greater activity of glutathione peroxidase (GSH-Px), and higher phosphorylation of extracellular regulated kinase (ERK) in lung tissue. Treatment with U0126 (an ERK inhibitor) and α-tocopherol (an antioxidant) in the OVA + CdCl2 group resulted in reduced peribronchial and airway inflammation as well as decreased airway mucus secretion. These findings indicate that CdCl2 exacerbates airway inflammation in OVA-induced allergic asthma mice following airway exposure. ERK and oxidative stress are integral to this process, and the inhibition of these pathways significantly alleviates the adverse effects of CdCl2 on asthma exacerbation.
Collapse
Affiliation(s)
- Chendong Wu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Xinyue Hu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Yuanyuan Jiang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Jiale Tang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Huan Ge
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Shuanglinzi Deng
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Xiaozhao Li
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Juntao Feng
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| |
Collapse
|
23
|
Wang D, Zhang C, Guo H, Cui T, Pu W, Huang B, Zhu J, Dai X. Co-exposure to Environmentally Relevant Levels of Molybdenum and Cadmium Induces Oxidative Stress and Ferroptosis in the Ovary of Ducks. Biol Trace Elem Res 2024:10.1007/s12011-024-04144-1. [PMID: 38467966 DOI: 10.1007/s12011-024-04144-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/04/2024] [Indexed: 03/13/2024]
Abstract
Excessive doses of molybdenum (Mo) and cadmium (Cd) have toxic effects on animals. Nevertheless, the reproductive toxicity elicited by Mo and Cd co-exposure remains obscure. To evaluate the co-induce toxic impacts of Mo and Cd on ovaries, 8-day-old 40 healthy ducks were stochastically distributed to four groups and were raised a basal diet supplemented with Cd (4 mg/kg Cd) and/or Mo (100 mg/kg Mo). In the 16th week, ovary tissues were gathered. The data revealed that Mo and/or Cd decreased GSH content, CAT, T-SOD, and GSH-Px activities and increased MDA and H2O2 levels. Moreover, there was a significant decrease in nuclear Nrf2 protein level and its related downstream factors, while cytoplasmic Nrf2 protein level showed a substantial increase. Additionally, a marked elevation was observed in ferrous ion content and TFRC, GCLC, SLC7A11, ACSL4, and PTGS2 expression levels, while FTH1, FTL1, FPN1, and GPX4 expression levels were conversely reduced. These indicators exhibited more marked changes in the joint exposure group. In brief, our results announced that Mo and/or Cd resulted in oxidative stress and ferroptosis in duck ovaries. Synchronously, the Cd and Mo mixture intensified the impacts.
Collapse
Affiliation(s)
- Dianyun Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Huiling Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Ting Cui
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Wenjing Pu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Bingyan Huang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Jiamei Zhu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xueyan Dai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| |
Collapse
|
24
|
Feng Q, Liu Y, Zou L, Lei M, Zhu C, Xia W. Fluorene-9-bisphenol exposure damages the testis in mice through a novel mechanism of ferroptosis. Food Chem Toxicol 2024; 184:114385. [PMID: 38123054 DOI: 10.1016/j.fct.2023.114385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/25/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
Fluorene-9-bisphenol (BHPF) is an emerging global endocrine-disrupting chemical found in numerous household products as a substitute of bisphenol A. Many studies have reported various toxicities associated with BHPF. However, the effect of BHPF on male reproduction, particularly on the structural integrity of the blood testis barrier (BTB) in mice, has not yet been extensively studied. Ferroptosis, a newly identified form of cell death, occurs in the testicular tissue following exposure to BPA, affecting male fertility. We investigated whether ferroptosis plays a role in BHPF-induced testicular damage. The findings indicated that BHPF exposure led decreases in serum testosterone (T) concentration and sperm concentration and motility in mice. Furthermore, BHPF disrupted the BTB by interfering with key BTB-related proteins, including Cx43, β-catenin, and ZO-1. Moreover, BHPF induced ferroptosis through the induction of lipid peroxidation, iron overload, oxidative stress, and mitochondrial dysfunction in the testicular tissue. Inhibition of ferroptosis using Fer-1 mitigated the BHPF-induced damage to the BTB and ferroptosis in TM4 cells. Overall, our findings indicated the detrimental effects of BHPF on male reproductive function in mice, suggesting ferroptosis as a mechanism underlying testicular damage.
Collapse
Affiliation(s)
- Qiwen Feng
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Yumeng Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Liping Zou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Mengying Lei
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Changhong Zhu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Wei Xia
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China.
| |
Collapse
|
25
|
Lan Y, Hu L, Feng X, Wang M, Yuan H, Xu H. Synergistic effect of PS-MPs and Cd on male reproductive toxicity: Ferroptosis via Keap1-Nrf2 pathway. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132584. [PMID: 37748303 DOI: 10.1016/j.jhazmat.2023.132584] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/01/2023] [Accepted: 09/18/2023] [Indexed: 09/27/2023]
Abstract
It has been wildly reported that microplastics (MPs) can adsorb heavy metals and act as carriers for their transport into organisms. However, the combined toxicity of MPs and heavy metals remains poorly studied. In this study, we established single or co-exposure (i.e. complex/combined exposure) mice models to investigate the combined toxicity of MPs and cadmium (Cd) on male reproduction. The complexation of MPs and Cd enhanced the bioavailability of Cd, while the combination of MPs and Cd exerted synergistic effect. Ultimately, the co-exposure was reported to enhance the reproduction toxicity by single exposure, which reflected in testicular structure, spermatogenesis and sex hormone synthesis. More in-depth mechanistic investigation suggested that MPs and Cd synergistically inhibited the Keap1-Nrf2 pathway and its downstream genes, induced lipid peroxidation and ferroptosis, ultimately caused damage to reproductive structures and functions. Our results highlighted the synergistic effect of MPs and Cd on the reproductive toxicity in male mammals for the first time, which also provided valuable insights into the combined toxicity mechanisms of MPs and other pollutants.
Collapse
Affiliation(s)
- Yuzhi Lan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China
| | - Liehai Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China
| | - Xiaoyan Feng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China
| | - Mengqi Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China
| | - Hongbin Yuan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China.
| |
Collapse
|
26
|
Zhang Q, Xia W, Zhou X, Yang C, Lu Z, Wu S, Lu X, Yang J, Jin C. PS-MPs or their co-exposure with cadmium impair male reproductive function through the miR-199a-5p/HIF-1α-mediated ferroptosis pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 339:122723. [PMID: 37838317 DOI: 10.1016/j.envpol.2023.122723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/05/2023] [Accepted: 10/08/2023] [Indexed: 10/16/2023]
Abstract
Microplastics (MPs) and cadmium (Cd) exist extensively in ambient environments and probably influence negatively on human health. However, the potential reproductive toxicity of MPs or MPs + Cd remains unknown. This study was aimed to observe the reproductive changes of male mice treated orally for 35 days with PS-MPs (100 mg/kg), CdCl2 (5 mg/kg) and PS-MPs plus CdCl2 mixture. We found that subchronic exposure to PS-MPs damaged mouse testicular tissue structure, reduced sperm quality and testosterone levels. Moreover, the reproductive toxicity in 0.1 μm group was stronger than 1 μm group, and mixture group was more severe than single particle size ones. Meanwhile, co-exposure of PS-MPs and Cd exacerbated reproductive injury in male mice, with an ascending toxicity of Cd, 1 μm + Cd, 0.1 μm + Cd, and 0.1+1 μm + Cd. In addition, we discovered that the testicular damage induced by PS-MPs or PS-MPs + Cd was associated with interfering the miR-199a-5p/HIF-1α/ferroptosis pathway. Promisingly, these findings will shed new light on how PS-MPs and PS-MPs + Cd damage male reproductive function.
Collapse
Affiliation(s)
- Qingpeng Zhang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang, 110122, PR China; Department of Toxicology, School of Public Health, China Medical University, Shenyang, 110122, PR China
| | - Wenting Xia
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang, 110122, PR China
| | - Xingyue Zhou
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang, 110122, PR China; Department of Toxicology, School of Public Health, China Medical University, Shenyang, 110122, PR China
| | - Chengying Yang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang, 110122, PR China; Department of Toxicology, School of Public Health, China Medical University, Shenyang, 110122, PR China
| | - Ziwei Lu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang, 110122, PR China; Department of Toxicology, School of Public Health, China Medical University, Shenyang, 110122, PR China
| | - Shengwen Wu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang, 110122, PR China; Department of Toxicology, School of Public Health, China Medical University, Shenyang, 110122, PR China
| | - Xiaobo Lu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang, 110122, PR China; Department of Toxicology, School of Public Health, China Medical University, Shenyang, 110122, PR China
| | - Jinghua Yang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang, 110122, PR China; Department of Toxicology, School of Public Health, China Medical University, Shenyang, 110122, PR China
| | - Cuihong Jin
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang, 110122, PR China; Department of Toxicology, School of Public Health, China Medical University, Shenyang, 110122, PR China.
| |
Collapse
|
27
|
Yuan W, Sun Z, Ji G, Hu H. Emerging roles of ferroptosis in male reproductive diseases. Cell Death Discov 2023; 9:358. [PMID: 37770442 PMCID: PMC10539319 DOI: 10.1038/s41420-023-01665-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/11/2023] [Accepted: 09/22/2023] [Indexed: 09/30/2023] Open
Abstract
Ferroptosis is a type of programmed cell death mediated by iron-dependent lipid peroxidation that leads to excessive lipid peroxidation in different cells. Ferroptosis is distinct from other forms of cell death and is associated with various diseases. Iron is essential for spermatogenesis and male reproductive function. Therefore, it is not surprising that new evidence supports the role of ferroptosis in testicular injury. Although the molecular mechanism by which ferroptosis induces disease is unknown, several genes and pathways associated with ferroptosis have been linked to testicular dysfunction. In this review, we discuss iron metabolism, ferroptosis, and related regulatory pathways. In addition, we analyze the endogenous and exogenous factors of ferroptosis in terms of iron metabolism and testicular dysfunction, as well as summarize the relationship between ferroptosis and male reproductive dysfunction. Finally, we discuss potential strategies to target ferroptosis for treating male reproductive diseases and provide new directions for preventing male reproductive diseases.
Collapse
Affiliation(s)
- Wenzheng Yuan
- Key Laboratory of Fertility Preservation, School of Life Sciences and Technologies, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
- Institute of Life Sciences, China Medical University, Shenyang, 110122, Liaoning Province, PR China
| | - Zhibin Sun
- Key Laboratory of Fertility Preservation, School of Life Sciences and Technologies, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
| | - Guojie Ji
- Key Laboratory of Fertility Preservation, School of Life Sciences and Technologies, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China.
| | - Huanhuan Hu
- Key Laboratory of Fertility Preservation, School of Life Sciences and Technologies, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China.
| |
Collapse
|
28
|
Li N, Xiong R, Li G, Wang B, Geng Q. PM2.5 contributed to pulmonary epithelial senescence and ferroptosis by regulating USP3-SIRT3-P53 axis. Free Radic Biol Med 2023; 205:291-304. [PMID: 37348684 DOI: 10.1016/j.freeradbiomed.2023.06.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/12/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
Pulmonary epithelial cells act as the first line of defense against various air pollutant particles. Previous studies have reported that particulate matter 2.5 (PM2.5) could trigger pulmonary inflammation and fibrosis by inducing pulmonary epithelial senescence and ferroptosis. Sirtuin 3 (SIRT3) is one of critical the mitochondrial NAD+-dependent deacetylases, exerting antioxidant and anti-aging effects in multiple diseases. The present study aimed to explore the role of SIRT3 in PM2.5-induced lung injury as well as possible mechanisms. The role of SIRT3 in PM2.5-induced lung injury was investigated by SIRT3 genetic depletion, adenovirus-mediated overexpression in type II alveolar epithelial (AT2) cells, and pharmacological activation by melatonin. The protein level and activity of SIRT3 in lung tissues and AT2 cells were significantly downregulated after PM2.5 stimulation. SIRT3 deficiency in AT2 cells aggravated inflammatory response and collagen deposition in PM2.5-treated lung tissues. RNA-sequence and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the differentially expressed genes (DEGs) between SIRT3 flox and SIRT3 CKO mice were mainly enriched in ferroptosis and cellular longevity. Western blot further showed that SIRT3 deficiency in AT2 cells significantly upregulated the proteins associated with ferroptosis and cell senescence in PM2.5-treated lung tissues. In vitro experiments also showed that SIRT3 overexpression could decrease the levels of ferroptosis and cell senescence in PM2.5-treated AT2 cells. In addition, we found that PM2.5 could increase the acetylation of P53 via triggering DNA damage in AT2 cells. And SIRT3 could deacetylate P53 at lysines 320 (K320), thus reducing its transcriptional activity. PM2.5 decreased the protein level of SIRT3 by inducing proteasome pathway through downregulating USP3. Finally, we found that SIRT3 agonist, melatonin treatment could alleviate PM2.5-induced senescence and ferroptosis in mice. In conclusion, targeting USP3-SIRT3-P53 axis may be a novel therapeutic strategy against PM2.5-induced pulmonary inflammation and fibrosis by decreasing pulmonary epithelial senescence and ferroptosis.
Collapse
Affiliation(s)
- Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Rui Xiong
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Guorui Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Bo Wang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
29
|
Venditti M, Santillo A, Latino D, Ben Rhouma M, Romano MZ, Haddadi A, Di Fiore MM, Minucci S, Messaoudi I, Chieffi Baccari G. Evidence of the protective role of D-Aspartate in counteracting/preventing cadmium-induced oxidative stress in the rat testis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115067. [PMID: 37244200 DOI: 10.1016/j.ecoenv.2023.115067] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 05/29/2023]
Abstract
Cadmium (Cd), by producing oxidative stress and acting as an endocrine disruptor, is known to cause severe testicular injury, documented by histological and biomolecular alterations, such as decreased serum testosterone (T) level and impairment of spermatogenesis. This is the first report on the potential counteractive/preventive action of D-Aspartate (D-Asp), a well-known stimulator of T biosynthesis and spermatogenesis progression by affecting hypothalamic-pituitary-gonadal axis, in alleviating Cd effects in the rat testis. Our results confirmed that Cd affects testicular activity, as documented by the reduction of serum T concentration and of the protein levels of steroidogenesis (StAR, 3β-HSD, and 17β-HSD) and spermatogenesis (PCNA, p-H3, and SYCP3) markers. Moreover, higher protein levels of cytochrome C and caspase 3, together with the number of cells positive to TUNEL assay, indicated the intensification of the apoptotic process. D-Asp administered either simultaneously to Cd, or for 15 days before the Cd-treatment, reduced the oxidative stress induced by the metal, alleviating the consequent harmful effects. Interestingly, the preventive action of D-Asp was more effective than its counteractive effect. A possible explanation is that giving D-Asp for 15 days induces its significant uptake in the testes, reaching the concentrations necessary for optimum function. In summary, this report highlights, for the first time, the beneficial role played by D-Asp in both counteracting/preventing the adverse Cd effects in the rat testis, strongly encouraging further investigations to consider the potential value of D-Asp also in improving human testicular health and male fertility.
Collapse
Affiliation(s)
- Massimo Venditti
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate, Università degli Studi della Campania 'Luigi Vanvitelli', via Santa Maria di Costantinopoli, 16-80138 Napoli, Italy
| | - Alessandra Santillo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania 'Luigi Vanvitelli', Via Vivaldi, 43-81100 Caserta, Italy
| | - Debora Latino
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania 'Luigi Vanvitelli', Via Vivaldi, 43-81100 Caserta, Italy
| | - Mariem Ben Rhouma
- LR11ES41: Génetique, Biodiversité et Valorisation des Bioressources, Institut Supérieur de Biotechnologie, Université de Monastir, Monastir, Tunisia
| | - Maria Zelinda Romano
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate, Università degli Studi della Campania 'Luigi Vanvitelli', via Santa Maria di Costantinopoli, 16-80138 Napoli, Italy
| | - Asma Haddadi
- LR11ES41: Génetique, Biodiversité et Valorisation des Bioressources, Institut Supérieur de Biotechnologie, Université de Monastir, Monastir, Tunisia
| | - Maria Maddalena Di Fiore
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania 'Luigi Vanvitelli', Via Vivaldi, 43-81100 Caserta, Italy
| | - Sergio Minucci
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate, Università degli Studi della Campania 'Luigi Vanvitelli', via Santa Maria di Costantinopoli, 16-80138 Napoli, Italy.
| | - Imed Messaoudi
- LR11ES41: Génetique, Biodiversité et Valorisation des Bioressources, Institut Supérieur de Biotechnologie, Université de Monastir, Monastir, Tunisia
| | - Gabriella Chieffi Baccari
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania 'Luigi Vanvitelli', Via Vivaldi, 43-81100 Caserta, Italy
| |
Collapse
|