1
|
Wang F, Sun J, Han L, Liu W, Ding Y. Microplastics regulate soil microbial activities: Evidence from catalase, dehydrogenase, and fluorescein diacetate hydrolase. ENVIRONMENTAL RESEARCH 2024; 263:120064. [PMID: 39332793 DOI: 10.1016/j.envres.2024.120064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Soil microbiomes drive many soil processes and maintain the ecological functions of terrestrial ecosystems. Microplastics (MPs, size <5 mm) are pervasive emerging contaminants worldwide. However, how MPs affect soil microbial activity has not been well elucidated. This review article first highlights the effects of MPs on overall soil microbial activities represented by three soil enzymes, i.e., catalase, dehydrogenase, and fluorescein diacetate hydrolase (FDAse), and explores the underlying mechanisms and influencing factors. Abundant evidence confirms that MPs can change soil microbial activities. However, existing results vary greatly from inhibition to promotion and non-significance, depending on polymer type, degradability, dose, size, shape, additive, and aging degree of the target MPs, soil physicochemical and biological properties, and exposure conditions, such as exposure time, temperature, and agricultural practices (e.g., planting, fertilization, soil amendment, and pesticide application). MPs can directly affect microbial activities by acting as carbon sources, releasing additives and pollutants, and shaping microbial communities via plastisphere effects. Smaller MPs (e.g., nanoplastics, 1 to <1000 nm) can also damage microbial cells through penetration. Indirectly, MPs can change soil attributes, fertility, the toxicity of co-existing pollutants, and the performance of soil fauna and plants, thus regulating soil microbiomes and their activities. In conclusion, MPs can regulate soil microbial activities and consequently pose cascading consequences for ecosystem functioning.
Collapse
Affiliation(s)
- Fayuan Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province, 266042, PR China.
| | - Jiao Sun
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province, 266042, PR China
| | - Lanfang Han
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Weitao Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| | - Yuanhong Ding
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province, 266042, PR China.
| |
Collapse
|
2
|
Xu Q, Wu Z, Xu Z, Li G. Soil moisture-dependent tire wear particles aging processes shift soil microbial communities and elevated nitrous oxide emission on drylands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175948. [PMID: 39222808 DOI: 10.1016/j.scitotenv.2024.175948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Tire wear particles (TWPs) have been an emerging threat to the soil ecosystem, while impact of the TWPs aging on soil microbial communities remains poorly understood. This study investigated the dynamic responses of soil microbial communities to the TWPs aging under both wet and flooded conditions. We found that different soil moisture conditions resulted in distinct microbial community structures. Soil bacteria were more sensitive to wet conditions, while soil fungi were more sensitive to flooded conditions. The family Symbiobacteraceae was predominant in the TWP-sphere under both wet and flooded conditions after 60 days, followed by Brevibacillaceae. Notably, we observed that TWPs input significantly increased nitrous oxide (N2O) emission from dryland soil. Several taxa including Cyanobacteriales, Blastocatellaceae and Pyrinomonadaceae were identified as TWP-biomarkers in soils and potentially played significant roles in N2O emissions from drylands. Their responses to the TWPs input correlated closely with changes in the relative abundance of genes involved in ammonia oxidation (amoA/B), nitrite reduction (nirS/K) and N2O reduction (nosZ) in drylands. Our results demonstrate that soil moisture-dependent TWP aging influences N2O emission by altering both the associated microbial communities and the relevant genes.
Collapse
Affiliation(s)
- Qiao Xu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, People's Republic of China
| | - Zhiyong Wu
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang 310014, People's Republic of China
| | - Zhihong Xu
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Nathan, Brisbane, QLD 4111, Australia
| | - Gang Li
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, People's Republic of China.
| |
Collapse
|
3
|
Zeb A, Liu W, Ali N, Shi R, Zhao Y, Wang J, Wang Q, Khan S, Baig AM, Liu J, Khan AA, Ge Y, Li X, Yin C. Impact of Pristine and Aged Tire Wear Particles on Ipomoea aquatica and Rhizospheric Microbial Communities: Insights from a Long-Term Exposure Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39561015 DOI: 10.1021/acs.est.4c07188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Tire wear particles (TWPs), generated from tire abrasion, contribute significantly to environmental contamination. The toxicity of TWPs to organisms has raised significant concerns, yet their effects on terrestrial plants remain unclear. Here, we investigated the long-term impact of pristine and naturally aged TWPs on water spinach (Ipomoea aquatica) and its rhizospheric soil. The results indicated that natural aging reduced the toxicity of TWPs, as evidenced by decreased levels of polycyclic aromatic hydrocarbons (PAHs) in soil and TWPs themselves. Consequently, aged TWPs were found to enhance the plant growth and chlorophyll content, whereas pristine TWPs increased the plant stress. Furthermore, aged TWPs improved soil organic matter (SOM) and total organic carbon (TOC), thereby boosting the microbial enzymes involved in nitrogen cycling. Metabolomic analysis revealed that aged TWPs upregulated key pathways related to carbon and nitrogen metabolism, enhancing plant growth and stress responses. Additionally, rhizosphere bacterial diversity was higher under aged TWPs, favoring nutrient-cycling taxa such as Acidobacteriota and Nitrospirota. Pristine TWPs may lead to overproliferation of certain dominant species, thereby reducing microbial diversity in soil, which could ultimately compromise the soil health. These findings contribute to a deeper understanding of the mechanisms underlying TWP toxicity in plants and highlight the necessity for further research on the impact of aged TWPs across various plant species over different exposure durations for comprehensive risk assessment.
Collapse
Affiliation(s)
- Aurang Zeb
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Weitao Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Nouman Ali
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Ruiying Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Yuexing Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Jianling Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Qi Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Sheharyar Khan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Abdul Mateen Baig
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Jinzheng Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Amir Abdullah Khan
- School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, P. R. China
| | - Yichen Ge
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Xiang Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Chuan Yin
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| |
Collapse
|
4
|
Zi S, Wu D, Zhang Y, Jiang X, Liu J. Insights into the controlling factors of the transport of tire wear particles in saturated porous media: The facilitative role of aging and fulvic acid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175665. [PMID: 39181254 DOI: 10.1016/j.scitotenv.2024.175665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/14/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
The widespread distribution and potential adverse effects of tire wear particles (TWPs) on soil and groundwater quality pose a growing environmental concern. This study investigated the transport behavior of TWPs in saturated porous media and elucidated the underlying mechanisms influenced by environmental factors. Additionally, the effects of key environmental factors, such as aging, ionic strength, cation species, medium type, and natural organic matter (NOM), on the transport of TWPs were evaluated. The results showed that aging processes simulated through O3 and UV irradiation altered the physicochemical properties of TWPs, increased the mobility of TWPs at low ionic strengths. However, the high ionic strengths and the presence of Ca2+ significantly inhibited the mobility of TWPs due to enhanced aggregation. The transport mechanism of the original and aged TWPs shifted from blocking to ripening under favorable retention conditions (i.e., high ionic strengths, divalent cations, and fine sands). Interestingly, the presence of fulvic acid (FA) inhibited the ripening of the three TWPs, significantly promoting their transport through a spatial site resistance mechanism. The two-site kinetic attachment model (TSKAM), extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory, and colloid filtration theory (CFT) were applied to describe the transport behavior of the TWPs. The study provided a comprehensive understanding of the transport behavior of TWPs in groundwater environments, highlighting the environmental risks associated with their widespread distribution.
Collapse
Affiliation(s)
- Shaoxin Zi
- College of Marine and Environmental Sciences, Ministry of Education Key Laboratory of Marine Resource Chemistry and Food Technology, Tianjin University of Science & Technology, Tianjin 300457, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Di Wu
- College of Marine and Environmental Sciences, Ministry of Education Key Laboratory of Marine Resource Chemistry and Food Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yingxin Zhang
- College of Marine and Environmental Sciences, Ministry of Education Key Laboratory of Marine Resource Chemistry and Food Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xiangtao Jiang
- Marine Science Institute, The University of Texas at Austin, Port Aransas, TX 78373, USA
| | - Jin Liu
- College of Marine and Environmental Sciences, Ministry of Education Key Laboratory of Marine Resource Chemistry and Food Technology, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
5
|
Peng C, Wang Y, Sha X, Li M, Wang X, Wang J, Wang Y, Liu C, Wang L. Adverse effect of TWPs on soil fungi and the contribution of benzothiazole rubber additives. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135574. [PMID: 39197278 DOI: 10.1016/j.jhazmat.2024.135574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/31/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024]
Abstract
Tire wear particles (TWPs) pollution is widely present in soil, especially in areas severely affected by traffic. Herein, regular variation of fungal biomass with TWPs was found in soils with different distances from the highway. In addition, the concentrations of benzothiazole compounds (BTHs), an important class of rubber vulcanization accelerators, were found to be positively correlated to the TWPs abundance. Sixty days' soil microcosm experiments were conducted to further confirm the adverse effect of TWPs and BTHs on soil fungi. TWPs spiking at 1000 mg/kg, a detectable level in the roadside, resulted in significant reduction of biomass and significant changes of soil fungal community structure, with Eurotium and Polyporales being the sensitive species. BTH+ 2-hydroxybenzothiazole (OHBT) (the dominant BTHs in soil) spiking at 200 ng/kg, the dose equivalent to 1000 mg/kg TWPs pollution, also caused a similar magnitude of soil fungal biomass reduction. Adonis demonstrated no significant difference of fungal community structure between TWPs and BTH+OHBT spiked soil, suggesting the adverse effect of TWPs on soil fungi may be explained by the act of BTHs. Pure culture using the representative soil fungi Eurotium and Polyporales also confirmed that BTHs were the main contributors to the adverse effect of TWPs on soil fungi.
Collapse
Affiliation(s)
- Chu Peng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuan Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiaoyu Sha
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Mengxi Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xinling Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jiao Wang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Chunguang Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
6
|
Liu Z, Wang W, Geng Y, Zhang Y, Gao X, Xu J, Liu X. Integrating automated machine learning and metabolic reprogramming for the identification of microplastic in soil: A case study on soybean. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135555. [PMID: 39186842 DOI: 10.1016/j.jhazmat.2024.135555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/28/2024]
Abstract
The accumulation of polyethylene microplastic (PE-MPs) in soil can significantly impact plant quality and yield, as well as affect human health and food chain cycles. Therefore, developing rapid and effective detection methods is crucial. In this study, traditional machine learning (ML) and H2O automated machine learning (H2O AutoML) were utilized to offer a powerful framework for detecting PE-MPs (0.1 %, 1 %, and 2 % by dry soil weight) and the co-contamination of PE-MPs and fomesafen (a common herbicide) in soil. The development of the framework was based on the results of the metabolic reprogramming of soybean plants. Our study stated that traditional ML exhibits lower accuracy due to the challenges associated with optimizing complex parameters. H2O AutoML can accurately distinguish between clean soil and contaminated soil. Notably, H2O AutoML can detect PE-MPs as low as 0.1 % (with 100 % accuracy) and co-contamination of PE-MPs and fomesafen (with 90 % accuracy) in soil. The VIP and SHAP analyses of the H2O AutoML showed that PE-MPs and the co-contamination of PE-MPs and fomesafen significantly interfered with the antioxidant system and energy regulation of soybean. We hope this study can provide a reliable scientific basis for sustainable development of the environment.
Collapse
Affiliation(s)
- Zhimin Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Weijun Wang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Yibo Geng
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Yuting Zhang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Xuan Gao
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Junfeng Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaolu Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China.
| |
Collapse
|
7
|
Yu W, Tang S, Wong JWC, Luo Z, Li Z, Thai PK, Zhu M, Yin H, Niu J. Degradation and detoxification of 6PPD-quinone in water by ultraviolet-activated peroxymonosulfate: Mechanisms, byproducts, and impact on sediment microbial community. WATER RESEARCH 2024; 263:122210. [PMID: 39106621 DOI: 10.1016/j.watres.2024.122210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/09/2024]
Abstract
N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6PPD-Q) has been identified to induce acute toxicity to multifarious aquatic organisms at exceptionally low concentrations. The ubiquity and harmful effects of 6PPD-Q emphasize the critical need for its degradation from water ecosystems. Herein, we explored the transformation of 6PPD-Q by an ultraviolet-activated peroxymonosulfate (UV/PMS) system, focusing on mechanism, products and toxicity variation. Results showed that complete degradation of 6PPD-Q was achieved when the initial ratio of PMS and 6PPD-Q was 60:1. The quenching experiments and EPR tests indicated that SO4•- and •OH radicals were primarily responsible for 6PPD-Q removal. Twenty-one degradation products were determined through high-resolution orbitrap mass spectrometry, and it was postulated that hydroxylation, oxidative cleavage, quinone decomposition, ring oxidation, as well as rearrangement and deamination were the major transformation pathways of 6PPD-Q. Toxicity prediction revealed that all identified products exhibited lower acute and chronic toxicities to fish, daphnid and green algae compared to 6PPD-Q. Exposure experiments also uncovered that 6PPD-Q considerably reduced the community diversity and altered the community assembly and functional traits of the sediment microbiome. However, we discovered that the toxicity of 6PPD-Q degradation solutions was effectively decreased, suggesting the superior detoxifying capability of the UV/PMS system for 6PPD-Q. These findings highlight the underlying detrimental impacts of 6PPD-Q on aquatic ecosystems and enrich our understanding of the photochemical oxidation behavior of 6PPD-Q.
Collapse
Affiliation(s)
- Wenyan Yu
- Research Center for Eco-Environmental Engineering, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Shaoyu Tang
- Research Center for Eco-Environmental Engineering, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China.
| | - Jonathan W C Wong
- Research Center for Eco-Environmental Engineering, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Zhujun Luo
- Research Center for Eco-Environmental Engineering, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China; College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Zongrui Li
- South China Institute of Environmental Sciences (SCIES), Ministry of Ecology and Environment, Guangzhou 510535, China
| | - Phong K Thai
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Queensland 4102, Australia
| | - Minghan Zhu
- Research Center for Eco-Environmental Engineering, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China; China Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, China.
| | - Hua Yin
- China Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Junfeng Niu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| |
Collapse
|
8
|
Zhao M, Li Y, Li C, Wang X, Cao B, Zhang J, Wang J, Zou G, Chen Y. Effects of polyurethane microplastics combined with cadmium on maize growth and cadmium accumulation under different long-term fertilisation histories. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134726. [PMID: 38797077 DOI: 10.1016/j.jhazmat.2024.134726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/08/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Agricultural production uses different types of fertilisation treatments, typically employing the combined application of organic fertiliser (OF) or organic-inorganic fertiliser (OIF) to improve soil quality. When coupled with cadmium (Cd), microplastics (MPs) affect plant growth and Cd accumulation in soils treated with different fertilisers. This study systematically examined the effects of polyurethane (PU) MPs coupled with Cd on the growth characteristics, root metabolite characteristics, rhizosphere bacterial community structure, and Cd bioavailability of maize under different long-term fertilisation treatments and soil types (red/cinnamon soil). The combined effects of PU MPs and Cd on maize growth differed across fertilisation treatments. Under OF, maize plants accumulated more Cd than under OIF. The accumulation of Cd in maize plants in red soil was twice that in cinnamon soil. Under OF, PU MPs promoted Cd activation by decreasing the soil pH, while root metabolites promoted Cd adsorption sites by synthesising specific amino acids, degrading aromatic compounds, and synthesising pantothenic acid and coenzyme A. Under OF, PU MPs can lower the soil pH to promote the activation of cadmium, while root metabolites promote root growth and increase cadmium adsorption sites by synthesizing specific amino acids, degrading aromatic compounds, and synthesizing pantothenic acid and coenzyme A, hereby promoting root Cd absorption. Under OIF, PU MPs act by influencing the biosynthesis of amino acids in root metabolites, enriching energy metabolism pathways, promoting the transport and translocation of mineral nutrients, thereby amplifying the "toxic effects" of Cd. This study provides new insights into the risk assessment of PU MPs and Cd coupling under different fertilisation treatments, and suggests that the prevention and control of combined PU MPs and Cd pollution in red soil under OF treatment should receive more attention in the future.
Collapse
Affiliation(s)
- Meng Zhao
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yifan Li
- Key Laboratory of Tea Biology and Resources Utilization, Tea Research Institute, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China
| | - Congping Li
- Qujing City Agricultural Environmental Protection Monitoring Station, Yunnan 655000, China
| | - Xuexia Wang
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Bing Cao
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jiajia Zhang
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jiachen Wang
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Guoyuan Zou
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Yanhua Chen
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|
9
|
Li Y, Tang Y, Qiang W, Xiao W, Lian X, Yuan S, Yuan Y, Wang Q, Liu Z, Chen Y. Effect of tire wear particle accumulation on nitrogen removal and greenhouse gases abatement in bioretention systems: Soil characteristics, microbial community, and functional genes. ENVIRONMENTAL RESEARCH 2024; 251:118574. [PMID: 38452911 DOI: 10.1016/j.envres.2024.118574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
Tire wear particles (TWPs), as predominant microplastics (MPs) in road runoff, can be captured and retained by bioretention systems (BRS). This study aimed to investigate the effect of TWPs accumulation on nitrogen processes, focusing on soil characteristics, microbial community, and functional genes. Two groups of lab-scale bioretention columns containing TWPs (0 and 100 mg g-1) were established. The removal efficiencies of NH4+-N and TN in BRS significantly decreased by 7.60%-24.79% and 1.98%-11.09%, respectively, during the 101 days of TWPs exposure. Interestingly, the emission fluxes of N2O and CO2 were significantly decreased, while the emission flux of CH4 was substantially increased. Furthermore, prolonged TWPs exposure significantly influenced the contents of soil organic matter (increased by 27.07%) and NH4+-N (decreased by 42.15%) in the planting layer. TWPs exposure also significantly increased dehydrogenase activity and substrate-induced respiration rate, thereby promoting microbial metabolism. Microbial sequencing results revealed that TWPs decreased the relative abundance of nitrifying bacteria (Nitrospira and Nitrosomonas) and denitrifying bacteria (Dechloromonas and Thauera), reducing the nitrification rate by 42.24%. PICRUSt2 analysis further indicated that TWPs changed the relative abundance of functional genes related to nitrogen and enzyme-coding genes.
Collapse
Affiliation(s)
- Yunqing Li
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Yinghui Tang
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China; School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Weibo Qiang
- Central & Southern China Municipal Engineering Design and Research Institute Co., Ltd., Wuhan, 430010, China
| | - Wenyu Xiao
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Xiaoke Lian
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Shaochun Yuan
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China; Engineering Laboratory of Environmental Hydraulic Engineering of Chongqing Municipal Development and Reform Commission, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Ying Yuan
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Qinyi Wang
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Zhen Liu
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China; Engineering Laboratory of Environmental Hydraulic Engineering of Chongqing Municipal Development and Reform Commission, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Yao Chen
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China; Engineering Laboratory of Environmental Hydraulic Engineering of Chongqing Municipal Development and Reform Commission, Chongqing Jiaotong University, Chongqing, 400074, China.
| |
Collapse
|
10
|
Xu L, Xie W, Dai H, Wei S, Skuza L, Li J, Shi C, Zhang L. Effects of combined microplastics and heavy metals pollution on terrestrial plants and rhizosphere environment: A review. CHEMOSPHERE 2024; 358:142107. [PMID: 38657695 DOI: 10.1016/j.chemosphere.2024.142107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/08/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
Microplastics (MPs) can enter the soil environment through industry, agricultural production and daily life sources. Their interaction with heavy metals (HMs) poses a significant threat to a variety of terrestrial ecosystems, including agricultural ones, thereby affecting crop quality and threatening human health. This review initially addresses the impact of single and combined contamination with MPs and HMs on soil environment, including changes in soil physicochemical properties, microbial community structure and diversity, fertility, enzyme activity and resistance genes, as well as alterations in heavy metal speciation. The article further explores the effects of this pollution on the growth characteristics of terrestrial plants, such as plant biomass, antioxidant systems, metabolites and photosynthesis. In general, the combined contaminants tend to significantly affect soil environment and terrestrial plant growth, i.e., the impact of combined contaminants on plants weight ranged from -87.5% to 4.55%. Similarities and differences in contamination impact levels stem from the variations in contaminant types, sizes and doses of contaminants and the specific plant growth environments. In addition, MPs can not only infiltrate plants directly, but also significantly affect the accumulation of HMs in terrestrial plants. The heavy metals concentration in plants under the treatment of MPs were 70.26%-36.80%. The co-occurrence of these two pollution types can pose a serious threat to crop productivity and safety. Finally, this study proposes suggestions for future research aiming to address current gaps in knowledge, raises awareness about the impact of combined MPs + HMs pollution on plant growth and eco-environmental security.
Collapse
Affiliation(s)
- Lei Xu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Wenjun Xie
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China.
| | - Huiping Dai
- College of Biological Science & Engineering, Shaanxi Province Key Laboratory of Bio-resources, Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C, State Key Laboratory of Biological Resources and Ecological Environment Jointly Built By Qinba Province and Ministry, Shaanxi University of Technology, Hanzhong, 723001, China
| | - Shuhe Wei
- Key Laboratory of Pollution Ecology and Environment Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| | - Lidia Skuza
- Institute of Biology, Centre for Molecular Biology and Biotechnology, University of Szczecin, Szczecin, 71-415, Poland
| | - Jianan Li
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Cailing Shi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Lichang Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| |
Collapse
|
11
|
Khan AR, Ulhassan Z, Li G, Lou J, Iqbal B, Salam A, Azhar W, Batool S, Zhao T, Li K, Zhang Q, Zhao X, Du D. Micro/nanoplastics: Critical review of their impacts on plants, interactions with other contaminants (antibiotics, heavy metals, and polycyclic aromatic hydrocarbons), and management strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169420. [PMID: 38128670 DOI: 10.1016/j.scitotenv.2023.169420] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/06/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Microplastic/nanoplastics (MPs/NPs) contamination is not only emerging threat to the agricultural system but also constitute global hazard to the environment worldwide. Recent review articles have addressed the environmental distribution of MPs/NPs and their single-exposure phytotoxicity in various plant species. However, the mechanisms of MPs/NPs-induced phytotoxicity in conjunction with that of other contaminants remain unknown, and there is a need for strategies to ameliorate such phytotoxicity. To address this, we comprehensively review the sources of MPs/NPs, their uptake by and effects on various plant species, and their phytotoxicity in conjunction with antibiotics, heavy metals, polycyclic aromatic hydrocarbons (PAHs), and other toxicants. We examine mechanisms to ameliorate MP/NP-induced phytotoxicity, including the use of phytohormones, biochar, and other plant-growth regulators. We discuss the effects of MPs/NPs -induced phytotoxicity in terms of its ability to inhibit plant growth and photosynthesis, disrupt nutrient metabolism, inhibit seed germination, promote oxidative stress, alter the antioxidant defense system, and induce genotoxicity. This review summarizes the novel strategies for mitigating MPs/NPs phytotoxicity, presents recent advances, and highlights research gaps, providing a foundation for future studies aimed at overcoming the emerging problem of MPs/NPs phytotoxicity in edible crops.
Collapse
Affiliation(s)
- Ali Raza Khan
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Zaid Ulhassan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310000, People's Republic of China
| | - Guanlin Li
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China.
| | - Jiabao Lou
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Babar Iqbal
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China.
| | - Abdul Salam
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Wardah Azhar
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310000, People's Republic of China
| | - Sundas Batool
- Department of Plant Breeding and Genetics, Faculty of Agriculture, Gomal University, Pakistan
| | - Tingting Zhao
- Institute of Biology, Freie Universität Berlin, Berlin 14195, Germany
| | - Kexin Li
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Qiuyue Zhang
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Xin Zhao
- Department of Civil and Environmental Engineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Daolin Du
- Jingjiang College, Institute of Enviroment and Ecology, School of Emergency Management, School of Environment and Safety Engineering, School of Agricultural Engineering,Jiangsu University, Zhenjiang 212013, People's Republic of China.
| |
Collapse
|
12
|
Tariq M, Iqbal B, Khan I, Khan AR, Jho EH, Salam A, Zhou H, Zhao X, Li G, Du D. Microplastic contamination in the agricultural soil-mitigation strategies, heavy metals contamination, and impact on human health: a review. PLANT CELL REPORTS 2024; 43:65. [PMID: 38341396 DOI: 10.1007/s00299-024-03162-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/17/2024] [Indexed: 02/12/2024]
Abstract
Microplastic pollution has emerged as a critical global environmental issue due to its widespread distribution, persistence, and potential adverse effects on ecosystems and human health. Although research on microplastic pollution in aquatic environments has gained significant attention. However, a limited literature has summarized the impacts of microplastic pollution the agricultural land and human health. Therefore, In the current review, we have discussed how microplastic(s) affect the microorganisms by ingesting the microplastic present in the soil, alternatively affecting the belowground biotic and abiotic components, which further elucidates the negative effects on the above-ground properties of the crops. In addition, the consumption of these crops in the food chain revealed a potential risk to human health throughout the food chain. Moreover, microplastic pollution has the potential to induce a negative impact on agricultural production and food security by altering the physiochemical properties of the soil, microbial population, nutrient cycling, and plant growth and development. Therefore, we discussed in detail the potential hazards caused by microplastic contamination in the soil and through the consumption of food and water by humans in daily intake. Furthermore, further study is urgently required to comprehend how microplastic pollution negatively affects terrestrial ecosystems, particularly agroecosystems which drastically reduces the productivity of the crops. Our review highlights the urgent need for greater awareness, policy interventions, and technological solutions to address the emerging threat of microplastic pollution in soil and plant systems and mitigation strategies to overcome its potential impacts on human health. Based on existing studies, we have pointed out the research gaps and proposed different directions for future research.
Collapse
Affiliation(s)
- Muhammad Tariq
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Centre of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Babar Iqbal
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Centre of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
- Jiangsu Collaborative Innovation Centre of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China.
| | - Ismail Khan
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Centre of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Ali Raza Khan
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Centre of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Eun Hea Jho
- Department of Agricultural and Biological Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Abdul Salam
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Huan Zhou
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Centre of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang, 212013, People's Republic of China
- Zhenjiang New District Environmental Monitoring Station Co. Ltd, Zhenjiang, 212132, People's Republic of China
| | - Xin Zhao
- Department of Civil and Environmental Engineering, College of Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Guanlin Li
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Centre of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
- Jiangsu Collaborative Innovation Centre of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China.
| | - Daolin Du
- Jingjiang College, Institute of Environment and Ecology, School of Emergency Management, School of Environment and Safety Engineering, School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| |
Collapse
|