1
|
Takaoka S, Fujino T, Shigeoka SI, Itai Y. Health Effects of Methylmercury in Coastal Areas of the Yatsushiro Sea, Far from Minamata. TOXICS 2024; 12:751. [PMID: 39453171 PMCID: PMC11511511 DOI: 10.3390/toxics12100751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024]
Abstract
Minamata disease, caused by ingesting seafood contaminated with methylmercury dumped by corporations, was discovered in 1956; however, there has been no continued investigation to determine the full extent of the damage. Since 2004, it has been discovered that affected patients can be found in areas further away from Minamata than previously known. In the present study, we investigated various symptoms and somatosensory disturbances in western Miyanokawachi District, northern Himedo District, southwestern Nagashima District, and the uncontaminated Amami district and calculated the proportion of patients with sensory disturbances as a percentage of the population in each area. Both touch and pain sensations, with a predominance of the peripheral extremities, were observed in 58.6% of patients in Miyanokawachi, 53.9% in Himedo, 37.8% in Nagashima, and 1.4% in Amami. The lowest estimates of attributable fractions of the exposed group for four-limb-predominant sensory disturbance in the population of the contaminated districts were 94.1% in Miyanokawachi, 94.6% in Himedo, and 91.4% in Nagashima, and general and perioral sensory disturbances were also high. This suggests that the presence or absence of these sensory disturbances is useful in the diagnosis of Minamata disease, even in more distant parts of the Yatsushiro Sea area.
Collapse
Affiliation(s)
- Shigeru Takaoka
- Kyoritsu Neurology and Rehabilitation Clinic, 2-2-28 Sakurai-cho, Minamata 867-0045, Japan
| | - Tadashi Fujino
- Minamata Kyoritsu Hospital, 2-2-12 Sakurai-cho, Minamata 867-0045, Japan (S.-i.S.)
| | - Shin-ichi Shigeoka
- Minamata Kyoritsu Hospital, 2-2-12 Sakurai-cho, Minamata 867-0045, Japan (S.-i.S.)
| | - Yaeko Itai
- Minamata Kyoritsu Hospital, 2-2-12 Sakurai-cho, Minamata 867-0045, Japan (S.-i.S.)
| |
Collapse
|
2
|
Espitia-Pérez L, Brango H, Peñata-Taborda A, Galeano-Páez C, Jaramillo-García M, Espitia-Pérez P, Pastor-Sierra K, Bru-Cordero O, Hoyos-Giraldo LS, Reyes-Carvajal I, Saavedra-Trujillo D, Ricardo-Caldera D, Coneo-Pretelt A. Influence of genetic polymorphisms of Hg metabolism and DNA repair on the frequencies of micronuclei, nucleoplasmic bridges, and nuclear buds in communities living in gold mining areas. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 897:503790. [PMID: 39054006 DOI: 10.1016/j.mrgentox.2024.503790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 07/27/2024]
Abstract
Fishing communities living near gold mining areas are at increased risk of mercury (Hg) exposure via bioaccumulation of methylmercury (MeHg) in fish. This exposure has been linked to health effects that may be triggered by genotoxic events. Genetic polymorphisms play a role in the risk associated with Hg exposure. This study evaluated the effect of single nucleotide polymorphisms (SNPs) in metabolic and DNA repair genes on genetic instability and total hair Hg (T-Hg) levels in 78 individuals from "La Mojana" in northern Colombia and 34 individuals from a reference area. Genetic instability was assessed by the frequency of micronuclei (MNBN), nuclear buds (NBUDS), and nucleoplasmic bridges (NPB). We used a Poisson regression to assess the influence of SNPs on T-Hg levels and genetic instability, and a Bayesian regression to examine the interaction between Hg detoxification and DNA repair. Among exposed individuals, carriers of XRCC1Arg399Gln had a significantly higher frequency of MNBN. Conversely, the XRCC1Arg194Trp and OGG1Ser326Cys polymorphisms were associated with lower frequencies of MNBN. XRCC1Arg399Gln, XRCC1Arg280His, and GSTM1Null carriers showed lower NPB frequencies. Our results also indicated that individuals with the GSTM1Nulland GSTT1null polymorphisms had a 1.6-fold risk for higher T-Hg levels. The Bayesian model showed increased MNBN frequencies in carriers of the GSTM1Null polymorphism in combination with XRCC1Arg399Gln and increased NBUDS frequencies in the GSTM1Null carriers with the XRCC3Thr241Met and OGG1Ser326Cys alleles. The GSTM1+ variant was found to be a protective factor in individuals carrying OGG1Ser326Cys (MNBN) and XRCC1Arg280His (NPB); the GSTT1+ polymorphism combined with XRCCArg194Trp also modulated lower MNBN frequencies, while GSTT1+ carriers with the XRCC1Arg399Gln allele showed lower NPB frequencies. Consistent with GSTM1, GSTT1Null carriers with XRCC3Thr241Met showed increased NBUDS frequency. With the rise of gold mining activities, these approaches are vital to identify and safeguard populations vulnerable to Hg's toxic effects.
Collapse
Affiliation(s)
- Lyda Espitia-Pérez
- Facultad de Ciencias de la Salud, Laboratorio de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia.
| | - Hugo Brango
- Departamento de Matemáticas y Estadística, Universidad del Norte, Barranquilla, Colombia
| | - Ana Peñata-Taborda
- Facultad de Ciencias de la Salud, Laboratorio de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia
| | - Claudia Galeano-Páez
- Facultad de Ciencias de la Salud, Laboratorio de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia
| | - Manolo Jaramillo-García
- Facultad de Ciencias de la Salud, Laboratorio de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia (Postmorten)
| | - Pedro Espitia-Pérez
- Facultad de Ciencias de la Salud, Laboratorio de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia
| | - Karina Pastor-Sierra
- Facultad de Ciencias de la Salud, Laboratorio de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia
| | - Osnamir Bru-Cordero
- Universidad Nacional de Colombia, Dirección académica, kilómetro 9, vía Valledupar-La Paz, La Paz, Cesar, Colombia
| | - Luz Stella Hoyos-Giraldo
- Department of Biology, Research Group Genetic Toxicology and Cytogenetics, Faculty of Natural Sciences and Education, Universidad del Cauca, Popayán, Cauca, Colombia
| | - Ingrid Reyes-Carvajal
- Department of Biology, Research Group Genetic Toxicology and Cytogenetics, Faculty of Natural Sciences and Education, Universidad del Cauca, Popayán, Cauca, Colombia
| | - Diana Saavedra-Trujillo
- Department of Biology, Research Group Genetic Toxicology and Cytogenetics, Faculty of Natural Sciences and Education, Universidad del Cauca, Popayán, Cauca, Colombia
| | - Dina Ricardo-Caldera
- Grupo de Investigación Enfermedades Tropicales y Resistencia Bacteriana, Universidad del Sinú, Montería, Córdoba, Colombia
| | - Andrés Coneo-Pretelt
- Facultad de Ciencias de la Salud, Laboratorio de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia
| |
Collapse
|
3
|
Philibert A, Da Silva J, Fillion M, Mergler D. The evolution of symptoms of nervous system dysfunction in a First Nation community with a history of mercury exposure: a longitudinal study. Environ Health 2024; 23:50. [PMID: 38822381 PMCID: PMC11140928 DOI: 10.1186/s12940-024-01089-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/06/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND Since the 1960's, mercury (Hg) contamination of the aquatic environment of Asubpeeschoseewagong Anishinabek (Grassy Narrows First Nation) territories has impacted the community members' traditions, culture, livelihood, diet and health. Despite decreasing Hg exposure over time, a recent study suggested that long-term exposure contributed to later-life symptom clusters of nervous system dysfunction. Here, the objective was to evaluate, 5 years later, the prevalence and progression of these symptoms and examine the contribution of long-term, past Hg exposure. METHODS The symptom questionnaire, applied in the 2016/17 Grassy Narrows Community Health Assessment (GN-CHA) (Time 1), was re-administered in the 2021/22 Niibin study (Time 2). A total of 85 adults (median age: 47y; range: 29-75y) responded at both times. Paired statistics were used to test the differences (Time 2 - Time 1) in self-reported symptom frequencies. The symptom clustering algorithm, derived from the entire study group of the GN-CHA (n = 391), which had yielded 6 clusters, was applied at Time 1 and 2. Equivalent hair Hg measurements (HHg) between 1970 and 1997 were used in Longitudinal Mixed Effects Models (LMEM), with a sub-group with ≥ 10 repeated HHg mesurements (age > 40y), to examine its associations with symptom cluster scores and their progression. RESULTS For most symptoms, paired analyses (Time 2 - Time 1) showed a significant increase in persons reporting " very often" or "all the time", and in the mean Likert scores for younger and older participants (< and ≥ 50y). The increase in cluster scores was not associated with age or sex, except for sensory impairment where a greater increase in symptom frequency was observed for younger persons. LMEM showed that, for the sub-group, long-term past Hg exposure was associated with most cluster scores at both times, and importantly, for all clusters, with their rate of increase over time (Time 2 - Time 1). CONCLUSIONS The persistence of reported symptoms and their increase in frequency over the short 5-year period underline the need for adequate health care services. Results of the sub-group of persons > 40y, whose HHg reflects exposure over the 28-year sampling period, suggest that there may be a progressive impact of Hg on nervous system dysfunction.
Collapse
Affiliation(s)
- Aline Philibert
- Centre de recherche interdisciplinaire sur le bien-être, la santé, la société et l'environnement (CINBIOSE), Université du Québec À Montréal, CP 8888, Succ. Centreville, Montréal, Québec, H3C 3P8, Canada
| | - Judy Da Silva
- Grassy Narrows First Nation, General Delivery, Grassy Narrows, ON, P0X 1B0, Canada
| | - Myriam Fillion
- Département Science et Technologie, Université TÉLUQ, 5800 Saint-Denis St, Montréal, Québec, H2S 3L4, Canada
| | - Donna Mergler
- Centre de recherche interdisciplinaire sur le bien-être, la santé, la société et l'environnement (CINBIOSE), Université du Québec À Montréal, CP 8888, Succ. Centreville, Montréal, Québec, H3C 3P8, Canada.
- Département des sciences biologiques et CINBIOSE, Université du Québec À Montréal, CP 8888, Succ. Centreville, Montréal, Québec, H3C 3P8, Canada.
| |
Collapse
|
4
|
Takaoka S. [Responses to "A Review of the Book 'Minamata Disease and the Responsibility of Medical Authorities'"]. Nihon Eiseigaku Zasshi 2024; 79:n/a. [PMID: 39198194 DOI: 10.1265/jjh.24005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2024]
Abstract
Drs. Futatsuka, Eto, and Uchino expressed their opinions in the Journal of the Japanese Society for Hygiene in the form of a review of my book, "Minamata Disease and the Responsibility of Medicine." (The reviewers translated it as "Responsibility of Medical Authorities," but for my purposes in writing this book, I believe it should be translated as "Responsibility of Medicine.") The nine major comments of the three reviewers described in this book review were reviewed from the basic perspective of toxicology, epidemiology, and neuroscience. This book review is fraught with either medical, logical, or ethical problems in all the nine points as follows: (1) the inadequate way in which exposure and health hazards are considered from the toxicological perspective, (2) problems in interpreting epidemiological information, (3) the failure to consider recent achievements in methylmercury toxicosis studies, (4) presenting the reviewers' own theories without regard to the content of my book while calling it a "book review," (5) presenting and criticizing what Takaoka does not claim as if he does, and (6) making claims that are inconsistent with the three reviewers' own views. The problems with this book review will become even clearer when you read "Minamata Disease and the Responsibility of Medicine" itself.
Collapse
|
5
|
Takaoka S, Fujino T, Shigeoka SI, Yorifuji T. Characteristics of Abnormalities in Somatosensory Submodalities Observed in Residents Exposed to Methylmercury. TOXICS 2023; 11:1023. [PMID: 38133424 PMCID: PMC10748001 DOI: 10.3390/toxics11121023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
Hundreds of thousands of people living along the Yatsushiro Sea coast have been exposed to methylmercury from the contaminated water of the Chisso factory in Minamata. The most common neurological disorder caused by methylmercury is somatosensory disturbance, but very few studies have been conducted in the world to determine its pathophysiology and origin, including the Japanese cases, which have produced numerous intoxicated individuals. We have already shown in previous studies the body part where the disorder occurs and that its cause is not peripheral nerve damage but damage to the parietal lobes of the cerebrum. We reanalyzed the results of subjective symptoms, neurological findings, and quantitative sensory measurements in 197 residents (63.2 ± 10.7 years old) from contaminated areas exposed to methylmercury from seafood and 130 residents (63.7 ± 9.3 years old) from control areas, the same subjects as in previous studies, to determine the characteristics of somatosensory disturbance in detail. The most commonly affected sensory modalities were superficial peripheral touch and pain in the extremities, followed by two-point discrimination and deep senses, and in the most severe cases, full-body sensory dysfunction and impairment of all sensory submodalities. The severity of sensory submodalities correlated with each other but not with peripheral nerve conduction test indices, further confirming the correctness of our assertion about the responsible foci of sensory disturbance. The health effects of chronic methylmercury toxicosis can be elucidated by a detailed examination of sensory deficits.
Collapse
Affiliation(s)
- Shigeru Takaoka
- Kyoritsu Neurology and Rehabilitation Clinic, 2-2-28 Sakurai-cho, Minamata 867-0045, Japan
| | - Tadashi Fujino
- Minamata Kyoritsu Hospital, 2-2-12 Sakurai-cho, Minamata 867-0045, Japan; (T.F.); (S.-i.S.)
| | - Shin-ichi Shigeoka
- Minamata Kyoritsu Hospital, 2-2-12 Sakurai-cho, Minamata 867-0045, Japan; (T.F.); (S.-i.S.)
| | - Takashi Yorifuji
- Department of Human Ecology, Graduate School of Environmental and Life Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan;
| |
Collapse
|
6
|
Tousignant B, Chatillon A, Philibert A, Da Silva J, Fillion M, Mergler D. Visual Characteristics of Adults with Long-Standing History of Dietary Exposure to Mercury in Grassy Narrows First Nation, Canada. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4827. [PMID: 36981736 PMCID: PMC10049103 DOI: 10.3390/ijerph20064827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/23/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Since the 1960s, Grassy Narrows First Nation (Ontario, Canada) has been exposed to methyl mercury (Hg) through fish consumption, resulting from industrial pollution of their territorial waters. This cross-sectional study describes the visual characteristics of adults with documented Hg exposure between 1970 and 1997. Oculo-visual examinations of 80 community members included visual acuity, automated visual fields, optical coherence tomography [OCT], color vision and contrast sensitivity. Median age was 57 years (IQR 51-63) and 55% of participants were women. Median visual acuity was 0.1 logMAR (Snellen 6/6.4; IQR 0-0.2). A total of 26% of participants presented a Visual Field Index inferior to 62%, and qualitative losses assessment showed concentric constriction (18%), end-stage concentric loss (18%), and complex defects (24%). On OCT, retinal nerve fiber layer scans showed 74% of participants within normal/green range. For color testing with the Hardy, Rand, and Rittler test, 40% presented at least one type of color defect, and with the Lanthony D-15 test, median color confusion index was 1.59 (IQR 1.33-1.96). Contrast sensitivity showed moderate loss for 83% of participants. These findings demonstrate important loss of visual field, color vision, and contrast sensitivity in older adults in a context of long-term exposure to Hg in Grassy Narrows First Nation.
Collapse
Affiliation(s)
- Benoit Tousignant
- School of Optometry, Université de Montréal, 3744 Jean-Brillant, Montreal, QC H3T 1P1, Canada
- Department of Social and Preventive Medicine, School of Public Health, Université de Montréal, 7101 Avenue du Parc, Montreal, QC H3N 1X9, Canada
| | - Annie Chatillon
- School of Optometry, Université de Montréal, 3744 Jean-Brillant, Montreal, QC H3T 1P1, Canada
| | - Aline Philibert
- Centre de Recherche Interdisciplinaire sur le Bien-être, la Santé, la Société et L’environnement (Cinbiose), Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada
| | - Judy Da Silva
- Grassy Narrows First Nation, General Delivery, Grassy Narrows, ON P0X 1B0, Canada
| | - Myriam Fillion
- Centre de Recherche Interdisciplinaire sur le Bien-être, la Santé, la Société et L’environnement (Cinbiose), Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada
- Département Science et Technologie, Université TÉLUQ, 5800, Rue Saint-Denis, Bureau 1105, Montréal, QC H2S 3L5, Canada
| | - Donna Mergler
- Centre de Recherche Interdisciplinaire sur le Bien-être, la Santé, la Société et L’environnement (Cinbiose), Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada
| |
Collapse
|
7
|
de Oliveira RAA, Pinto BD, Rebouças BH, Ciampi de Andrade D, de Vasconcellos ACS, Basta PC. Neurological Impacts of Chronic Methylmercury Exposure in Munduruku Indigenous Adults: Somatosensory, Motor, and Cognitive Abnormalities. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph181910270. [PMID: 34639574 PMCID: PMC8507861 DOI: 10.3390/ijerph181910270] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/16/2021] [Accepted: 09/23/2021] [Indexed: 11/29/2022]
Abstract
There has been increasing evidence about mercury (Hg) contamination in traditional populations from the Amazon Basin due to illegal gold mining. The most concerning health impact is neurotoxicity caused by Hg in its organic form: methylmercury (MeHg). However, the severity and extent of the neurotoxic effects resulting from chronic environmental exposure to MeHg are still unclear. We conducted a clinical-epidemiological study to evaluate the neurological impacts of chronic MeHg exposure in Munduruku indigenous people, focusing on somatosensory, motor, and cognitive abnormalities. All participants were subjected to a systemized neurological exam protocol, including Brief Cognitive Screening Battery (BCSB), verbal fluency test, and Stick Design Test. After the examination, hair samples were collected to determine MeHg levels. Data collection took place between 29 October and 9 November 2019, in three villages (Sawré Muybu, Poxo Muybu, and Sawré Aboy) from Sawré Muybu Indigenous Land, Southwest of Pará state. One hundred and ten individuals >12 years old were included, 58 of which were men (52.7%), with an average age of 27.6 years (range from 12 to 72). Participants’ median MeHg level was 7.4 µg/g (average: 8.7; S.D: 4.5; range: 2.0–22.8). In Sawré Aboy village, the median MeHg level was higher (12.5 µg/g) than in the others, showing a significant statistical exposure gradient (Kruskal–Wallis test with p-value < 0.001). Cerebellar ataxia was observed in two participants with MeHg levels of 11.68 and 15.68 µg/g. Individuals with MeHg exposure level ≥10 µg/g presented around two-fold higher chances of cognitive deficits (RP: 2.2; CI 95%: 1.13–4.26) in BCSB, and in the verbal fluency test (RP: 2.0; CI 95%: 1.18–3.35). Furthermore, adolescents of 12 to 19 years presented three-fold higher chances of verbal development deficits, according to the fluency test (RP: 3.2; CI 95%: 1.06–9.42), than individuals of 20 to 24 years. The worsened motor and cognitive functions are suggestive of neurotoxicity due to chronic MeHg exposure. In conclusion, we believe monitoring and follow-up measures are necessary for chronic mercury exposed vulnerable people, and a basic care protocol should be established for contaminated people in the Brazilian Unified Health System.
Collapse
Affiliation(s)
- Rogério Adas Ayres de Oliveira
- Centro de Dor, Departamento de Neurologia, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo 05403-000, Brazil; (R.A.A.d.O.); (B.D.P.); (B.H.R.); (D.C.d.A.)
| | - Bruna Duarte Pinto
- Centro de Dor, Departamento de Neurologia, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo 05403-000, Brazil; (R.A.A.d.O.); (B.D.P.); (B.H.R.); (D.C.d.A.)
| | - Bruno Hojo Rebouças
- Centro de Dor, Departamento de Neurologia, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo 05403-000, Brazil; (R.A.A.d.O.); (B.D.P.); (B.H.R.); (D.C.d.A.)
| | - Daniel Ciampi de Andrade
- Centro de Dor, Departamento de Neurologia, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo 05403-000, Brazil; (R.A.A.d.O.); (B.D.P.); (B.H.R.); (D.C.d.A.)
| | - Ana Claudia Santiago de Vasconcellos
- Laboratório de Educação Profissional em Vigilância em Saúde, Escola Politécnica de Saúde Joaquim Venâncio, Fundação Oswaldo Cruz (EPSJV/Fiocruz), Rio de Janeiro 21040-900, Brazil;
| | - Paulo Cesar Basta
- Departamento de Endemias Samuel Pessoa, Escola Nacional de Saúde Pública, Fundação Oswaldo Cruz (ENSP/Fiocruz), Rio de Janeiro 21041-210, Brazil
- Correspondence: ; Tel.: +55-21-2598-2503
| |
Collapse
|
8
|
Shinoda Y, Yamada Y, Yoshida E, Takahashi T, Tsuneoka Y, Eto K, Kaji T, Fujiwara Y. Hypoalgesia and recovery in methylmercury-exposed rats. J Toxicol Sci 2021; 46:303-309. [PMID: 34078837 DOI: 10.2131/jts.46.303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Methylmercury (MeHg), the causal substrate in Minamata disease, can lead to severe and chronic neurological disorders. The main symptom of Minamata disease is sensory impairment in the four extremities; however, the sensitivity of individual sensory modalities to MeHg has not been investigated extensively. In the present study, we performed stimulus-response behavioral experiments in MeHg-exposed rats to compare the sensitivities to pain, heat, cold, and mechanical sensations. MeHg (6.7 mg/kg/day) was orally administered to 9-week-old Wistar rats for 5 days and discontinued for 2 days, then administered daily for another 5 days. The four behavioral experiments were performed daily on each rat from the beginning of MeHg treatment for 68 days. The pain sensation decreased significantly from day 11 onwards, but recovered to control levels on day 48. Other sensory modalities were not affected by MeHg exposure. These findings suggest that the pain sensation is the sensory modality most susceptive to MeHg toxicity and that this sensitivity is reversible following discontinuation of the exposure.
Collapse
Affiliation(s)
- Yo Shinoda
- Department of Environmental Health, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Yuta Yamada
- Department of Environmental Health, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Eiko Yoshida
- Department of Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Tsutomu Takahashi
- Department of Environmental Health, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Yayoi Tsuneoka
- Department of Environmental Health, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Komyo Eto
- Health and Nursing Facilities for the Aged, Jushindai, Shinwakai
| | - Toshiyuki Kaji
- Department of Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Yasuyuki Fujiwara
- Department of Environmental Health, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| |
Collapse
|
9
|
Sceniak MP, Spitsbergen JB, Sabo SL, Yuan Y, Atchison WD. Acute neurotoxicant exposure induces hyperexcitability in mouse lumbar spinal motor neurons. J Neurophysiol 2020; 123:1448-1459. [PMID: 32159428 DOI: 10.1152/jn.00775.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Spinal motor neurons (MNs) are susceptible to glutamatergic excitotoxicity, an effect associated with lumbar MN degeneration in amyotrophic lateral sclerosis (ALS). MN susceptibility to environmental toxicant exposure, one prospective contributor to sporadic ALS, has not been systematically studied. The goal of this study was to test the ability of a well-known environmental neurotoxicant to induce hyperexcitability in mouse lumbar MNs. Methylmercury (MeHg) causes neurotoxicity through mechanisms involving elevated intracellular Ca2+ concentration ([Ca2+]i), a hallmark of excitotoxicity. We tested whether acute exposure to MeHg induces hyperexcitability in MNs by altering synaptic transmission, using whole cell patch-clamp recordings of lumbar spinal MNs in vitro. Acute MeHg exposure (20 μM) led to an increase in the frequency of both spontaneous excitatory postsynaptic currents (EPSCs) and miniature EPSCs. The frequency of inhibitory postsynaptic currents (IPSCs) was also increased by MeHg. Action potential firing rates, both spontaneous and evoked, were increased by MeHg, despite increases in both EPSCs and IPSCs, indicating a shift toward hyperexcitability. Also consistent with hyperexcitability, fluo 4-AM microfluorimetry indicated that MeHg exposure induced an increase in [Ca2+]i. Spinal cord hyperexcitability is partially mediated by Ca2+-permeable AMPA receptors, as MeHg-dependent increases in EPSCs were blocked by 1-napthyl spermine. Therefore, spinal MNs appear highly susceptible to MeHg exposure, leading to significant increases in spontaneous network excitability and disruption of normal function. Prolonged hyperexcitability could lead to eventual neurodegeneration and loss of motor function as observed in spinal cord after MeHg exposure in vivo and may contribute to MeHg-induced acceleration of ALS symptoms.NEW & NOTEWORTHY Spinal motor neurons (MN) are susceptible to glutamatergic excitotoxicity, an effect associated with lumbar MN degeneration in amyotrophic lateral sclerosis (ALS). This study investigated MN susceptibility to environmental toxicant exposure, one prospective contributor to sporadic ALS. Spinal MNs appear highly susceptible to methylmercury exposure, leading to significant increases in spontaneous network excitability and disruption of normal function. Prolonged hyperexcitability could lead to neurodegeneration and loss of motor function as observed in ALS spinal cord symptoms.
Collapse
Affiliation(s)
- Michael P Sceniak
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan.,Department of Biology, Central Michigan University, Mount Pleasant, Michigan
| | - Jake B Spitsbergen
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Shasta L Sabo
- Department of Biology, Central Michigan University, Mount Pleasant, Michigan
| | - Yukun Yuan
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - William D Atchison
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
10
|
Puty B, Leão LKR, Crespo-Lopez ME, Almeida APCPSC, Fagundes NCF, Maia LC, Lima RR. Association between methylmercury environmental exposure and neurological disorders: A systematic review. J Trace Elem Med Biol 2019; 52:100-110. [PMID: 30732869 DOI: 10.1016/j.jtemb.2018.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 11/27/2018] [Accepted: 12/03/2018] [Indexed: 01/23/2023]
Abstract
The mercury-related central nervous system disorders have been extensively studied on animal models and human beings. However, clinical evidences of which neurological changes are in fact associated with mercury exposure remains controversial. This systematic review (Prospero registration under the number CRD42016041760) aimed to elucidate the association of methylmercury (MeHg) exposure with neurological alteration in populations living in MeHg-endemic risk area. A systematic search was performed according to the Preferred Reporting Items for Systematic Review and Meta-Analysis criteria using available databases PubMed, LILACS, Scopus, Web of Science, The Cochrane Library, OpenGrey and Google Scholar. A search of the following terms: "methylmercury compounds", "organomercury compounds", "neurologic manifestations", "memory disorders", "neurobehavioral manifestations" and "communication disorders" were performed in a systematic way. Studies focusing on MeHg exposure and subsequent neurological alteration on humans (>13 years) were included. Evaluation of methodological quality and risk of bias as well as the level of evidence was performed. Our results have identified 470 studies and six articles were eligible for systematic review inclusion criteria. The studies suggested alterations related to the psychosensory, motor and coordination system, as well as motor speech, hearing, visual impairment, mood alterations and loss of intelligent quotient. Of all the six studies, two presented a high risk of bias, with methodological problems related to the confounding factors and all studies presented evidence level ranged from very low to low. In this way our results revealed that a definitive demonstration of an association of MeHg and neurological alterations in human beings is still a pending subject. Future studies in this topic should take into consideration more confident and reliable methods to answer this question.
Collapse
Affiliation(s)
- Bruna Puty
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Para, Belem, Brazil.
| | - Luana Ketlen Reis Leão
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Para, Belem, Brazil.
| | - Maria Elena Crespo-Lopez
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Para, Belem, Brazil.
| | | | | | - Lucianne Cople Maia
- Department of Pediatric Dentistry and Orthodontics, School of Dentistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Para, Belem, Brazil.
| |
Collapse
|
11
|
Survey of the Extent of the Persisting Effects of Methylmercury Pollution on the Inhabitants around the Shiranui Sea, Japan. TOXICS 2018; 6:toxics6030039. [PMID: 30037044 PMCID: PMC6160922 DOI: 10.3390/toxics6030039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/15/2018] [Accepted: 07/18/2018] [Indexed: 11/17/2022]
Abstract
In 1956 methylmercury poisoning, known as Minamata disease, was discovered among the inhabitants around the Shiranui Sea, Kyushu, Japan. Although about five hundred thousand people living in the area had supposedly been exposed to methylmercury, administrative agencies and research institutes had not performed any subsequent large scale, continuous health examination, so the actual extent of the negative health effects was not clearly documented. In 2009, we performed health surveys in order to examine residents in the polluted area and to research the extent of the polluted area and period of pollution. We analyzed data collected on 973 people (age = 62.3 ± 11.7) who had lived in the polluted area and had eaten the fish there and a control group, consisting of 142 persons (age = 62.0 ± 10.5), most of whom had not lived in the polluted area. Symptoms and neurological signs were statistically more prevalent in the four groups than in the control group and were more prevalent and severe in those who had eaten most fish. The patterns of positive findings of symptoms and neurological findings in the four groups were similar. Our data indicates that Minamata disease had spread outside of the central area and could still be observed recently, almost 50 years after the Chisso Company’s factory had halted the dumping of mercury polluted waste water back in 1968.
Collapse
|
12
|
Colón-Rodríguez A, Hannon HE, Atchison WD. Effects of methylmercury on spinal cord afferents and efferents-A review. Neurotoxicology 2017; 60:308-320. [PMID: 28041893 PMCID: PMC5447474 DOI: 10.1016/j.neuro.2016.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 12/21/2016] [Accepted: 12/21/2016] [Indexed: 10/20/2022]
Abstract
Methylmercury (MeHg) is an environmental neurotoxicant of public health concern. It readily accumulates in exposed humans, primarily in neuronal tissue. Exposure to MeHg, either acutely or chronically, causes severe neuronal dysfunction in the central nervous system and spinal neurons; dysfunction of susceptible neuronal populations results in neurodegeneration, at least in part through Ca2+-mediated pathways. Biochemical and morphologic changes in peripheral neurons precede those in central brain regions, despite the fact that MeHg readily crosses the blood-brain barrier. Consequently, it is suggested that unique characteristics of spinal cord afferents and efferents could heighten their susceptibility to MeHg toxicity. Transient receptor potential (TRP) ion channels are a class of Ca2+-permeable cation channels that are highly expressed in spinal afferents, among other sensory and visceral organs. These channels can be activated in numerous ways, including directly via chemical irritants or indirectly via Ca2+ release from intracellular storage organelles. Early studies demonstrated that MeHg interacts with heterologous TRP channels, though definitive mechanisms of MeHg toxicity on sensory neurons may involve more complex interaction with, and among, differentially-expressed TRP populations. In spinal efferents, glutamate receptors of the N-methyl-D-aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), and possibly kainic acid (KA) classes are thought to play a major role in MeHg-induced neurotoxicity. Specifically, the Ca2+-permeable AMPA receptors, which are abundant in motor neurons, have been identified as being involved in MeHg-induced neurotoxicity. In this review, we will describe the mechanisms that could contribute to MeHg-induced spinal cord afferent and efferent neuronal degeneration, including the possible mediators, such as uniquely expressed Ca2+-permeable ion channels.
Collapse
Affiliation(s)
- Alexandra Colón-Rodríguez
- Department of Pharmacology and Toxicology, 1355 Bogue Street, Life Sciences Building Rm. B440, Michigan State University, East Lansing, MI, United States; Institute for Integrative Toxicology, 1129 Farm Lane, Food Safety and Toxicology Rm. 165, Michigan State University, East Lansing, MI, United States; Comparative Medicine and Integrative Biology Program, 784 Wilson Road, Veterinary Medical Center Rm. G-100, Michigan State University, East Lansing, MI, United States.
| | - Heidi E Hannon
- Department of Pharmacology and Toxicology, 1355 Bogue Street, Life Sciences Building Rm. B440, Michigan State University, East Lansing, MI, United States; Institute for Integrative Toxicology, 1129 Farm Lane, Food Safety and Toxicology Rm. 165, Michigan State University, East Lansing, MI, United States; Comparative Medicine and Integrative Biology Program, 784 Wilson Road, Veterinary Medical Center Rm. G-100, Michigan State University, East Lansing, MI, United States.
| | - William D Atchison
- Department of Pharmacology and Toxicology, 1355 Bogue Street, Life Sciences Building Rm. B440, Michigan State University, East Lansing, MI, United States; Institute for Integrative Toxicology, 1129 Farm Lane, Food Safety and Toxicology Rm. 165, Michigan State University, East Lansing, MI, United States; Comparative Medicine and Integrative Biology Program, 784 Wilson Road, Veterinary Medical Center Rm. G-100, Michigan State University, East Lansing, MI, United States.
| |
Collapse
|
13
|
Thanuja Nilushi Priyangika SM, Karunarathna WGSG, Liyanage I, Gunawardana M, Dissanayake B, Udumalgala S, Rosa C, Samarasinghe T, Wijesinghe P, Kulatunga A. A rare case of self-injection of elemental mercury. BMC Res Notes 2016; 9:189. [PMID: 27012667 PMCID: PMC4807590 DOI: 10.1186/s13104-016-1992-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 03/15/2016] [Indexed: 11/18/2022] Open
Abstract
Background Self-injection of elemental mercury is a rare finding especially in healthy people who are mentally sound. Early detection and removal of mercury from the body by chelation and physical removal of a stored injected site is required to prevent long term toxicity. Case presentation A 15 year old previously healthy girl presented with an acute febrile illness with a generalized maculopapular skin rash for 3 days with a preceding history of self-injection of mercury to both her forearms. This was an imitating experimental act influenced by a movie and she was mentally sound. Very high whole blood mercury levels, x-rays of the forearms and histology confirmed mercury poisoning. Conclusion Self-injection of elemental mercury can also occur in mentally sound people and rapid diagnosis and decontamination is required. This also signifies the importance of imposing limitations for visual media which could misguide minors and lead those to imitate and cause serious self-harm.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chamith Rosa
- National Hospital of Sri Lanka, Colombo, Sri Lanka
| | | | | | | |
Collapse
|
14
|
Khoury EDT, Souza GDS, da Costa CA, de Araújo AAK, de Oliveira CSB, Silveira LCDL, Pinheiro MDCN. Somatosensory Psychophysical Losses in Inhabitants of Riverside Communities of the Tapajós River Basin, Amazon, Brazil: Exposure to Methylmercury Is Possibly Involved. PLoS One 2015; 10:e0144625. [PMID: 26658153 PMCID: PMC4676688 DOI: 10.1371/journal.pone.0144625] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 11/12/2015] [Indexed: 11/18/2022] Open
Abstract
The purpose of this work was to evaluate the somatosensory system of methylmercury-exposed inhabitants living in the communities of the Tapajós river basin by using psychophysical tests and to compare with measurements performed in inhabitants of the Tocantins river basin. We studied 108 subjects from Barreiras and São Luiz do Tapajós, two communities of the Tapajós river basin, State of Pará, Amazon, Brazil, aged 13–53 years old. Mercury analysis was performed in head hair samples weighting 0.1–0.2 g by using atomic absorption spectrometry. Three somatosensory psychophysical tests were performed: tactile sensation threshold, vibration sensation duration, and two-point discrimination. Semmes-Weinstein 20 monofilaments with different diameters were used to test the tactile sensation in the lower lip, right and left breasts, right and left index fingers, and right and left hallux. The threshold was the thinner monofilament perceived by the subject. Vibration sensation was investigated using a 128 Hz diapason applied to the sternum, right and left radial sides of the wrist, and right and left outer malleoli. Two trials were performed at each place. A stopwatch recorded the vibration sensation duration. The two-point discrimination test was performed using a two-point discriminator. Head hair mercury concentration was significantly higher in mercury-exposed inhabitants of Tapajós than in non-exposed inhabitants of Tocantins (p < 0.01). When all subjects were divided in two groups independently of age—mercury-exposed and non-exposed—the following results were found: tactile sensation thresholds in mercury-exposed subjects were higher than in non-exposed subjects at all body parts, except at the left chest; vibration sensation durations were shorter in mercury-exposed than in non-exposed subjects, at all locations except in the upper sternum; two-point discrimination thresholds were higher in mercury-exposed than in non-exposed subjects at all body parts. There was a weak linear correlation between tactile sensation threshold and mercury concentration in the head hair samples. No correlation was found for the other two measurements. Mercury-exposed subjects had impaired somatosensory function compared with non-exposed control subjects. Long-term mercury exposure of riverside communities in the Tapajós river basin is a possible but not a definitely proven cause for psychophysical somatosensory losses observed in their population. Additionally, the relatively simple psychophysical measures used in this work should be followed by more rigorous measures of the same population.
Collapse
Affiliation(s)
| | - Givago da Silva Souza
- Núcleo de Medicina Tropical, Universidade Federal do Pará, Belém, PA, Brazil
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | | | | | | | - Luiz Carlos de Lima Silveira
- Núcleo de Medicina Tropical, Universidade Federal do Pará, Belém, PA, Brazil
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
- Universidade Ceuma, São Luís, MA, Brazil
| | | |
Collapse
|
15
|
Khoury EDT, Souza GDS, Silveira LCDL, Costa CAD, Araújo AAD, Pinheiro MDCN. [Neurological manifestations in riverine populations from areas exposed to mercury in the Brazilian Amazon]. CAD SAUDE PUBLICA 2014; 29:2307-18. [PMID: 24233045 DOI: 10.1590/0102-311x00158012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Accepted: 06/06/2013] [Indexed: 11/22/2022] Open
Abstract
This study evaluated current levels of mercury exposure and sensory symptoms in adults from three riverine communities in Pará State, Brazil, two of which located in the Tapajós River basin and one in the Tocantins basin. Participants in this study included 78 residents in Barreiras (Tapajós), 30 in São Luiz do Tapajós (Tapajós), and 49 in Furo do Maracujá (Tocantins). Total hair mercury concentrations were quantified by atomic absorption spectrophotometry, and neurological evaluation was conducted by routine examination. Mercury concentrations in the Tapajós communities were higher than those in the Tocantins (p < 0.01). Evaluation of neurological changes showed no significant difference between the communities in exposed areas and control areas for the changes observed by conventional neurological examination, except for gait deviation (p < 0.05). The study concludes that despite the mercury exposure levels, there was a low frequency of sensory alterations according to conventional neurological testing.
Collapse
|
16
|
Takaoka S, Fujino T, Hotta N, Ueda K, Hanada M, Tajiri M, Inoue Y. Signs and symptoms of methylmercury contamination in a First Nations community in Northwestern Ontario, Canada. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 468-469:950-957. [PMID: 24091119 DOI: 10.1016/j.scitotenv.2013.09.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 09/05/2013] [Accepted: 09/05/2013] [Indexed: 06/02/2023]
Abstract
In 1970, fish caught in the English-Wabigoon River system in northwestern Ontario, Canada, were found to be contaminated with mercury coming from a chlor-alkali plant in the province. In the 1970s, patients exhibiting some of the symptoms of the Hunter-Russell syndrome (e.g. paresthesias, visual field constriction, ataxia, impaired hearing, and speech impairment) were reported by some researchers. However attempts to diagnose the patients as suffering from methylmercury poisoning proved to be controversial. In order to research the presence of methylmercury contamination, and show that the patients, through eating contaminated fish, were suffering from methylmercury poisoning, we studied the results of subjective complaints, neurological findings, and quantitative somatosensory measurements gathered in Grassy Narrows Indian Reservation, Ontario, in March, 2010. At that time, the population of the Grassy Narrows settlement was around 900. Ninety-one residents volunteered to be examined. From them, we selected 80 people who were older than 15 years old, and divided them into two groups. Canadian Younger (CY): 36 residents who were from 16 to 45 years old. Canadian Older (CO): 44 residents who were from 46 to 76 years old. We compared them to Japanese Exposed (JE): 88 methylmercury exposed residents from the Minamata district in Japan, and Japanese Control (JC): 164 control residents from non-polluted areas in Japan. Complaints and abnormal neurological findings were more prevalent and quantitative sensory measurements were worse in the two Canadian groups and the Japanese Exposed group than in the Japanese Control group. Complaints, neurological findings and quantitative sensory measurements were similar in Canadian Older and Japanese Exposed. The results for Canadian Younger fell between those of Canadian Older and Japanese Control. These findings indicate that the clinical signs and symptoms of the residents of Grassy Narrows are almost the same as those recorded for Minamata disease in Japan.
Collapse
Affiliation(s)
- Shigeru Takaoka
- Minamata Kyoritsu Hospital, Sakurai-cho 2-2-12, Minamata 867-0045, Japan.
| | | | | | | | | | | | | |
Collapse
|
17
|
Kong HK, Wong MH, Chan HM, Lo SCL. Chronic exposure of adult rats to low doses of methylmercury induced a state of metabolic deficit in the somatosensory cortex. J Proteome Res 2013; 12:5233-45. [PMID: 23984759 DOI: 10.1021/pr400356v] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Because of the ever-increasing bioaccumulation of methylmercury (MeHg) in the marine food chain, human consumers are exposed to low doses of MeHg continually through seafood consumption. Epidemiological studies strongly suggest that chronic prenatal exposure to nanomolar of MeHg has immense negative impacts on neurological development in neonates. However, effects of chronic exposure to low doses (CELDs) of MeHg in adult brains on a molecular level are unknown. The current study aims to investigate the molecular effects of CELD of MeHg on adult somatosensory cortex in a rat model using proteomic techniques. Young adult rats were fed with a low dose of MeHg (40 μg/kg body weight/day) for a maximum of 12 weeks. Whole proteome expression of the somatosensory cortex (S1 area) of normal rats and those with CELD to MeHg were compared. Levels of MeHg, total calcium, adenosine triphosphate (ATP), and pyruvate were also measured. Comparative proteomic studies of the somatosensory cortexes revealed that 94 proteins involved in the various metabolic processes (including carbohydrate metabolism, generation of precursors for essential metabolites, energy, proteins, cellular components for morphogenesis, and neurotransmission) were down-regulated. Consequently, levels of important end products of active metabolism including ATP, pyruvate, and total calcium were also found to be significantly reduced concomitantly. Our results showed that CELD of MeHg induced a state of metabolic deficit in the somatosensory cortex of adult rats.
Collapse
Affiliation(s)
- Hang-Kin Kong
- Food Safety and Technology Research Centre, The Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University , Room Y810, Lee Shau Kee Building (Block Y), Hung Hom, Hong Kong, China
| | | | | | | |
Collapse
|
18
|
Xing XJ, Rui Q, Du M, Wang DY. Exposure to lead and mercury in young larvae induces more severe deficits in neuronal survival and synaptic function than in adult nematodes. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2009; 56:732-741. [PMID: 19288233 DOI: 10.1007/s00244-009-9307-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Accepted: 03/01/2009] [Indexed: 05/27/2023]
Abstract
In the present study, we investigated the possibly neurotoxic effects of metal (Pb and Hg) exposure at different developmental stages on neuronal loss in the GABAergic nervous system and synaptic functions in the nematode Caenorhabditis elegans. Our data suggest that neuronal survival in GABAergic neurons and cholinergic transmission were relatively stable during development in nematodes. Moreover, neurodegeneration, as shown by the neuronal loss and dorsal/ventral cord gaps, was more severely induced by Pb and Hg exposure at the L1 through L3 larval stages than at the L4 larval and young-adult stages. Similarly, pre- and postsynaptic functions were more severely impaired by Pb and Hg exposure at the L1 through L3 larval stages than at the L4 larval and young-adult stages. Furthermore, both aldicarb and levamisole resistance were significantly correlated with neuronal loss, dorsal cord gap, and ventral cord gap in Pb- and Hg-exposed nematodes, suggesting that neuronal survival was noticeably correlated with synaptic function in metal-exposed nematodes during development. Therefore, younger (L1-L3) larvae show more sensitivity to neurotoxicity of neuronal survival and synaptic function than L4 larvae and young adult nematodes.
Collapse
Affiliation(s)
- X-J Xing
- Department of Genetics and Developmental Biology, Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Southeast University Medical School, Nanjing, China
| | | | | | | |
Collapse
|
19
|
Maia CDSF, Lucena GMRDS, Corrêa PBF, Serra RB, Matos RWDM, Menezes FDC, Santos SND, Sousa JBD, Costa ETD, Ferreira VMM. Interference of ethanol and methylmercury in the developing central nervous system. Neurotoxicology 2008; 30:23-30. [PMID: 19100288 DOI: 10.1016/j.neuro.2008.11.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Revised: 11/19/2008] [Accepted: 11/21/2008] [Indexed: 01/20/2023]
Abstract
Studies involving alcohol and its interactions with other neurotoxicants represent the focus of several works of research due to the fact that the use of alcohol can sometimes leads to serious health problems. Fetal exposure to alcohol and mercury has a high incidence in some regions of Brazil, where there are pregnant women who are alcoholics and live in mining areas. This work was conducted to examine the effects of combined exposure to ethanol (EtOH) and methylmercury (MeHg) in rats during the development of the central nervous system (CNS). Experimental behavioral animal models/tests were used in order to examine locomotion, anxiety, depression and memory. Pregnant rats received tap water or EtOH 22.5% w/v (6.5 g/kg per day), by gavage) during pregnancy and breast-feeding. On the 15th day of pregnancy, some groups received 8 mg/kg of MeHg (by gavage). The groups were as follows: control, EtOH, MeHg and EtOH+MeHg. The experimental results showed that the EtOH, MeHg and EtOH+MeHg groups reduced the percentage of frequency and time spent in the open arms entries of the elevated plus-maze (EPM) test, when compared to the control group. This result suggests an anxiogenic behavioral response. The MeHg group increased locomotor activity in the arena and the immobility time in the forced swimming test, suggestive of depression-like behavior. The EtOH+MeHg group showed greater reductions in the percentages of frequency and time spent in the open arms entries in the EPM test, suggesting a sedative-behavior since the frequency of enclosed arm entries was affected. In the inhibitory avoidance task, the EtOH+MeHg group reduced the latency of the step-down response onto the grid floor, suggesting a cognitive and behavior dysfunctions. Taken together, the results suggest that EtOH and/or MeHg intoxication during the developing CNS may be a risk for deficits related to locomotor impairment, anxiety, depression and neurocognitive functions. There is a possibility that EtOH may prevent some of the MeHg responses, but the precise mechanism of action involved in this process needs to be considered for future research.
Collapse
|
20
|
Anderson HA. Eighth International Conference on Mercury as a Global Pollutant (ICMGP): human health and exposure to methylmercury. ENVIRONMENTAL RESEARCH 2008; 107:1-3. [PMID: 18374911 DOI: 10.1016/j.envres.2008.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Accepted: 02/14/2008] [Indexed: 05/26/2023]
Affiliation(s)
- Henry A Anderson
- Wisconsin Department of Health and Family Services, Madison, WI 53701, USA.
| |
Collapse
|