1
|
Grabner D, Rothe LE, Sures B. Parasites and Pollutants: Effects of Multiple Stressors on Aquatic Organisms. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:1946-1959. [PMID: 37283208 DOI: 10.1002/etc.5689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/16/2023] [Accepted: 06/04/2023] [Indexed: 06/08/2023]
Abstract
Parasites can affect their hosts in various ways, and this implies that parasites may act as additional biotic stressors in a multiple-stressor scenario, resembling conditions often found in the field if, for example, pollutants and parasites occur simultaneously. Therefore, parasites represent important modulators of host reactions in ecotoxicological studies when measuring the response of organisms to stressors such as pollutants. In the present study, we introduce the most important groups of parasites occurring in organisms commonly used in ecotoxicological studies ranging from laboratory to field investigations. After briefly explaining their life cycles, we focus on parasite stages affecting selected ecotoxicologically relevant target species belonging to crustaceans, molluscs, and fish. We included ecotoxicological studies that consider the combination of effects of parasites and pollutants on the respective model organism with respect to aquatic host-parasite systems. We show that parasites from different taxonomic groups (e.g., Microsporidia, Monogenea, Trematoda, Cestoda, Acanthocephala, and Nematoda) clearly modulate the response to stressors in their hosts. The combined effects of environmental stressors and parasites can range from additive, antagonistic to synergistic. Our study points to potential drawbacks of ecotoxicological tests if parasite infections of test organisms, especially from the field, remain undetected and unaddressed. If these parasites are not detected and quantified, their physiological effects on the host cannot be separated from the ecotoxicological effects. This may render this type of ecotoxicological test erroneous. In laboratory tests, for example to determine effect or lethal concentrations, the presence of a parasite can also have a direct effect on the concentrations to be determined and thus on the subsequently determined security levels, such as predicted no-effect concentrations. Environ Toxicol Chem 2023;42:1946-1959. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Daniel Grabner
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| | - Louisa E Rothe
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| | - Bernd Sures
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
- Research Center One Health Ruhr, Research Alliance Ruhr, University Duisburg-Essen, Essen, Germany
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| |
Collapse
|
2
|
Grunst ML, Grunst AS, Grémillet D, Fort J. Combined threats of climate change and contaminant exposure through the lens of bioenergetics. GLOBAL CHANGE BIOLOGY 2023; 29:5139-5168. [PMID: 37381110 DOI: 10.1111/gcb.16822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/17/2023] [Indexed: 06/30/2023]
Abstract
Organisms face energetic challenges of climate change in combination with suites of natural and anthropogenic stressors. In particular, chemical contaminant exposure has neurotoxic, endocrine-disrupting, and behavioral effects which may additively or interactively combine with challenges associated with climate change. We used a literature review across animal taxa and contaminant classes, but focused on Arctic endotherms and contaminants important in Arctic ecosystems, to demonstrate potential for interactive effects across five bioenergetic domains: (1) energy supply, (2) energy demand, (3) energy storage, (4) energy allocation tradeoffs, and (5) energy management strategies; and involving four climate change-sensitive environmental stressors: changes in resource availability, temperature, predation risk, and parasitism. Identified examples included relatively equal numbers of synergistic and antagonistic interactions. Synergies are often suggested to be particularly problematic, since they magnify biological effects. However, we emphasize that antagonistic effects on bioenergetic traits can be equally problematic, since they can reflect dampening of beneficial responses and result in negative synergistic effects on fitness. Our review also highlights that empirical demonstrations remain limited, especially in endotherms. Elucidating the nature of climate change-by-contaminant interactive effects on bioenergetic traits will build toward determining overall outcomes for energy balance and fitness. Progressing to determine critical species, life stages, and target areas in which transformative effects arise will aid in forecasting broad-scale bioenergetic outcomes under global change scenarios.
Collapse
Affiliation(s)
- Melissa L Grunst
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
| | - Andrea S Grunst
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
| | - David Grémillet
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
- Percy FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch, South Africa
| | - Jérôme Fort
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
| |
Collapse
|
3
|
Devin S, Potet M, Louis F, Pauly D, Rocher B, Wagner P, Giambérini L, Pain-Devin S. Spatial and seasonal use of biomarkers in dreissenids: implications for biomonitoring. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-28126-3. [PMID: 37358775 DOI: 10.1007/s11356-023-28126-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/01/2023] [Indexed: 06/27/2023]
Abstract
In addition to pollution, organisms are exposed to natural variations of the biotic and abiotic factors of their environment. A battery of sub-cellular biomarkers has been measured seasonally in several populations of both Dreissena polymorpha and Dreissena rostriformis bugensis. To observe and understand the variability associated with biomarker responses, water physicochemistry, sediment contamination, and internal concentrations of contaminants in soft tissues were also considered. Results evidenced seasonal, inter-specific, and inter-populational variability of the measured responses, highlighting the needs (1) to acquire long-term data on the studied populations and (2) to incorporate environmental parameters and contamination in the interpretation of biological responses. From a biomonitoring perspective, significant relationships were identified between biomarkers, internal concentrations of contaminants in soft tissues, and sediment contamination in D. r. bugensis and, to a lesser extent, in D. polymorpha. The detailed interpretation of each biomarker of the battery measured is complex, but a global analysis of all biomarkers at once allows to obtain this signature of the contamination of the studied sites.
Collapse
Affiliation(s)
- Simon Devin
- CNRS UMR 7360, Laboratoire Interdisciplinaire Des Environnements Continentaux (LIEC), Université de Lorraine, Campus Bridoux, Rue du Général Delestraint, 57000, Metz, France.
- LTSER-Zone Atelier Moselle, 57000, Metz, France.
| | - Marine Potet
- CNRS UMR 7360, Laboratoire Interdisciplinaire Des Environnements Continentaux (LIEC), Université de Lorraine, Campus Bridoux, Rue du Général Delestraint, 57000, Metz, France
- LTSER-Zone Atelier Moselle, 57000, Metz, France
| | - Fanny Louis
- CNRS UMR 7360, Laboratoire Interdisciplinaire Des Environnements Continentaux (LIEC), Université de Lorraine, Campus Bridoux, Rue du Général Delestraint, 57000, Metz, France
| | - Danièle Pauly
- CNRS UMR 7360, Laboratoire Interdisciplinaire Des Environnements Continentaux (LIEC), Université de Lorraine, Campus Bridoux, Rue du Général Delestraint, 57000, Metz, France
| | - Béatrice Rocher
- UMR-I 02 INERIS-URCA-ULH SEBIO/Unité Stress Environnementaux Et BIOsurveillance Des Milieux Aquatiques, FR CNRS 3730 Scale, Université Le Havre Normandie, 76063, Le Havre Cedex, France
| | - Philippe Wagner
- CNRS UMR 7360, Laboratoire Interdisciplinaire Des Environnements Continentaux (LIEC), Université de Lorraine, Campus Bridoux, Rue du Général Delestraint, 57000, Metz, France
| | - Laure Giambérini
- CNRS UMR 7360, Laboratoire Interdisciplinaire Des Environnements Continentaux (LIEC), Université de Lorraine, Campus Bridoux, Rue du Général Delestraint, 57000, Metz, France
- LTSER-Zone Atelier Moselle, 57000, Metz, France
| | - Sandrine Pain-Devin
- CNRS UMR 7360, Laboratoire Interdisciplinaire Des Environnements Continentaux (LIEC), Université de Lorraine, Campus Bridoux, Rue du Général Delestraint, 57000, Metz, France
- LTSER-Zone Atelier Moselle, 57000, Metz, France
| |
Collapse
|
4
|
Le TTY, Kiwitt G, Nahar N, Nachev M, Grabner D, Sures B. What contributes to the metal-specific partitioning in the chub-acanthocephalan system? AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 247:106178. [PMID: 35489172 DOI: 10.1016/j.aquatox.2022.106178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/29/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
Physiologically based pharmacokinetic (PBPK) models have been applied to simulate the absorption, distribution, metabolism, and elimination of various toxicants in fish. This approach allows for considering metal accumulation in intestinal parasites. Unlike "semi" physiologically-based models developed for metals, metal accumulation in fish was characterised based on metal-specific parameters (the fraction in blood plasma and the tissue-blood partition coefficient) and physiological characteristics of the fish (the blood flow and the tissue weight) in our PBPK model. In the model, intestinal parasites were considered a sink of metals from the host intestine. The model was calibrated with data for the system of the chub Squalius cephalus and the acanthocephalan Pomphorhynchus tereticolliis. Metal concentrations in this fish-parasite system were monitored in Ag and Co treatments in duplicate during a 48-day exposure phase (Ag and Co were added to tap water at concentrations of 1 and 2 µg/L, respectively) and a 51-day depuration phase. Their concentrations in the gills increased during the exposure phase and decreased in the depuration phase. A similar pattern was observed for Ag concentrations in other chub organs, while a relatively stable pattern for Co indicates regulations in the accumulation of essential metals by chubs. The metals were taken up by the acanthocephalans at similar rate constants. These results indicate that metal availability to parasites, which is determined by the internal distribution and fate, is critical to metal accumulation in the acanthocephalans. The high concentration of Ag in the liver as well as the high rate of Ag excretion from the liver to the intestine might contribute to higher concentrations of metals in the bile complexes in the intestine, which are available to the parasites, but not to the reabsorption by the host intestine. The opposite pattern might explain the lower availability of Co to the acanthocephalans.
Collapse
Affiliation(s)
- T T Yen Le
- Department of Aquatic Ecology and Centre for Water and Environmental Research (ZWU), Faculty of Biology, University of Duisburg-Essen, D-45141 Essen, Germany
| | - Gina Kiwitt
- Department of Aquatic Ecology and Centre for Water and Environmental Research (ZWU), Faculty of Biology, University of Duisburg-Essen, D-45141 Essen, Germany
| | - Nazmun Nahar
- Department of Aquatic Ecology and Centre for Water and Environmental Research (ZWU), Faculty of Biology, University of Duisburg-Essen, D-45141 Essen, Germany
| | - Milen Nachev
- Department of Aquatic Ecology and Centre for Water and Environmental Research (ZWU), Faculty of Biology, University of Duisburg-Essen, D-45141 Essen, Germany
| | - Daniel Grabner
- Department of Aquatic Ecology and Centre for Water and Environmental Research (ZWU), Faculty of Biology, University of Duisburg-Essen, D-45141 Essen, Germany
| | - Bernd Sures
- Department of Aquatic Ecology and Centre for Water and Environmental Research (ZWU), Faculty of Biology, University of Duisburg-Essen, D-45141 Essen, Germany
| |
Collapse
|
5
|
Tlili S, Mouneyrac C. New challenges of marine ecotoxicology in a global change context. MARINE POLLUTION BULLETIN 2021; 166:112242. [PMID: 33706213 DOI: 10.1016/j.marpolbul.2021.112242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 02/23/2021] [Accepted: 02/28/2021] [Indexed: 05/27/2023]
Abstract
Currently, research agenda in marine ecotoxicology is facing new challenges with the emergence of newly and complex synthetized chemicals. The study of the fate and adverse effects of toxicants remains increasingly complicated with global change events. Ecotoxicology had provided for a decades, precious scientific data and knowledge but also technical and management tools for the environmental community. Regarding those, it is necessary to update methodologies dealing with these issues such as combined effect of conventional and emergent stressors and global changes. In this point of view article, we discuss one hand the new challenges of ecotoxicology in this context, and in the other hand, the need of updating agenda and methodologies currently used in monitoring programs and finally recommendations and future research needs. Among recommendations, it could be cited the necessity to perform long-term experiments, the standardization of sentinel species and taking benefit from baseline studies and omics technologies.
Collapse
Affiliation(s)
- Sofiene Tlili
- Laboratoire Mer, Molécules, Santé (MMS, EA 2160), Université Catholique, de l'Ouest, 49000 Angers, France.
| | - Catherine Mouneyrac
- Laboratoire Mer, Molécules, Santé (MMS, EA 2160), Université Catholique, de l'Ouest, 49000 Angers, France
| |
Collapse
|
6
|
Mehennaoui K, Cambier S, Minguez L, Serchi T, Guérold F, Gutleb AC, Giamberini L. Sub-chronic effects of AgNPs and AuNPs on Gammarus fossarum (Crustacea Amphipoda): From molecular to behavioural responses. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 210:111775. [PMID: 33421722 DOI: 10.1016/j.ecoenv.2020.111775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 06/12/2023]
Abstract
The aim of the present study was the assessment of the sub-chronic effects of silver (AgNPs) and gold nanoparticles (AuNPs) of 40 nm primary size either stabilised with citrate (CIT) or coated with polyethylene glycol (PEG) on the freshwater invertebrate Gammarus fossarum. Silver nitrate (AgNO3) was used as a positive control in order to study the contribution of silver ions potentially released from AgNPs on the observed effects. A multibiomarker approach was used to assess the long-term effects of AgNPs and AuNPs 40 nm on molecular, cellular, physiological and behavioural responses of G. fossarum. Specimen of G. fossarum were exposed for 15 days to 0.5 and 5 µgL-1 of CIT and PEG AgNPs and AuNPs 40 nm in the presence of food. A significant uptake of both Ag and Au was observed in exposed animals but was under the toxic threshold leading to mortality of G. fossarum. Silver nanoparticles (CIT-AgNPs and PEG-AgNPs 40 nm) led to an up-regulation of Na+K+ATPase gene expression. An up-regulation of Catalse and Chitinase gene expressions due to exposure to PEG-AgNPs 40 nm was also observed. Gold nanoparticles (CIT and PEG-AuNPs 40 nm) led to an increase of CuZnSOD gene expression. Furthermore, both AgNPs and AuNPs led to a more developed digestive lysosomal system indicating a general stress response in G. fossarum. Both AgNPs and AuNPs 40 nm significantly affected locomotor activity of G. fossarum while no effects were observed on haemolymphatic ions and ventilation.
Collapse
Affiliation(s)
- Kahina Mehennaoui
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, 41 rue du Brill, Belvaux, Luxembourg; Université de Lorraine, CNRS UMR 7360, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), Campus Bridoux, Rue du Général Delestraint, F-57000, Metz, France
| | - Sébastien Cambier
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, 41 rue du Brill, Belvaux, Luxembourg
| | - Laëtitia Minguez
- Université de Lorraine, CNRS UMR 7360, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), Campus Bridoux, Rue du Général Delestraint, F-57000, Metz, France
| | - Tommaso Serchi
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, 41 rue du Brill, Belvaux, Luxembourg
| | - François Guérold
- Université de Lorraine, CNRS UMR 7360, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), Campus Bridoux, Rue du Général Delestraint, F-57000, Metz, France
| | - Arno C Gutleb
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, 41 rue du Brill, Belvaux, Luxembourg
| | - Laure Giamberini
- Université de Lorraine, CNRS UMR 7360, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), Campus Bridoux, Rue du Général Delestraint, F-57000, Metz, France.
| |
Collapse
|
7
|
Louis F, Delahaut L, Gaillet V, Bonnard I, Paris-Palacios S, David E. Effect of reproduction cycle stage on energy metabolism responses in a sentinel species (Dreissena polymorpha) exposed to cadmium: What consequences for biomonitoring? AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 230:105699. [PMID: 33290890 DOI: 10.1016/j.aquatox.2020.105699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 10/23/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Metal trace elements such as cadmium (Cd) are commonly present in ecosystems and could lead to impairment of mitochondrial functions and energy imbalance in aquatic organisms including molluscs. Combined exposure to increasing temperatures and Cd could enhance such an impact on animals. Seasonal fluctuations, such as temperature, and the corresponding reproduction cycle can affect biomarker responses. However, the reproduction cycle stage is rarely taken into account in ecotoxicological studies. Thus, this work aimed at understanding energy metabolism responses in a sentinel species, Dreissena polymorpha. Mussels were collected during the rest and the reproduction periods and were exposed to 10 μg.L-1 of cadmium (Cd) at two temperatures (in situ temperature and in situ temperature + 5°C) during 7 days. Energy metabolism was monitored by measuring reserves and energy nucleotides charge and by assessing aerobic and anaerobic metabolism markers, and upstream regulation pathways. Markers related to OXPHOS activity revealed seasonal variations under laboratory conditions. Conversely, adenylate nucleotides, glycogen, lipid and transcript levels of AMP-activated protein kinase, citrate synthase, ATP synthase and cytochrome b encoding genes remained steady after the acclimation period. No evident effect of Cd on energy metabolism markers was noticed for both exposures although the transcript level of succinate dehydrogenase and citrate synthase encoding genes decreased with Cd during the rest period. Cellular stress, revealed by lipid peroxidation and catalase mRNA levels, only occurred in Cd and warming co-exposed mussels during the reproduction period. These results suggest that contaminant impact might differ according to the reproduction cycle stage. The effect of confounding factors on biomarker variations should be further investigated to have a deeper knowledge of metabolism responses under laboratory conditions.
Collapse
Affiliation(s)
- Fanny Louis
- Université de Reims Champagne-Ardenne, INERIS-SEBIO UMR I-02, Reims, France.
| | - Laurence Delahaut
- Université de Reims Champagne-Ardenne, INERIS-SEBIO UMR I-02, Reims, France
| | - Véronique Gaillet
- Université de Reims Champagne-Ardenne, INERIS-SEBIO UMR I-02, Reims, France
| | - Isabelle Bonnard
- Université de Reims Champagne-Ardenne, INERIS-SEBIO UMR I-02, Reims, France
| | | | - Elise David
- Université de Reims Champagne-Ardenne, INERIS-SEBIO UMR I-02, Reims, France
| |
Collapse
|
8
|
Le Guernic A, Geffard A, Rioult D, Bonnard I, Le Foll F, Palos Ladeiro M. First evidence of cytotoxic effects of human protozoan parasites on zebra mussel (Dreissena polymorpha) haemocytes. ENVIRONMENTAL MICROBIOLOGY REPORTS 2019; 11:414-418. [PMID: 30451380 DOI: 10.1111/1758-2229.12720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/05/2018] [Accepted: 11/12/2018] [Indexed: 06/09/2023]
Abstract
The interaction between human protozoan parasites and the immune cells of bivalves, that can accumulate them, is poorly described. The purpose of this study is to consider the mechanisms of action of some of these protozoa on zebra mussel haemocytes, by evaluating their cytotoxic potential. Haemocytes were exposed to Toxoplasma gondii, Giardia duodenalis or Cryptosporidium parvum (oo)cysts. The results showed a cytotoxic potency of the two largest protozoa on haemocytes and suggested the formation of haemocyte aggregates. Thus, this study reveals the first signs of a haemocyte:protozoan interaction.
Collapse
Affiliation(s)
- Antoine Le Guernic
- UMR-I02 SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), Reims Champagne-Ardenne University (URCA), Campus Moulin de la Housse, 51687, Reims, France
| | - Alain Geffard
- UMR-I02 SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), Reims Champagne-Ardenne University (URCA), Campus Moulin de la Housse, 51687, Reims, France
| | - Damien Rioult
- UMR-I02 SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), Reims Champagne-Ardenne University (URCA), Campus Moulin de la Housse, 51687, Reims, France
- Plateau technique mobile de cytométrie environnementale MOBICYTE, URCA/INERIS, Reims Champagne-Ardenne University (URCA), Campus Moulin de la Housse, 51687, Reims, France
| | - Isabelle Bonnard
- UMR-I02 SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), Reims Champagne-Ardenne University (URCA), Campus Moulin de la Housse, 51687, Reims, France
| | - Frank Le Foll
- UMR-I02 SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), Le Havre Normandie University, 76063, Le Havre, France
| | - Mélissa Palos Ladeiro
- UMR-I02 SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), Reims Champagne-Ardenne University (URCA), Campus Moulin de la Housse, 51687, Reims, France
| |
Collapse
|
9
|
Louis F, Devin S, Giambérini L, Potet M, David E, Pain-Devin S. Energy allocation in two dreissenid species under metal stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 245:889-897. [PMID: 30508792 DOI: 10.1016/j.envpol.2018.11.079] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 11/23/2018] [Accepted: 11/24/2018] [Indexed: 06/09/2023]
Abstract
Measurements of biological responses on living organisms are essential in aquatic biomonitoring. In freshwaters, Dreissena polymorpha is an invasive bivalve commonly used in ecotoxicological studies and considered as a model organism. However, D. polymorpha abundances are declining while another species colonizes most of the freshwaters: Dreissena rostriformis bugensis. This species has already been studied in ecophysiology but there is still a lack of data concerning its responses to stressors before its use as a bioindicator of environmental pollution. This study aims to compare the responses of the two species exposed to metal stress. Responses at different levels of biological organization were targeted with measurement of sub-cellular and individual biomarkers following an exposure of up to 7 days to cadmium at 10 μg.L-1. At the individual level, the scope for growth (SFG) was measured. It corresponds to the energy allocated to growth and reproduction. D. polymorpha exhibits variations in biomarker measurements as well as in the SFG in presence of Cd. D. r. bugensis shows no variation in its responses at the different targeted levels. According to the present results, energy metabolism seems to have an essential role for these species when facing a metal stress. Different energy allocation strategies were evidenced between the two species, although the link with biochemical biomarkers is more evident for D. polymorpha than for D. r. bugensis.
Collapse
Affiliation(s)
- Fanny Louis
- Université de Reims Champagne-Ardenne, UMR 02 SEBIO (Stress environnementaux et biosurveillance des milieux aquatiques), Reims, France; Université de Lorraine, CNRS, LIEC, F-57000, Metz, France.
| | - Simon Devin
- Université de Lorraine, CNRS, LIEC, F-57000, Metz, France
| | | | - Marine Potet
- Université de Lorraine, CNRS, LIEC, F-57000, Metz, France
| | - Elise David
- Université de Reims Champagne-Ardenne, UMR 02 SEBIO (Stress environnementaux et biosurveillance des milieux aquatiques), Reims, France
| | | |
Collapse
|
10
|
Magniez G, Franco A, Geffard A, Rioult D, Bonnard I, Delahaut L, Joachim S, Daniele G, Vulliet E, Porcher JM, Bonnard M. Determination of a new index of sexual maturity (ISM) in zebra mussel using flow cytometry: interest in ecotoxicology. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:11252-11263. [PMID: 28567680 DOI: 10.1007/s11356-017-9256-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 05/10/2017] [Indexed: 06/07/2023]
Abstract
The global dynamic spread of chemical contamination through the aquatic environment calls for the development of biomarkers of interest. Reproduction is a key element to be considered because it is related to the sustainability of species. Spermatogenesis is a complex process that leads to the formation of mature germ cells, whose steps and impairments need to be finely described in ecotoxicological analyses. The physiological process has been commonly described by histological analyses of gonads in different taxa. In the present paper, we describe the development of a novel technique to characterize spermatogenesis based on the analysis of the DNA content of germ cells by flow cytometry, using a DNA-intercalating agent. This new biomarker, referred to as an index of sexual maturity, proved relevant to describe the seasonal reproductive cycle of the zebra mussel, Dreissena polymorpha (Pallas, 1771), used as a sentinel species in the biomonitoring of continental waters and sensitive to highlight the reprotoxicity of carbamazepine (an anti-epileptic pharmaceutical) tested under ecosystemic conditions (mesocosms).
Collapse
Affiliation(s)
- Gabrielle Magniez
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO (Stress Environnementaux et BIOsurveillance des milieux aquatiques), UFR Sciences Exactes et Naturelles, Moulin de la Housse, BP 1039, 51687 Reims Cedex 2, Reims, France.
| | - Alban Franco
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO (Stress Environnementaux et BIOsurveillance des milieux aquatiques), UFR Sciences Exactes et Naturelles, Moulin de la Housse, BP 1039, 51687 Reims Cedex 2, Reims, France
| | - Alain Geffard
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO (Stress Environnementaux et BIOsurveillance des milieux aquatiques), UFR Sciences Exactes et Naturelles, Moulin de la Housse, BP 1039, 51687 Reims Cedex 2, Reims, France
| | - Damien Rioult
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO (Stress Environnementaux et BIOsurveillance des milieux aquatiques), UFR Sciences Exactes et Naturelles, Moulin de la Housse, BP 1039, 51687 Reims Cedex 2, Reims, France
| | - Isabelle Bonnard
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO (Stress Environnementaux et BIOsurveillance des milieux aquatiques), UFR Sciences Exactes et Naturelles, Moulin de la Housse, BP 1039, 51687 Reims Cedex 2, Reims, France
| | - Laurence Delahaut
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO (Stress Environnementaux et BIOsurveillance des milieux aquatiques), UFR Sciences Exactes et Naturelles, Moulin de la Housse, BP 1039, 51687 Reims Cedex 2, Reims, France
| | - Sandrine Joachim
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO, Parc Technologique Alata, BP 2 60550, Verneuil-en-Halatte, France
| | - Gaëlle Daniele
- Université de Lyon, CNRS, Université Claude Bernard Lyon1, Ens de Lyon, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, 69100, Villeurbanne, France
| | - Emmanuelle Vulliet
- Université de Lyon, CNRS, Université Claude Bernard Lyon1, Ens de Lyon, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, 69100, Villeurbanne, France
| | - Jean-Marc Porcher
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO, Parc Technologique Alata, BP 2 60550, Verneuil-en-Halatte, France
| | - Marc Bonnard
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO (Stress Environnementaux et BIOsurveillance des milieux aquatiques), UFR Sciences Exactes et Naturelles, Moulin de la Housse, BP 1039, 51687 Reims Cedex 2, Reims, France.
| |
Collapse
|
11
|
Farkas A, Ács A, Vehovszky Á, Falfusynska H, Stoliar O, Specziár A, Győri J. Interspecies comparison of selected pollution biomarkers in dreissenid spp. inhabiting pristine and moderately polluted sites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 599-600:760-770. [PMID: 28499224 DOI: 10.1016/j.scitotenv.2017.05.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 05/03/2017] [Accepted: 05/03/2017] [Indexed: 06/07/2023]
Abstract
Stress biomarkers, which can outline impacts of contaminants in aquatic biota at the biochemical level, are increasingly used as early warning tools in environmental monitoring. Reliable biomarker based assessment schemes, however, request appropriate knowledge of baseline levels of selected endpoints, and the potential influence of a range of natural influencing factors (both abiotic and biotic) as well. In this study, we examined the interspecies variability of various biomarkers (metallothioneins (MT), ethoxyresorufin-O-deethylase activity (EROD), lipid peroxidation (LPO), DNA strand breaks (DNA_sb), vitellogenin-like proteins (Vtg)) in Dreissena polymorpha and Dreissena bugensis inhabiting either pristine- or moderately impacted sites of Lake Balaton (Hungary). Levels of all biomarkers considered revealed low interspecies variability in the two dreissenid species at all sampling sites, with consistently higher (but statistically insignificant) values in Dreissena polymorpha. Levels of all biomarkers varied within the two investigated seasons, with significant influence of the reproduction cycle particularly on the levels of metallothioneins and vitellogenin-like proteins. Each biomarker considered was elevated by October, with significantly higher values in the mussels inhabiting harbours. Insignificant spatial and temporal variability in the general health indicators (condition index, total protein content) of dreissenids was observed, which, in parallel with evident rise in biomarker levels, apparently suggest that the anthropogenic impacts in harbours affect mussel fitness yet at sub organismal level. Our data might serve useful basis for future environmental monitoring surveys, especially in habitats where the progressive replacement of Dreissena polymorpha by Dreissena bugensis is taking place, as the interspecies variability in susceptibility to chemical stress of the two species is well comparable.
Collapse
Affiliation(s)
- A Farkas
- MTA Centre for Ecological Research, Balaton Limnological Institute, Klebelsberg K. u. 3., P.O. Box 35, H-8237 Tihany, Hungary.
| | - A Ács
- MTA Centre for Ecological Research, Balaton Limnological Institute, Klebelsberg K. u. 3., P.O. Box 35, H-8237 Tihany, Hungary
| | - Á Vehovszky
- MTA Centre for Ecological Research, Balaton Limnological Institute, Klebelsberg K. u. 3., P.O. Box 35, H-8237 Tihany, Hungary
| | - H Falfusynska
- General Chemistry Department, Ternopil Medical State University, Maidan Voli, 1, Ternopil 46001, Ukraine
| | - O Stoliar
- Research Laboratory of Molecular Biology and Comparative Biochemistry, Ternopil National Pedagogical University, Kryvonosa Str., 2, Ternopil 46027, Ukraine
| | - A Specziár
- MTA Centre for Ecological Research, Balaton Limnological Institute, Klebelsberg K. u. 3., P.O. Box 35, H-8237 Tihany, Hungary
| | - J Győri
- MTA Centre for Ecological Research, Balaton Limnological Institute, Klebelsberg K. u. 3., P.O. Box 35, H-8237 Tihany, Hungary
| |
Collapse
|
12
|
Sánchez MI, Pons I, Martínez-Haro M, Taggart MA, Lenormand T, Green AJ. When Parasites Are Good for Health: Cestode Parasitism Increases Resistance to Arsenic in Brine Shrimps. PLoS Pathog 2016; 12:e1005459. [PMID: 26938743 PMCID: PMC4777290 DOI: 10.1371/journal.ppat.1005459] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/25/2016] [Indexed: 11/18/2022] Open
Abstract
Parasites and pollutants can both affect any living organism, and their interactions can be very important. To date, repeated studies have found that parasites and heavy metals or metalloids both have important negative effects on the health of animals, often in a synergistic manner. Here, we show for the first time that parasites can increase host resistance to metalloid arsenic, focusing on a clonal population of brine shrimp from the contaminated Odiel and Tinto estuary in SW Spain. We studied the effect of cestodes on the response of Artemia to arsenic (acute toxicity tests, 24h LC50) and found that infection consistently reduced mortality across a range of arsenic concentrations. An increase from 25°C to 29°C, simulating the change in mean temperature expected under climate change, increased arsenic toxicity, but the benefits of infection persisted. Infected individuals showed higher levels of catalase and glutathione reductase activity, antioxidant enzymes with a very important role in the protection against oxidative stress. Levels of TBARS were unaffected by parasites, suggesting that infection is not associated with oxidative damage. Moreover, infected Artemia had a higher number of carotenoid-rich lipid droplets which may also protect the host through the "survival of the fattest" principle and the antioxidant potential of carotenoids. This study illustrates the need to consider the multi-stress context (contaminants and temperature increase) in which host-parasite interactions occur.
Collapse
Affiliation(s)
- Marta I. Sánchez
- Department of Wetland Ecology, Estación Biológica de Doñana, (EBD-CSIC), Seville, Spain
| | - Inès Pons
- Department of Wetland Ecology, Estación Biológica de Doñana, (EBD-CSIC), Seville, Spain
| | - Mónica Martínez-Haro
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, Coimbra, Portugal
- Instituto de Investigación en Recursos Cinegéticos (IREC-CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Mark A. Taggart
- Environmental Contamination and Ecological Health, Environmental Research Institute, University of the Highlands and Islands, Thurso, Scotland, United Kingdom
| | - Thomas Lenormand
- Department of Genetic and Evolutive Ecology, Center of Functional Ecology and Evolution (CEFE), National Centre for Scientific Research (CNRS), Montpellier, France
| | - Andy J. Green
- Department of Wetland Ecology, Estación Biológica de Doñana, (EBD-CSIC), Seville, Spain
| |
Collapse
|
13
|
Filipović Marijić V, Vardić Smrzlić I, Raspor B. Effect of acanthocephalan infection on metal, total protein and metallothionein concentrations in European chub from a Sava River section with low metal contamination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 463-464:772-780. [PMID: 23856403 DOI: 10.1016/j.scitotenv.2013.06.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 05/23/2013] [Accepted: 06/10/2013] [Indexed: 06/02/2023]
Abstract
In the present study, the importance of considering fish intestinal parasites i.e. the acanthocephalans in metal exposure assessment was estimated under low metal contamination conditions. Two acanthocephalan species, Pomphorhynchus laevis and Acanthocephalus anguillae were examined in 59 specimens of European chub (Squalius cephalus L.) sampled at 5 locations along the Sava River, Croatia. Concentrations of essential (Cu, Mn) and non-essential (Ag, Cd, Pb) metals were higher in intestinal parasites than chub gastrointestinal tissue, but levels of essential metals Fe and Zn were comparable or lower in parasites, respectively. The highest accumulation in both acanthocephalan species was found for non-essential metals and followed the order: Ag>Pb>Cd. Higher infection intensity with P. laevis allowed us to present their spatial metal distribution and evaluate the influence of P. laevis on metal levels and sub-cellular biological responses (total protein and metallothionein levels) in the host infected with P. laevis. Even in the river section with low metal contamination, parasitism affected metal levels, resulting in lower Cu, Cd and Pb concentrations in chub infected with P. laevis than in uninfected chub. Although total protein and metallothionein levels remained constant in infected and uninfected chub, acanthocephalans should be considered a potential confounding factor in metal exposure assessments. Moreover, P. laevis-chub system can be suggested as an appropriate tool in biomonitoring, since in both species increased Cu and Cd concentrations towards the downstream locations were found. Higher Cu and Cd levels in P. laevis suggest acanthocephalans to be sensitive bioindicators if low metal levels have to be detected.
Collapse
Affiliation(s)
- Vlatka Filipović Marijić
- Division for Marine and Environmental Research, Ruđer Bošković Institute, P.O. Box 180, 10002 Zagreb, Croatia.
| | | | | |
Collapse
|
14
|
Minguez L, Brulé N, Sohm B, Devin S, Giambérini L. Involvement of apoptosis in host-parasite interactions in the zebra mussel. PLoS One 2013; 8:e65822. [PMID: 23785455 PMCID: PMC3681881 DOI: 10.1371/journal.pone.0065822] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 04/28/2013] [Indexed: 12/06/2022] Open
Abstract
The question of whether cell death by apoptosis plays a biological function during infection is key to understanding host-parasite interactions. We investigated the involvement of apoptosis in several host-parasite systems, using zebra mussels Dreissena polymorpha as test organisms and their micro- and macroparasites. As a stress response associated with parasitism, heat shock proteins (Hsp) can be induced. In this protein family, Hsp70 are known to be apoptosis inhibitors. Mussels were diagnosed for their respective infections by standard histological methods; apoptosis was detected using the TUNEL methods on paraffin sections and Hsp70 by immunohistochemistry on cryosections. Circulating hemocytes were the main cells observed in apoptosis whereas infected tissues displayed no or few apoptotic cells. Parasitism by intracellular bacteria Rickettsiales-like and the trematode Bucephalus polymorphus were associated with the inhibition of apoptosis whereas ciliates Ophryoglena spp. or the trematode Phyllodistomum folium did not involve significant differences in apoptosis. Even if some parasites were able to modulate apoptosis in zebra mussels, we did not see evidence of any involvement of Hsp70 on this mechanism.
Collapse
Affiliation(s)
- Laëtitia Minguez
- Université de Lorraine, Laboratoire des Interactions, Ecotoxicologie, Biodiversité, Ecosystèmes (LIEBE), CNRS UMR 7146, Metz, France
- * E-mail: (LM); (LG)
| | - Nelly Brulé
- Université de Lorraine, Laboratoire des Interactions, Ecotoxicologie, Biodiversité, Ecosystèmes (LIEBE), CNRS UMR 7146, Metz, France
| | - Bénédicte Sohm
- Université de Lorraine, Laboratoire des Interactions, Ecotoxicologie, Biodiversité, Ecosystèmes (LIEBE), CNRS UMR 7146, Metz, France
| | - Simon Devin
- Université de Lorraine, Laboratoire des Interactions, Ecotoxicologie, Biodiversité, Ecosystèmes (LIEBE), CNRS UMR 7146, Metz, France
| | - Laure Giambérini
- Université de Lorraine, Laboratoire des Interactions, Ecotoxicologie, Biodiversité, Ecosystèmes (LIEBE), CNRS UMR 7146, Metz, France
- * E-mail: (LM); (LG)
| |
Collapse
|
15
|
Minguez L, Devin S, Molloy DP, Guérold F, Giambérini L. Occurrence of zebra mussel parasites: modelling according to contamination in France and the USA. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 176:261-266. [PMID: 23454588 DOI: 10.1016/j.envpol.2013.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 01/15/2013] [Accepted: 01/22/2013] [Indexed: 06/01/2023]
Abstract
Parasites can be reliable tool in assessing the effects of ecosystem disturbances. However, they can respond in different ways and any changes in assemblages are not easily predictable. Descriptive modelling could be a first step since providing information on the relative importance of a pollutant on parasite occurrence. We chose the zebra mussel, as test organism and twelve sites in France and the United States. Contaminants had not the same impact on microparasite occurrence. Metals enhanced the infection, except zinc associated only with higher prevalence of the commensal ciliate Conchophthirus acuminatus. We should note that Rickettsiales-like organism infection is higher at higher Ni and Cr concentrations. Models indicated also that the most polluted sites were also those with higher rates of co-infections. Therefore, the continuous contamination of freshwater ecosystems implies a significant risk promoting the development of parasites that may affect bivalve populations and other species belonging to their life-cycle.
Collapse
Affiliation(s)
- Laëtitia Minguez
- Université de Lorraine, Laboratoire Interdisciplinaire des Environnements Continentaux, CNRS, UMR 7360, F 57070 Metz, France.
| | | | | | | | | |
Collapse
|
16
|
Palos Ladeiro M, Bigot A, Aubert D, Hohweyer J, Favennec L, Villena I, Geffard A. Protozoa interaction with aquatic invertebrate: interest for watercourses biomonitoring. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:778-789. [PMID: 23001759 DOI: 10.1007/s11356-012-1189-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 09/06/2012] [Indexed: 06/01/2023]
Abstract
Toxoplasma gondii, Cryptosporidium parvum, and Giardia duodenalis are human waterborne protozoa. These worldwide parasites had been detected in various watercourses as recreational, surface, drinking, river, and seawater. As of today, water protozoa detection was based on large water filtration and on sample concentration. Another tool like aquatic invertebrate parasitism could be used for sanitary and environmental biomonitoring. In fact, organisms like filter feeders could already filtrate and concentrate protozoa directly in their tissues in proportion to ambient concentration. So molluscan shellfish can be used as a bioindicator of protozoa contamination level in a site since they were sedentary. Nevertheless, only a few researches had focused on nonspecific parasitism like protozoa infection on aquatic invertebrates. Objectives of this review are twofold: Firstly, an overview of protozoa in worldwide water was presented. Secondly, current knowledge of protozoa parasitism on aquatic invertebrates was detailed and the lack of data of their biological impact was pointed out.
Collapse
Affiliation(s)
- M Palos Ladeiro
- Unité Interactions Animal-Environnement, EA 4689, UFR Sciences Exactes et Naturelles, Université de Reims Champagne Ardenne, Campus du Moulin de la Housse, 51100, Reims, France
| | | | | | | | | | | | | |
Collapse
|
17
|
Effect of multiple parasitic infections on the tolerance to pollutant contamination. PLoS One 2012; 7:e41950. [PMID: 22844535 PMCID: PMC3406021 DOI: 10.1371/journal.pone.0041950] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 06/28/2012] [Indexed: 11/19/2022] Open
Abstract
The horizontally-transmitted acanthocephalan parasite Polymorphus minutus and the vertically-transmitted microsporidian parasite Dictyocoela roeselum have both been shown to influence on the antitoxic responses of mono-infected Gammarus roeseli exposed to cadmium. The present study investigates the effect of this co-infection on the antitoxic defence responses of naturally infected females exposed to cadmium stress. Our results revealed that, depending on the cadmium dose, bi-infection induced only slight, significant increased cell damage in G. roeseli as compared to non-infection. In addition, the antitoxic defence pattern of cadmium-exposed bi-infected hosts was similar to the pattern of cadmium-exposed D. roeselum-infected hosts. Reduced glutathione concentrations, carotenoid levels and γ-glutamylcystein ligase activity decreased, while metallothionein concentrations increased. This similar pattern indicates that host physiology can be controlled to some extent by microsporidia under stress conditions. It supports the hypothesis of a disruption of acanthocephalan effects in the presence of microsporidia. However, the global negative effects of bi-infection on host condition should be tested on more biological models, since competition between parasites depends on life history trade-off.
Collapse
|
18
|
Gismondi E, Beisel JN, Cossu-Leguille C. Polymorphus minutus affects antitoxic responses of Gammarus roeseli exposed to cadmium. PLoS One 2012; 7:e41475. [PMID: 22911795 PMCID: PMC3401126 DOI: 10.1371/journal.pone.0041475] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 06/27/2012] [Indexed: 11/18/2022] Open
Abstract
The acanthocephalan parasite Polymorphus minutus is a manipulator of its intermediate host Gammarus roeseli, which favours its transmission to the final host, a water bird. In contaminated environments, G. roeseli have to cope with two stresses, i.e. P. minutus infection and pollutants. As P. minutus survival relies on its host's survival, we investigated the influence of P. minutus on the antitoxic defence capacities and the energy reserves of G. roeseli females after cadmium exposure. In parallel, malondialdehyde, a toxic effect biomarker, was measured in G. roeseli females and in P. minutus. The results revealed that infected females displayed higher cell damage than uninfected ones, despite an apparent increase in reduced glutathione and metallothionein production. In fact, the increase of these antitoxic systems could be counterbalanced by carotenoid intake by the parasite, so that the overall defence system seemed less efficient in infected females than in uninfected ones. In addition, we demonstrated that cadmium induced cell damage in P. minutus, probably linked with cadmium accumulation in the parasite. Altogether, we observed a paradoxical pattern of responses suggesting that P. minutus increases cadmium toxicity in G. roeseli females although (i) it tends to increase several host antitoxic defence capacities and (ii) it bears part of the pollutant, as reflected by cell damage in the parasite.
Collapse
Affiliation(s)
- Eric Gismondi
- Laboratoire des Interactions Ecotoxicologie Biodiversité Ecosystèmes (LIEBE), CNRS UMR 7146, Université de Lorraine, Metz, France.
| | | | | |
Collapse
|
19
|
Gismondi E, Cossu-Leguille C, Beisel JN. Acanthocephalan parasites: help or burden in gammarid amphipods exposed to cadmium? ECOTOXICOLOGY (LONDON, ENGLAND) 2012; 21:1188-1193. [PMID: 22461071 DOI: 10.1007/s10646-012-0873-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/11/2012] [Indexed: 05/31/2023]
Abstract
We investigated the influence of the acanthocephalan parasite Polymorphus minutus on the mortality of its intermediate host, Gammarus roeseli, exposed to cadmium, by the measure of LC(50-96h) values as well as the bioaccumulation of cadmium both in the host and in its parasite. LC(50) results revealed that infected G. roeseli males died less under cadmium stress than uninfected ones; while the converse has been observed in females. Cadmium resistance of infected males could be explained by a weaker bioconcentration factor (BCF) than in females. The lower BCF in infected individuals was closely related with an uptake of cadmium by P. minutus in its host. Nevertheless, although infected females had both weaker BCF and cadmium concentration in their body, the presence of P. minutus did not induce lower mortality than uninfected females. On the contrary, their sensitivity to cadmium was increased by the presence of P. minutus. We discuss the hypothesis that differences of mortality between uninfected and infected gammarids could be explained by a difference of cadmium bioconcentration in host, and by the cadmium bioaccumulation in the parasite. Indeed, results suggested that P. minutus could help G. roeseli to face with stress, what contributed to keep the host alive and favour the parasite transmission.
Collapse
Affiliation(s)
- E Gismondi
- Laboratoire des Interactions Ecotoxicologie Biodiversité Ecosystèmes (LIEBE) Laboratory, CNRS UMR 7146, Université de Lorraine (UdL), Metz, France.
| | | | | |
Collapse
|
20
|
Minguez L, Buronfosse T, Giambérini L. Different host exploitation strategies in two zebra mussel-trematode systems: adjustments of host life history traits. PLoS One 2012; 7:e34029. [PMID: 22448287 PMCID: PMC3309008 DOI: 10.1371/journal.pone.0034029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Accepted: 02/21/2012] [Indexed: 11/30/2022] Open
Abstract
The zebra mussel is the intermediate host for two digenean trematodes, Phyllodistomum folium and Bucephalus polymorphus, infecting gills and the gonad respectively. Many gray areas exist relating to the host physiological disturbances associated with these infections, and the strategies used by these parasites to exploit their host without killing it. The aim of this study was to examine the host exploitation strategies of these trematodes and the associated host physiological disturbances. We hypothesized that these two parasite species, by infecting two different organs (gills or gonads), do not induce the same physiological changes. Four cellular responses (lysosomal and peroxisomal defence systems, lipidic peroxidation and lipidic reserves) in the host digestive gland were studied by histochemistry and stereology, as well as the energetic reserves available in gonads. Moreover, two indices were calculated related to the reproductive status and the physiological condition of the organisms. Both parasites induced adjustments of zebra mussel life history traits. The host-exploitation strategy adopted by P. folium would occur during a short-term period due to gill deformation, and could be defined as "virulent." Moreover, this parasite had significant host gender-dependent effects: infected males displayed a slowed-down metabolism and energetic reserves more allocated to growth, whereas females displayed better defences and would allocate more energy to reproduction and maintenance. In contrast, B. polymorphus would be a more "prudent" parasite, exploiting its host during a long-term period through the consumption of reserves allocated to reproduction.
Collapse
Affiliation(s)
- Laëtitia Minguez
- Université de Lorraine, Laboratoire des Interactions Ecotoxicologie, Biodiversité, Ecosystèmes (LIEBE), CNRS UMR 7146, Campus Bridoux, Metz, France
| | - Thierry Buronfosse
- Université de Lyon, Laboratoire d'endocrinologie, Ecole Nationale Vétérinaire de Lyon, Marcy l'Etoile, France
| | - Laure Giambérini
- Université de Lorraine, Laboratoire des Interactions Ecotoxicologie, Biodiversité, Ecosystèmes (LIEBE), CNRS UMR 7146, Campus Bridoux, Metz, France
| |
Collapse
|
21
|
Minguez L, Boiché A, Sroda S, Mastitsky S, Brulé N, Bouquerel J, Giambérini L. Cross-effects of nickel contamination and parasitism on zebra mussel physiology. ECOTOXICOLOGY (LONDON, ENGLAND) 2012; 21:538-547. [PMID: 22076027 DOI: 10.1007/s10646-011-0814-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/31/2011] [Indexed: 05/31/2023]
Abstract
Aquatic organisms are exposed to pollution which may make them more susceptible to infections and diseases. The present investigation evaluated effects of nickel contamination and parasitism (ciliates Ophryoglena spp. and intracellular bacteria Rickettsiales-like organisms), alone and in combination, on biological responses of the zebra mussel Dreissena polymorpha, and also the infestation abilities of parasites, under laboratory controlled conditions. Results showed that after 48 h, more organisms were infected in nickel-exposed groups, which could be related to weakening of their immune system. Acting separately, nickel contamination and infections were already stressful conditions; however, their combined action caused stronger biological responses in zebra mussels. Our data, therefore, confirm that the parasitism in D. polymorpha represents a potential confounding factor in ecotoxicological studies that involve this bivalve.
Collapse
Affiliation(s)
- Laëtitia Minguez
- Université Paul Verlaine-Metz, Laboratoire des Interactions, Ecotoxicologie, Biodiversité, Ecosystèmes (LIEBE), CNRS UMR 7146, Metz, France
| | | | | | | | | | | | | |
Collapse
|
22
|
Minguez L, Buronfosse T, Beisel JN, Giambérini L. Parasitism can be a confounding factor in assessing the response of zebra mussels to water contamination. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2012; 162:234-240. [PMID: 22243869 DOI: 10.1016/j.envpol.2011.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 10/25/2011] [Accepted: 11/02/2011] [Indexed: 05/31/2023]
Abstract
Biological responses measured in aquatic organisms to monitor environmental pollution could be also affected by different biotic and abiotic factors. Among these environmental factors, parasitism has often been neglected even if infection by parasites is very frequent. In the present field investigation, the parasite infra-communities and zebra mussel biological responses were studied up- and downstream a waste water treatment plant in northeast France. In both sites, mussels were infected by ciliates and/or intracellular bacteria, but prevalence rates and infection intensities were different according to the habitat. Concerning the biological responses differences were observed related to the site quality and the infection status. Parasitism affects both systems but seemed to depend mainly on environmental conditions. The influence of parasites is not constant, but remains important to consider it as a potential confounding factor in ecotoxicological studies. This study also emphasizes the interesting use of integrative indexes to synthesize data set.
Collapse
Affiliation(s)
- Laëtitia Minguez
- Université Paul Verlaine-Metz, Laboratoire des Interactions Ecotoxicologie, Biodiversité, Ecosystèmes (LIEBE), CNRS UMR 7146, Metz, France
| | | | | | | |
Collapse
|
23
|
Is there a link between shell morphology and parasites of zebra mussels? J Invertebr Pathol 2012; 109:229-34. [DOI: 10.1016/j.jip.2011.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 11/03/2011] [Accepted: 11/22/2011] [Indexed: 11/23/2022]
|
24
|
Oyoo-Okoth E, Admiraal W, Osano O, Kraak MHS, Gichuki J, Ogwai C. Parasites modify sub-cellular partitioning of metals in the gut of fish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 106-107:76-84. [PMID: 22100616 DOI: 10.1016/j.aquatox.2011.10.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 10/06/2011] [Accepted: 10/21/2011] [Indexed: 05/31/2023]
Abstract
Infestation of fish by parasites may influence metal accumulation patterns in the host. However, the subcellular mechanisms of these processes have rarely been studied. Therefore, this study determined how a cyprinid fish (Rastrineobola argentea) partitioned four metals (Cd, Cr, Zn and Cu) in the subcellular fractions of the gut in presence of an endoparasite (Ligula intestinalis). The fish were sampled along four sites in Lake Victoria, Kenya differing in metal contamination. Accumulation of Cd, Cr and Zn was higher in the whole body and in the gut of parasitized fish compared to non-parasitized fish, while Cu was depleted in parasitized fish. Generally, for both non-parasitized and parasitized fish, Cd, Cr and Zn partitioned in the cytosolic fractions and Cu in the particulate fraction. Metal concentrations in organelles within the particulate fractions of the non-parasitized fish were statistically similar except for Cd in the lysosome, while in the parasitized fish, Cd, Cr and Zn were accumulated more by the lysosome and microsomes. In the cytosolic fractions, the non-parasitized fish accumulated Cd, Cr and Zn in the heat stable proteins (HSP), while in the parasitized fish the metals were accumulated in the heat denatured proteins (HDP). On the contrary, Cu accumulated in the HSP in parasitized fish. The present study revealed specific binding of metals to potentially sensitive sub-cellular fractions in fish in the presence of parasites, suggesting interference with metal detoxification, and potentially affecting the health status of fish hosts in Lake Victoria.
Collapse
Affiliation(s)
- Elijah Oyoo-Okoth
- Division of Environmental Health, School of Environmental Studies, Moi University, P.O. Box 3900, Eldoret, Kenya.
| | | | | | | | | | | |
Collapse
|
25
|
Gismondi E, Rigaud T, Beisel JN, Cossu-Leguille C. Microsporidia parasites disrupt the responses to cadmium exposure in a gammarid. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2012; 160:17-23. [PMID: 22035920 DOI: 10.1016/j.envpol.2011.09.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 08/01/2011] [Accepted: 09/14/2011] [Indexed: 05/31/2023]
Abstract
Microsporidia parasites are commonly found in amphipods, where they are often asymptomatic, vertically-transmitted and have several effects on host sexuality and behaviour. As amphipods are often used as models in ecotoxicological studies, we investigated the effect of microsporidian infections on energy reserves and defence capacities of Gammarus roeseli under cadmium stress. Only females were infected by two microsporidia parasites: Dictyocoela roeselum or Dictyocoela muelleri. In physiological conditions, microsporidia had no major effect on energy reserves and defence capacities of G. roeseli, while under cadmium exposure, energy reserves and antioxidant defence were weaker in infected females. Moreover, higher malondialdehyde levels detected in infected females revealed that they suffered more cellular damages. Our results suggest that microsporidia may affect gammarid fitness in stressful conditions, when parasitic stress cannot be compensated by the host. Consequently, microsporidia parasites should be a factor necessary to take into account in ecotoxicology studies involving amphipods.
Collapse
Affiliation(s)
- Eric Gismondi
- Laboratoire des Interactions Ecotoxicologie Biodiversité Ecosystèmes (LIEBE), Université Paul Verlaine - METZ, CNRS UMR 7146, Campus Bridoux, Avenue du Général Delestraint, 57070 Metz, France.
| | | | | | | |
Collapse
|
26
|
Combined effects of parasites and contaminants on animal health: parasites do matter. Trends Parasitol 2011; 27:123-30. [DOI: 10.1016/j.pt.2010.11.002] [Citation(s) in RCA: 197] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 11/01/2010] [Accepted: 11/09/2010] [Indexed: 11/22/2022]
|
27
|
Minguez L, Molloy DP, Guérold F, Giambérini L. Zebra mussel (Dreissena polymorpha) parasites: potentially useful bioindicators of freshwater quality? WATER RESEARCH 2011; 45:665-73. [PMID: 20858560 DOI: 10.1016/j.watres.2010.08.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 08/09/2010] [Accepted: 08/13/2010] [Indexed: 05/11/2023]
Abstract
In environmental quality bioassessment studies, analysis of host-parasite interactions may well be a valuable alternative to classical macroinvertebrate sampling approaches. Herein, we investigated whether zebra mussel (Dreissena polymorpha) parasites could be useful biomonitoring tools. Mussel populations were sampled twice at two sites in northeastern France representing different levels of contamination and were characterized for parasite infection following standard histological methods. Our results indicated that sites of different environmental quality (i.e. chemical contamination) exhibited different parasite communities characterized by different trematode species and parasite associations. An additional significant finding was the positive correlation established between the prevalence of Rickettsiales-like organisms and metal contamination. Multivariate analyses were valuable in examining parasite communities.
Collapse
Affiliation(s)
- Laëtitia Minguez
- Université Paul Verlaine-Metz, Laboratoire des Interactions, Ecotoxicologie, Biodiversité, Ecosystèmes (LIEBE), CNRS UMR 7146, Campus Bridoux, Metz, France
| | | | | | | |
Collapse
|
28
|
Canesi L, Barmo C, Fabbri R, Ciacci C, Vergani L, Roch P, Gallo G. Effects of vibrio challenge on digestive gland biomarkers and antioxidant gene expression in Mytilus galloprovincialis. Comp Biochem Physiol C Toxicol Pharmacol 2010; 152:399-406. [PMID: 20601119 DOI: 10.1016/j.cbpc.2010.06.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 06/21/2010] [Accepted: 06/23/2010] [Indexed: 11/28/2022]
Abstract
In bivalve molluscs, responses to bacterial infection have been largely characterized in terms of both functional responses and gene expression in the immune cells, the hemocytes. The effects of bacterial challenge at the tissue level, where bacterial infection may cause stressful conditions, have not been so far specifically investigated. Biomarkers are widely utilised to evaluate the health status of bivalves, from the molecular to the organism level, in response to both natural and anthropogenic stressors. In this work, the effects of in vivo challenge with heat-killed vibrio species, Vibrio splendidus LGP32 and Vibrio anguillarum (ATCC19264), on different biomarkers in the digestive gland of the marine bivalve Mytilus galloprovincialis were investigated. Mussels were injected with either vibrio and tissues sampled at 3, 6 and 24 h post injection (p.i.). Lysosomal biomarkers, such as lysosomal membrane stability (LMS) and lipofuscin accumulation, as well as specific activities of antioxidant enzymes (catalase and glutathione transferase-GST) were evaluated. Moreover, the expression of antioxidant molecules (catalase, GST-pi and metallothioneins MT10 and MT20) was determined by quantitative RT-PCR. Both V. splendidus and V. anguillarum significantly affected all parameters measured, to a different extent and at different times p.i. Interestingly, whereas both vibrios induced lysosomal membrane destabilisation and increases in the activities of antioxidant enzymes, distinct responses were observed in terms of lysosomal lipofuscin accumulation and expression of antioxidant molecules. In particular, V. splendidus induced a general increase in the transcription of antioxidant genes, indicating that Mytilus digestive gland can mount an efficient antioxidant response towards this vibrio species. On the other hand, a general down-regulation or no effect was observed with V. anguillarum. The lack of this response was reflected in stronger oxidative stress conditions in the digestive gland of mussels challenged with V. anguillarum, as indicated by higher levels of lysosomal lipofuscin observed at longer times p.i. Overall, these data indicate that lysosomal and oxidative stress biomarkers could be usefully applied in order to monitor early changes in the health status of bivalves induced by bacteria. Moreover, the results support the hypothesis that host responses to bacteria may be taken into account when interpreting biomarker data in ecotoxicological studies.
Collapse
Affiliation(s)
- Laura Canesi
- Dipartimento di Biologia, Università di Genova, Italy.
| | | | | | | | | | | | | |
Collapse
|