1
|
González-Martínez F, Johnson-Restrepo B, Quiñones LA. Arsenic inorganic exposure, metabolism, genetic biomarkers and its impact on human health: A mini-review. Toxicol Lett 2024; 398:105-117. [PMID: 38901734 DOI: 10.1016/j.toxlet.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 04/14/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Inorganic arsenic species exist in the environment as a result of both natural sources, such as volcanic and geothermal activities, and geological formations, as well as anthropogenic activities, including smelting, exploration of fossil fuels, coal burning, mining, and the use of pesticides. These species deposit in water, rocks, soil, sediments, and the atmosphere. Arsenic-contaminated drinking water is a global public health issue because of its natural prevalence and toxicity. Therefore, chronic exposure to arsenic can have deleterious effect on humans, including cancer and other diseases. This work describes the mechanisms of environmental exposure to arsenic, molecular regulatory factors involved in its metabolism, genetic polymorphisms affecting individual susceptibility and the toxic effects of arsenic on human health (oxidative stress, DNA damage and cancer). We conclude that the role of single nucleotide variants affecting urinary excretion of arsenic metabolites are highly relevant and can be used as biomarkers of the intracellular retention rates of arsenic, showing new avenues of research in this field.
Collapse
Affiliation(s)
- Farith González-Martínez
- Faculty of Dentistry and Faculty of Exact Sciences, University of Cartagena, Colombia; Public Health Research Group, University of Cartagena, Colombia; Latin American Network for Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Santiago, Chile.
| | | | - Luis A Quiñones
- Latin American Network for Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Santiago, Chile; Laboratory of Chemical Carcinogenesis and Pharmacogenetics (CQF), Department of Basic-Clinical Oncology (DOBC), Faculty of Medicine, University of Chile, Chile; Department of Pharmaceutical Science and Technology, School of Chemical and Pharmaceutical Sciences, University of Chile, Chile.
| |
Collapse
|
2
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Vleminckx C, Wallace H, Barregård L, Benford D, Broberg K, Dogliotti E, Fletcher T, Rylander L, Abrahantes JC, Gómez Ruiz JÁ, Steinkellner H, Tauriainen T, Schwerdtle T. Update of the risk assessment of inorganic arsenic in food. EFSA J 2024; 22:e8488. [PMID: 38239496 PMCID: PMC10794945 DOI: 10.2903/j.efsa.2024.8488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2024] Open
Abstract
The European Commission asked EFSA to update its 2009 risk assessment on arsenic in food carrying out a hazard assessment of inorganic arsenic (iAs) and using the revised exposure assessment issued by EFSA in 2021. Epidemiological studies show that the chronic intake of iAs via diet and/or drinking water is associated with increased risk of several adverse outcomes including cancers of the skin, bladder and lung. The CONTAM Panel used the benchmark dose lower confidence limit based on a benchmark response (BMR) of 5% (relative increase of the background incidence after adjustment for confounders, BMDL05) of 0.06 μg iAs/kg bw per day obtained from a study on skin cancer as a Reference Point (RP). Inorganic As is a genotoxic carcinogen with additional epigenetic effects and the CONTAM Panel applied a margin of exposure (MOE) approach for the risk characterisation. In adults, the MOEs are low (range between 2 and 0.4 for mean consumers and between 0.9 and 0.2 at the 95th percentile exposure, respectively) and as such raise a health concern despite the uncertainties.
Collapse
|
3
|
Banerjee A, Sarkar S, Gorai S, Kabiraj A, Bandopadhyay R. High arsenic tolerance in Brevundimonas aurantiaca PFAB1 from an arsenic-rich Indian hot spring. ELECTRON J BIOTECHN 2021. [DOI: 10.1016/j.ejbt.2021.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
4
|
Brooks BW, Gerding JA, Landeen E, Bradley E, Callahan T, Cushing S, Hailu F, Hall N, Hatch T, Jurries S, Kalis MA, Kelly KR, Laco JP, Lemin N, McInnes C, Olsen G, Stratman R, White C, Wille S, Sarisky J. Environmental Health Practice Challenges and Research Needs for U.S. Health Departments. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:125001. [PMID: 31799881 PMCID: PMC6957286 DOI: 10.1289/ehp5161] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
BACKGROUND Environmental health (EH) professionals, one of the largest segments of the public health workforce, are responsible for delivery of essential environmental public health services. The challenges facing these professionals and research needs to improve EH practice are not fully understood, but 26% of EH professionals working in health departments of the United States plan to retire in 5 y, while only 6% of public health students are currently pursuing EH concentrations. OBJECTIVES A groundbreaking initiative was recently launched to understand EH practice in health departments of the United States. This commentary article aims to identify priority EH practice challenges and related research needs for health departments. METHODS A horizon scanning approach was conducted in which challenges facing EH professionals were provided by 1,736 respondents working at health departments who responded to a web-based survey fielded in November 2017. Thematic analyses of the responses and determining the frequency at which respondents reported specific issues and opportunities identified primary EH topic areas. These topic areas and related issues informed focus group discussions at an in-person workshop held in Anaheim, California. The purpose of the in-person workshop was to engage each of the topic areas and issues, through facilitated focus groups, leading to the formation of four to five related problem statements for each EH topic. DISCUSSION EH professionals are strategically positioned to diagnose, intervene, and prevent public health threats. Focus group engagement resulted in 29 priority problem statements partitioned among 6 EH topic areas: a) drinking water quality, b) wastewater management, c) healthy homes, d) food safety, e) vectors and public health pests, and f) emerging issues. This commentary article identifies priority challenges and related research needs to catalyze effective delivery of essential environmental public health services for common EH program areas in health departments. An unprecedented initiative to revitalize EH practice with timely and strategic recommendations for student and professional training, nontraditional partnerships, and basic and translational research activities is recommended. https://doi.org/10.1289/EHP5161.
Collapse
Affiliation(s)
- Bryan W Brooks
- Environmental Health Science Program, Dept. of Environmental Science, Institute of Biomedical Studies, Baylor University, Waco, Texas, USA
| | - Justin A Gerding
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | - Eric Bradley
- Scott County Health Department, Davenport, Iowa, USA
| | | | - Stephanie Cushing
- San Francisco Department of Public Health, San Francisco, California, USA
| | - Fikru Hailu
- Marion County Public Health Department, Indianapolis, Indiana, USA
| | - Nancy Hall
- Southern Nevada Health District, Las Vegas, Nevada, USA
| | - Timothy Hatch
- Alabama Department of Public Health, Montgomery, Alabama, USA
| | - Sherise Jurries
- Public Health-Idaho North Central District, Lewiston, Idaho, USA
| | - Martin A Kalis
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Kaitlyn R Kelly
- Environmental Health Science Program, Dept. of Environmental Science, Institute of Biomedical Studies, Baylor University, Waco, Texas, USA
| | - Joseph P Laco
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Niki Lemin
- Franklin County Public Health, Columbus, Ohio, USA
| | - Carol McInnes
- Boulder County Public Health, Boulder, Colorado, USA
| | - Greg Olsen
- City of Evanston Health and Human Services Department, Evanston, Illinois, USA
| | - Robert Stratman
- Maricopa County Environmental Services Department, Chandler, Arizona, USA
| | - Carolyn White
- Kansas City Health Department, Kansas City, Missouri, USA
| | - Steven Wille
- Maricopa County Environmental Services Department, Mesa, Arizona, USA
| | - John Sarisky
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
5
|
Khan KM, Parvez F, Zoeller RT, Hocevar BA, Kamendulis LM, Rohlman D, Eunus M, Graziano J. Thyroid hormones and neurobehavioral functions among adolescents chronically exposed to groundwater with geogenic arsenic in Bangladesh. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 678:278-287. [PMID: 31075594 PMCID: PMC6544172 DOI: 10.1016/j.scitotenv.2019.04.426] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 06/09/2023]
Abstract
Groundwater, the major source of drinking water in Bengal Delta Plain, is contaminated with geogenic arsenic (As) enrichment affecting millions of people. Children exposed to tubewell water containing As may be associated with thyroid dysfunction, which in turn may impact neurodevelopmental outcomes. However, data to support such relationship is sparse. The purpose of this study was to examine if chronic water As (WAs) from Holocene alluvial aquifers in this region was associated with serum thyroid hormone (TH) and if TH biomarkers were related to neurobehavioral (NB) performance in a group of adolescents. A sample of 32 healthy adolescents were randomly drawn from a child cohort in the Health Effects of Arsenic Longitudinal Study (HEALS) in Araihazar, Bangladesh. Half of these participants were consistently exposed to low WAs (<10 μg/L) and the remaining half had high WAs exposure (≥10 μg/L) since birth. Measurements included serum total triiodothyronine (tT3), free thyroxine (fT4), thyrotropin (TSH) and thyroperoxidase antibodies (TPOAb); concurrent WAs and urinary arsenic (UAs); and adolescents' NB performance. WAs and UAs were positively and significantly correlated with TPOAb but were not correlated with TSH, tT3 and fT4. After accounting for covariates, both WAs and UAs demonstrated positive but non-significant relationships with TSH and TPOAb and negative but non-significant relationships with tT3 and fT4. TPOAb was significantly associated with reduced NB performance indicated by positive associations with latencies in simple reaction time (b = 82.58; p < 0.001) and symbol digit (b = 276.85; p = 0.005) tests. TSH was significantly and negatively associated with match-to-sample correct count (b = -0.95; p = 0.05). Overall, we did not observe significant associations between arsenic exposure and TH biomarkers although the relationships were in the expected directions. We observed TH biomarkers to be related to reduced NB performance as hypothesized. Our study indicated a possible mechanism of As-induced neurotoxicity, which requires further investigations for confirmatory findings.
Collapse
Affiliation(s)
- Khalid M Khan
- Department of Environmental and Occupational Health, School of Public Health, Indiana University-Bloomington, IN, USA.
| | - Faruque Parvez
- Department of Environmental Health, Mailman School of Public Health, Columbia University, New York, USA
| | - R Thomas Zoeller
- Department of Biology, University of Massachusetts Amherst, MA, USA
| | - Barbara A Hocevar
- Department of Environmental and Occupational Health, School of Public Health, Indiana University-Bloomington, IN, USA
| | - Lisa M Kamendulis
- Department of Environmental and Occupational Health, School of Public Health, Indiana University-Bloomington, IN, USA
| | - Diane Rohlman
- Department of Occupational and Environmental Health, College of Public Health, The University of Iowa, IA, USA
| | | | - Joseph Graziano
- Department of Environmental Health, Mailman School of Public Health, Columbia University, New York, USA
| |
Collapse
|
6
|
Sinha D, Prasad P. Health effects inflicted by chronic low-level arsenic contamination in groundwater: A global public health challenge. J Appl Toxicol 2019; 40:87-131. [PMID: 31273810 DOI: 10.1002/jat.3823] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 04/28/2019] [Indexed: 01/23/2023]
Abstract
Groundwater arsenic (As) contamination is a global public health concern. The high level of As exposure (100-1000 μg/L or even higher) through groundwater has been frequently associated with serious public health hazards, e.g., skin disorders, cardiovascular diseases, respiratory problems, complications of gastrointestinal tract, liver and splenic ailments, kidney and bladder disorders, reproductive failure, neurotoxicity and cancer. However, reviews on low-level As exposure and the imperative health effects are far less documented. The World Health Organization (WHO) and the United States Environmental Protection Agency (USEPA) has set the permissible standard of As in drinking water at 10 μg/L. Considering the WHO and USEPA guidelines, most of the developed countries have established standards at or below this guideline. Worldwide many countries including India have millions of aquifers with low-level As contamination (≤50 μg/L). The exposed population of these areas might not show any As-related skin lesions (hallmark of As toxicity particularly in a population consuming As contaminated groundwater >300 μg/L) but might be subclinically affected. This review has attempted to encompass the wide range of health effects associated with chronic low-level As exposure ≤50 μg/L and the probable mechanisms that might provide a better insight regarding the underlying cause of these clinical manifestations. Therefore, there is an urgent need to create mass awareness about the health effects of chronic low-level As exposure and planning of proper mitigation strategies.
Collapse
Affiliation(s)
- Dona Sinha
- Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, India
| | - Priyanka Prasad
- Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, India
| |
Collapse
|
7
|
Hoover J, Erdei E, Nash J, Gonzales M. A Review of Metal Exposure Studies Conducted in the Rural Southwestern and Mountain West Region of the United States. CURR EPIDEMIOL REP 2019; 6:34-49. [PMID: 30906686 PMCID: PMC6429957 DOI: 10.1007/s40471-019-0182-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW This review summarizes recent literature examining exposure to environmental metals in rural areas of the southwestern/mountain west region of the United States focusing on the range of exposures and exposure pathways unique to this region. RECENT FINDINGS Recent studies (2013-2018) indicated that exposures to arsenic (As), uranium (U), and cadmium (Cd) were the most commonly quantified metals in the study area. One or more of these three metals was analyzed in each study reviewed. SUMMARY The current review draws attention to the variety of exposure assessment methods, analytical tools, and unique non-occupational exposure pathways in this region. The reviewed studies identified potential sources of metals exposure including regulated and unregulated drinking water, particulate matter, and food items, and provided information about the levels of exposures experienced by populations through a variety of exposure assessment methods including spatial analysis methodologies. The findings suggest that exposure assessment methods could be further integrated with population studies to assess health effects of environmental metals exposure through pathways unique to Southwestern and Mountain West U.S.
Collapse
Affiliation(s)
- Joseph Hoover
- University of New Mexico Health Sciences Center, College of
Pharmacy, Department of Pharmaceutical Sciences, MSC09 5360 Albuquerque, NM,
87131
| | - Esther Erdei
- University of New Mexico Health Sciences Center, College of
Pharmacy, Department of Pharmaceutical Sciences, MSC09 5360 Albuquerque, NM,
87131
| | - Jacob Nash
- University of New Mexico Health Sciences Center, Health Sciences
Library and Information Center, MSC09 5100, Albuquerque, NM, 87131
| | - Melissa Gonzales
- University of New Mexico Health Sciences Center, School of
Medicine, Department of Internal Medicine, MSC10 5550, Albuquerque, NM,
87131
| |
Collapse
|
8
|
Gonzales M, Erdei E, Hoover J, Nash J. A Review of Environmental Epidemiology Studies in Southwestern and Mountain West Rural Minority Populations. CURR EPIDEMIOL REP 2018; 5:101-113. [PMID: 30906685 PMCID: PMC6426134 DOI: 10.1007/s40471-018-0146-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW This review summarizes the recent epidemiologic literature examining environmental exposures and health outcomes in rural, minority populations in the southwestern and mountain west region of the United States identifying areas requiring further data and research. RECENT FINDINGS Recent studies (2012-2017) in this region have primarily focused on arsenic exposure (n=10 studies) with similar results reported across populations in this region. Associations between arsenic and cadmium were reported for cardiovascular and kidney disease, type II diabetes, cognitive function, hypothyroidism, and increased prevalence and mortality for lung and other cancers. Also in this review are studies of exposure to particulate matter, environmental tobacco smoke, pesticides and fungicides, heat and ozone. SUMMARY Although small, the current literature identified in this review report consistent adverse health outcomes associated with particulate matter, arsenic, cadmium, and other exposures among rural, minority populations in the southwest/mountain west region of the U.S. This literature provides important insight into the environmental exposures and health effects experienced by the rural populations in these regions. Additional studies that identify sources of environmental exposure are needed. Greater representation of the rural and minority populations from this region into large health studies also remains a need.
Collapse
Affiliation(s)
- Melissa Gonzales
- University of New Mexico Health Sciences Center, School of Medicine, Department of Internal Medicine, MSC10 5550, Albuquerque, NM, 87131
| | - Esther Erdei
- University of New Mexico Health Sciences Center, College of Pharmacy, Department of Pharmaceutical Sciences, MSC09 5360 Albuquerque, NM, 87131
| | - Joseph Hoover
- University of New Mexico Health Sciences Center, College of Pharmacy, Department of Pharmaceutical Sciences, MSC09 5360 Albuquerque, NM, 87131
| | - Jacob Nash
- University of New Mexico Health Sciences Center, Health Sciences Library and Information Center, MSC09 5100, Albuquerque, NM, 87131
| |
Collapse
|
9
|
Liu Z, Feng D, Gu D, Zheng R, Esperat C, Gao W. Differentially expressed haptoglobin as a potential biomarker for type 2 diabetic mellitus in Hispanic population. Biofactors 2017; 43:424-433. [PMID: 28218436 DOI: 10.1002/biof.1352] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/06/2017] [Accepted: 01/17/2017] [Indexed: 01/01/2023]
Abstract
Glycosylated hemoglobin (HbA1c) measurement is currently a primary tool for diagnosis of type 2 diabetes mellitus (T2DM), especially for the assessment of chronic hyperglycemia. However, many studies reported the limitation of using HbA1c for T2DM diagnosis/prognosis, such as poor sensitivities, difficult standardization, and variable cut points across ethnic groups. Therefore, the aim of this study was to discover novel biomarkers associated with elevated HbA1c levels as complementary T2DM diagnostic tools. Two-dimensional difference gel electrophoresis combined with mass spectrometry were applied for protein profile analyses of two pooled serum samples collected from Hispanic T2DM subjects (n = 74) with HbA1c ≥7 and HbA1c< 7, respectively. Isoforms of haptoglobin (Hp) α1/α2 chains were significantly altered in pooled serum samples from T2DM subjects with HbA1c ≥7 compared to those with HbA1c< 7. Hp genotypes of 262 Hispanic subjects, including 109 T2DM and 153 nondiabetic controls, were further determined by PCRs and western blotting analysis. Meanwhile, a new droplet digital PCR method for Hp genotyping was also established. The distribution of Hp2 allele was higher in T2DM subjects compared to nondiabetic controls and the HbA1c levels of T2DM subjects carrying at least one Hp2 allele tended to be higher than T2DM subjects with Hp 1-1. In summary, our results indicate that differentially expressed serum Hp protein isoforms could be associated with HbA1c levels and subjects with Hp2 allele have a higher risk for the occurrence of T2DM in Hispanic population. © 2016 BioFactors, 43(3):424-433, 2017.
Collapse
Affiliation(s)
- Zhongwei Liu
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, TX
| | - Du Feng
- School of Nursing, University of Nevada, Las Vegas, NV
| | - Danshan Gu
- Huafang College, Xuzhou Medical University, Xuzhou, China
| | - Richard Zheng
- Department of Biology, Texas Tech University, Lubbock, TX
| | - Christina Esperat
- School of Nursing, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Weimin Gao
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, TX
| |
Collapse
|
10
|
Hettick BE, Cañas-Carrell JE, Martin K, French AD, Klein DM. Arsenic Uptake by Muskmelon (Cucumis melo) Plants from Contaminated Water. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2016; 97:395-400. [PMID: 27460822 DOI: 10.1007/s00128-016-1893-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 07/16/2016] [Indexed: 06/06/2023]
Abstract
Arsenic is a carcinogenic element that occurs naturally in the environment. High levels of arsenic are found in water in some parts of the world, including Texas. The aims of this study were to determine the distribution of arsenic in muskmelon (Cucumis melo) plants accumulated from arsenic spiked water and to observe effects on plant biomass. Plants were grown and irrigated using water spiked with variable concentrations of arsenic. Inductively coupled plasma mass spectrometry was used to quantify arsenic in different parts of the plant and fruit. Under all conditions tested in this study, the highest concentrations of arsenic were found in the leaves, soil, and roots. Arsenic in the water had no significant effect on plant biomass. Fruits analyzed in this study had arsenic concentrations of 101 μg/kg or less. Consuming these fruits would result in less arsenic exposure than drinking water at recommended levels.
Collapse
Affiliation(s)
- Bryan E Hettick
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH), Texas Tech University, PO Box 41163, Lubbock, TX, 79409-1163, USA
| | - Jaclyn E Cañas-Carrell
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH), Texas Tech University, PO Box 41163, Lubbock, TX, 79409-1163, USA
| | - Kirt Martin
- Department of Natural Sciences, Lubbock Christian University, 5601 19th Street, Lubbock, TX, 79407, USA
| | - Amanda D French
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH), Texas Tech University, PO Box 41163, Lubbock, TX, 79409-1163, USA
| | - David M Klein
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH), Texas Tech University, PO Box 41163, Lubbock, TX, 79409-1163, USA.
| |
Collapse
|
11
|
Cortés-Arriagada D, Toro-Labbé A. Insights into the use of Au19Cu and Au19Pd clusters for adsorption of trivalent arsenic. Theor Chem Acc 2016. [DOI: 10.1007/s00214-016-1825-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Abdul KSM, Jayasinghe SS, Chandana EPS, Jayasumana C, De Silva PMCS. Arsenic and human health effects: A review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 40:828-46. [PMID: 26476885 DOI: 10.1016/j.etap.2015.09.016] [Citation(s) in RCA: 428] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 09/22/2015] [Accepted: 09/26/2015] [Indexed: 05/18/2023]
Abstract
Arsenic (As) is ubiquitous in nature and humans being exposed to arsenic via atmospheric air, ground water and food sources are certain. Major sources of arsenic contamination could be either through geological or via anthropogenic activities. In physiological individuals, organ system is described as group of organs that transact collectively and associate with other systems for conventional body functions. Arsenic has been associated with persuading a variety of complications in body organ systems: integumentary, nervous, respiratory, cardiovascular, hematopoietic, immune, endocrine, hepatic, renal, reproductive system and development. In this review, we outline the effects of arsenic on the human body with a main focus on assorted organ systems with respective disease conditions. Additionally, underlying mechanisms of disease development in each organ system due to arsenic have also been explored. Strikingly, arsenic has been able to induce epigenetic changes (in utero) and genetic mutations (a leading cause of cancer) in the body. Occurrence of various arsenic induced health effects involving emerging areas such as epigenetics and cancer along with their respective mechanisms are also briefly discussed.
Collapse
Affiliation(s)
| | | | | | - Channa Jayasumana
- Department of Pharmacology, Faculty of Medicine, Rajarata University, Anuradhapura 50008, Sri Lanka
| | - P Mangala C S De Silva
- Department of Zoology, Faculty of Science, University of Ruhuna, Matara 81000, Sri Lanka
| |
Collapse
|
13
|
Butts CD, Bloom MS, Neamtiu IA, Surdu S, Pop C, Anastasiu D, Fitzgerald EF, Gurzau ES. A pilot study of low-moderate drinking water arsenic contamination and chronic diseases among reproductive age women in Timiş County, Romania. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 40:1001-4. [PMID: 26595744 PMCID: PMC4679485 DOI: 10.1016/j.etap.2015.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 10/31/2015] [Accepted: 11/02/2015] [Indexed: 05/09/2023]
Abstract
We conducted a pilot study of associations between drinking water contaminated by inorganic arsenic (iAs), mostly <10 μg/L, and self-reported chronic diseases in 297 pregnant women. Adjusted for confounding variables, we identified a positive association between iAs and heart disease (OR = 1.63, 95%CI 0.81-3.04, p = 0.094), which was stronger for women living at their current residence ≥ 10 years (OR = 2.47, 95%CI 0.87-10.43, p = 0.058). Confounder-adjusted associations were also suggested for iAs with kidney disease (OR = 1.32, 95%CI 0.77-2.21, p = 0.265) and with high blood pressure (OR = 1.36, 95%CI 0.68-2.39, p = 0.300). A post hoc power analysis indicated the need for a larger study with more statistical power.
Collapse
Affiliation(s)
- Celeste D Butts
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, Rensselaer, NY, USA
| | - Michael S Bloom
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, Rensselaer, NY, USA; Department of Epidemiology and Biostatistics, School of Public Health, University at Albany, State University of New York, Rensselaer, NY, USA.
| | | | - Simona Surdu
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, Rensselaer, NY, USA
| | - Cristian Pop
- Environmental Health Center, Cluj-Napoca, Romania
| | - Doru Anastasiu
- University of Medicine and Pharmacy "Victor Babes", Timişoara, Romania; Gynecology Department of the Emergency County Hospital, Timişoara, Romania
| | - Edward F Fitzgerald
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, Rensselaer, NY, USA; Department of Epidemiology and Biostatistics, School of Public Health, University at Albany, State University of New York, Rensselaer, NY, USA
| | - Eugen S Gurzau
- Environmental Health Center, Cluj-Napoca, Romania; University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj-Napoca, Romania
| |
Collapse
|