1
|
Chou L, Zhou C, Luo W, Guo J, Shen Y, Lin D, Wang C, Yu H, Zhang X, Wei S, Shi W. Identification of high-concern organic pollutants in tap waters from the Yangtze River in China based on combined screening strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159416. [PMID: 36244484 DOI: 10.1016/j.scitotenv.2022.159416] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/09/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Recently, numerous organic pollutants have been detected in water environment. The safety of our drinking water has attracted widespread attention. Effective methods to screen and identify high-concern substances are urgently needed. In this study, the combined workflow for the detection and identification of high-concern organic chemicals was established and applied to tap water samples from the Yangtze River Basin. The solid phase extraction (SPE) sorbents were compared and evaluated and finally the HLB cartridge was selected as the best one for most of the contaminants. Based on target, suspect and non-target analysis, 3023 chemicals/peaks were detected. Thirteen substances such as diundecyl phthalate (DUP), 2-hydroxyatrazine, dioxoaminopyrine and diethyl-2-phenylacetamide were detected in drinking water in the Yangtze River Basin for the very first time. Based on three kinds of prioritization principles, 49 ubiquitous, 103 characteristic chemicals and 13 inefficiently removed chemicals were selected as high-concern substances. Among them, 8, 31, 9, 3, 4 substances overlapped with the toxic, risky or high-concern chemicals lists in China, America, European Union, Japan, Korea, respectively. Specific management and removal strategies were further recommended. The workflow is efficient for identification of key pollutants.
Collapse
Affiliation(s)
- Liben Chou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Chengzhuo Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Wenrui Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jing Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Yanhong Shen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Die Lin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Chang Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Hongxia Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Si Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Wei Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, China
| |
Collapse
|
2
|
Urinary Concentrations of Diisoheptyl Phthalate Biomarkers in Convenience Samples of U.S. Adults in 2000 and 2018-2019. TOXICS 2019; 7:toxics7040053. [PMID: 31614419 PMCID: PMC6958421 DOI: 10.3390/toxics7040053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/01/2019] [Accepted: 10/04/2019] [Indexed: 11/17/2022]
Abstract
We know little about the potential health risks from exposure to diisoheptyl phthalate (DiHpP), a plasticizer used in commercial applications. The production of DiHpP ended in the United States in 2010, but DiHpP may still be present in phthalate diester mixtures. To investigate human exposure to DiHpP, we used three oxidative metabolites of DiHpP: Monohydroxyheptyl phthalate (MHHpP), mono-oxoheptylphthalate (MOHpP), and monocarboxyhexyl phthalate (MCHxP) as exposure biomarkers. We analyzed urine collected anonymously in 2000 (N = 144) and 2018–2019 (N = 205) from convenience groups of U.S. adults using high-performance liquid chromatography coupled with isotope-dilution high-resolution mass spectrometry. We detected MCHxP in all the samples tested in 2000 (GM = 2.01 ng/mL) and 2018–2019 (GM = 1.31 ng/mL). MHHpP was also detected in 100% of the 2018–2019 samples (GM = 0.59 ng/mL) and 96% of the 2000 urine samples analyzed (GM = 0.38 ng/mL). MOHpP was detected in 57% (2018–2019, GM = 0.03 ng/mL) and 92% (2000, GM = 0.19 ng/mL) of samples. The presence of MHHpP, MOHpP, and MCHxP in the 2018–2019 samples suggests recent exposure to DiHpP. Intercorrelations between metabolite concentrations were more significant in samples collected in 2000 than in samples collected in 2018–2019. The differences in urinary metabolite profiles and intercorrelations from samples collected during 2000 and 2018–2019 likely reflects changes in the composition of commercial DiHpP formulations before and after 2010.
Collapse
|