1
|
Claeson AS, Edvardsson B, Liljelind I. Stress and Sleep in Relation to Severity of Building Related Symptoms. J Occup Environ Med 2023; 65:541-545. [PMID: 36952319 DOI: 10.1097/jom.0000000000002844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
OBJECTIVE This study investigates different aspects of stress and sleep in medically examined individuals with varying severity of building-related symptoms (BRS). METHODS Three questionnaires were used to assess acute and long-term stress and sleep (Perceived Stress Scale; Shirom Melamed Burnout Questionnaire, and Karolinska Sleep Questionnaire). RESULTS Individuals with BRS, regardless of severity, did not differ in level of perceived stress (indicator of short-term stress). The indicators of long-term stress differed between the groups where an increased severity was associated with higher levels of burnout and sleep problems. CONCLUSIONS The study suggests an association between symptom severity and measures of long-term stress and sleep quality. This has implications for the treatment of persons affected by BRS, because not only the environment needs to be treated, but also the concurrent signs of distress, such as burnout or sleep problems.
Collapse
Affiliation(s)
- Anna-Sara Claeson
- From the Department of Psychology, Umeå University, Umeå, Sweden (A.C); and Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden (B.E., I.L.)
| | | | | |
Collapse
|
2
|
Gordon Holzheimer R. Moisture damage and fungal contamination in buildings are a massive health threat - a surgeon's perspective. Cent Eur J Public Health 2023; 31:63-68. [PMID: 37086423 DOI: 10.21101/cejph.a7504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 02/20/2023] [Indexed: 04/23/2023]
Abstract
OBJECTIVES Indoor air toxicity is of major public health concern due to the increase in humidity-induced indoor mould exposure and associated health changes. The objective is to present evidence for the causality of health threats and indoor mould exposure. METHODS PubMed search on the following keywords: dampness, mould, indoor air quality, public health, dampness, and mould hypersensitivity syndrome, sick building syndrome, and building-related illness as well as information from the health authorities of Bavaria and North Rhine-Westphalia, the Center of Disease Control (CDC), World Health Organisation (WHO), and guidelines of professional societies. RESULTS The guidelines of professional societies published in 2017 are decisive for the assessment of the impact of mould pollution caused by moisture damage on human health and for official regulations in Germany. Until 2017, a causal connection between moisture damage and mould exposure could usually only be established for pulmonary diseases. The health risk of fungal components is apparent as documented in the fungal priority pathogens list (FPPL) of the WHO. Since 2017, studies, especially in Scandinavia, have proved causality between moisture and mould exposure not only for pulmonary diseases but also for extrapulmonary diseases and symptoms. This was made possible by new test methods for determining the toxicity of fungal components in indoor air. Environmental medical syndromes, e.g., dampness and mould hypersensitivity syndrome (DMHS), sick building syndrome (SBS), building-related symptoms (BRS), and building-related illness (BRI), and fungal pathogens, e.g., Aspergillus fumigatus, pose a major threat to public health. CONCLUSION There is evidence for the causality of moisture-induced indoor moulds and severe health threats in these buildings. According to these findings, it is no longer justifiable to ignore or trivialize the mould contamination induced by moisture damage and its effects on pulmonary and extrapulmonary diseases. The health and economic implications of these attitudes are clear.
Collapse
|
3
|
Marika M, Marketa D, Lada S, Marian R, Filip K, Adam V, Věra V, Kristina K, Dagmar J, Tuula H. New approach methods for assessing indoor air toxicity. Curr Res Toxicol 2022; 3:100090. [PMID: 36281315 PMCID: PMC9587284 DOI: 10.1016/j.crtox.2022.100090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022] Open
Abstract
Indoor air is typically a mixture of many chemicals at low concentrations without any adverse health effects alone, but in mixtures they may cause toxicity and risks to human health. The aim of this study was by using new approach methods to assess the potential toxicity of indoor air condensates. In specific, different in vitro test methods including cyto-and immunotoxicity, skin sensitization and endocrine disruption were applied. In addition to biological effects, the indoor air samples were subjected to targeted analysis of 25 volatile organic compounds (VOCs) and Genapol X-80 (a nonionic emulsifier) suspected to be present in the samples, and to a non-targeted "total chemical scan" to find out whether the chemical composition of the samples is associated with the biological effects. The results confirm that assessing health risks of indoor air by analysing individual chemicals is not an adequate approach: We were not able to detect the VOCs and Genapol X-80 in the indoor air samples, yet, several types of toxicity, namely, cytotoxicity, immunotoxicity, skin sensitization and endocrine disruption were detected. In the non-targeted total chemical scan of the indoor air samples, a larger number of compounds were found in the cytotoxic samples than in the non-cytotoxic samples supporting the biological findings. If only one biological method would be selected for the screening of indoor air quality, THP-1 macrophage/WST-1 assay would best fit for the purpose as it is sensitive and serves as a good representative for different sub-toxic end points, including immunotoxicity, (skin) sensitization and endocrine disruption.
Collapse
Affiliation(s)
- Mannerström Marika
- The Faculty of Medicine and Health Technology, Arvo Ylpön katu 1, 33014 Tampere University, Finland,Corresponding author at: Faculty of Medicine and Health Technology, Arvo Ylpön katu 34, 33014 Tampere University, Finland.
| | - Dvorakova Marketa
- National Institute of Public Health, Srobarova 49/48, 100 00 Prague 10, Czech Republic
| | - Svobodova Lada
- National Institute of Public Health, Srobarova 49/48, 100 00 Prague 10, Czech Republic,Medical Faculty of Palacky University, Hnevotinska 976/3, 775 15 Olomouc, Czech Republic
| | - Rucki Marian
- National Institute of Public Health, Srobarova 49/48, 100 00 Prague 10, Czech Republic
| | - Kotal Filip
- National Institute of Public Health, Srobarova 49/48, 100 00 Prague 10, Czech Republic
| | - Vavrouš Adam
- National Institute of Public Health, Srobarova 49/48, 100 00 Prague 10, Czech Republic
| | - Vrbíková Věra
- National Institute of Public Health, Srobarova 49/48, 100 00 Prague 10, Czech Republic
| | - Kejlova Kristina
- National Institute of Public Health, Srobarova 49/48, 100 00 Prague 10, Czech Republic
| | - Jirova Dagmar
- National Institute of Public Health, Srobarova 49/48, 100 00 Prague 10, Czech Republic
| | - Heinonen Tuula
- The Faculty of Medicine and Health Technology, Arvo Ylpön katu 1, 33014 Tampere University, Finland
| |
Collapse
|
4
|
Tsantaki E, Smyrnakis E, Constantinidis TC, Benos A. Indoor air quality and sick building syndrome in a university setting: a case study in Greece. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:595-615. [PMID: 32633551 DOI: 10.1080/09603123.2020.1789567] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
The perceived Indoor Air Quality (IAQ), the prevalence of Sick Building Syndrome (SBS) symptoms and its contributing risk factors were assessed in a university during the period of the economic crisis in Greece. Data was collected from 613 employees via questionnaires. Hierarchical linear regression analysis was performed. The most prevalent perceived IAQ complaints were 'Dust and dirt' (63.2%), 'Room temperature too low' (24.9%) and 'Varying room temperature' (24.4%). The most frequently reported SBS symptom was 'Fatigue' (34.1%). The prevalence of General, Mucosal and Dermal symptoms was 40.8%, 19.8% and 8.1%, respectively. Several contributing risk factors were identified, such as IAQ Discomfort Scale, atopy, sleep problems, female, exposure to biological and chemical agents, PC-use, Psychosocial Work Scale and job satisfaction. Poor perceived IAQ and high prevalence of SBS symptoms were reported from the university staff in a temperate climate country. SBS seemed to be multifactorial.
Collapse
Affiliation(s)
- Efthymia Tsantaki
- Laboratory of Primary Health Care, General Practice and Health Services Research, Department of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Emmanouil Smyrnakis
- Laboratory of Primary Health Care, General Practice and Health Services Research, Department of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Theodoros C Constantinidis
- Laboratory of Hygiene and Environmental Protection, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Alexis Benos
- Laboratory of Primary Health Care, General Practice and Health Services Research, Department of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
5
|
Vaali K, Tuomela M, Mannerström M, Heinonen T, Tuuminen T. Toxic Indoor Air Is a Potential Risk of Causing Immuno Suppression and Morbidity—A Pilot Study. J Fungi (Basel) 2022; 8:jof8020104. [PMID: 35205859 PMCID: PMC8877819 DOI: 10.3390/jof8020104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/28/2021] [Accepted: 01/04/2022] [Indexed: 02/01/2023] Open
Abstract
We aimed to establish an etiology-based connection between the symptoms experienced by the occupants of a workplace and the presence in the building of toxic dampness microbiota. The occupants (5/6) underwent a medical examination and urine samples (2/6) were analyzed by LC-MS/MS for mycotoxins at two time-points. The magnitude of inhaled water was estimated. Building-derived bacteria and fungi were identified and assessed for toxicity. Separate cytotoxicity tests using human THP-1 macrophages were performed from the office’s indoor air water condensates. Office-derived indoor water samples (n = 4/4) were toxic to human THP-1 macrophages. Penicillium, Acremonium sensu lato, Aspergillus ochraceus group and Aspergillus section Aspergillus grew from the building material samples. These colonies were toxic in boar sperm tests (n = 11/32); four were toxic to BHK-21 cells. Mycophenolic acid, which is a potential immunosuppressant, was detected in the initial and follow-up urine samples of (2/2) office workers who did not take immunosuppressive drugs. Their urinary mycotoxin profiles differed from household and unrelated controls. Our study suggests that the presence of mycotoxins in indoor air is linked to the morbidity of the occupants. The cytotoxicity test of the indoor air condensate is a promising tool for risk assessment in moisture-damaged buildings.
Collapse
Affiliation(s)
- Kirsi Vaali
- SelexLab Oy, Kalevankatu 17 A, 00100 Helsinki, Finland
- Correspondence: ; Tel.: +358-50-550-1131
| | - Marja Tuomela
- Co-op Bionautit, Viikinkaari 9, 00790 Helsinki, Finland;
- Department of Microbiology, University of Helsinki, 00014 Helsinki, Finland
| | - Marika Mannerström
- The Finnish Centre for Alternative Methods, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33014 Tampere, Finland; (M.M.); (T.H.)
| | - Tuula Heinonen
- The Finnish Centre for Alternative Methods, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33014 Tampere, Finland; (M.M.); (T.H.)
| | - Tamara Tuuminen
- Medical Center Kruunuhaka Oy, Kaisaniemenkatu 8B a, 00100 Helsinki, Finland;
| |
Collapse
|
6
|
The Toxicity of Wiped Dust and Airborne Microbes in Individual Classrooms Increase the Risk of Teachers' Work-Related Symptoms: A Cross-Sectional Study. Pathogens 2021; 10:pathogens10111360. [PMID: 34832514 PMCID: PMC8624243 DOI: 10.3390/pathogens10111360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/06/2021] [Accepted: 10/12/2021] [Indexed: 12/23/2022] Open
Abstract
Background: The causes and pathophysiological mechanisms of building-related symptoms (BRS) remain open. Objective: We aimed to investigate the association between teachers’ individual work-related symptoms and intrinsic in vitro toxicity in classrooms. This is a further analysis of a previously published dataset. Methods: Teachers from 15 Finnish schools in Helsinki responded to the symptom survey. The boar sperm motility inhibition assay, a sensitive indicator of mitochondrial dysfunction, was used to measure the toxicity of wiped dust and cultured microbial fallout samples collected from the teachers’ classrooms. Results: 231 teachers whose classroom toxicity data had been collected responded to the questionnaire. Logistic regression analysis adjusted for age, gender, smoking, and atopy showed that classroom dust intrinsic toxicity was statistically significantly associated with the following 12 symptoms reported by teachers (adjusted ORs in parentheses): nose stuffiness (4.1), runny nose (6.9), hoarseness (6.4), globus sensation (9.0), throat mucus (7.6), throat itching (4.4), shortness of breath (12.2), dry cough (4.7), wet eyes (12.7), hypersensitivity to sound (7.9), difficulty falling asleep (7.6), and increased need for sleep (7.7). Toxicity of cultured microbes was found to be associated with nine symptoms (adjusted ORs in parentheses): headache (2.3), nose stuffiness (2.2), nose dryness (2.2), mouth dryness (2.8), hoarseness (2.2), sore throat (2.8), throat mucus (2.3), eye discharge (10.2), and increased need for sleep (3.5). Conclusions: The toxicity of classroom dust and airborne microbes in boar sperm motility inhibition assay significantly increased teachers’ risk of work-related respiratory and ocular symptoms. Potential pathophysiological mechanisms of BRS are discussed.
Collapse
|
7
|
Salin J, Ohtonen P, Syrjälä H. Teachers' work-related non-literature-known building-related symptoms are also connected to indoor toxicity: A cross-sectional study. INDOOR AIR 2021; 31:1533-1539. [PMID: 33729611 DOI: 10.1111/ina.12822] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/04/2021] [Accepted: 03/06/2021] [Indexed: 06/12/2023]
Abstract
A previous study showed that classical building-related symptoms (BRS) were related to indoor dust and microbial toxicity via boar sperm motility assay, a sensitive method for measuring mitochondrial toxicity. In this cross-sectional study, we analyzed whether teachers' most common work-related non-literature-known BRS (nBRS) were also associated with dust or microbial toxicity. Teachers from 15 schools in Finland completed a questionnaire evaluating 20 nBRS including general, eye, respiratory, hearing, sleep, and mental symptoms. Boar sperm motility assay was used to measure the toxicity of extracts from wiped dust and microbial fallout samples collected from teachers' classrooms. 231 teachers answered a questionnaire and their classroom toxicity data were recorded. A negative binomial mixed model showed that teachers' work-related nBRS were 2.9-fold (95% CI: 1.2-7.3) higher in classrooms with highly toxic dust samples compared to classrooms with non-toxic dust samples (p = 0.024). The RR of work-related nBRS was 1.8 (95% CI: 1.1-2.9) for toxic microbial samples (p = 0.022). Teachers' BRS appeared to be broader than reported in the literature, and the work-related nBRS were associated with toxic dusts and microbes in classrooms.
Collapse
Affiliation(s)
- Janne Salin
- The Departments of Infection Control, Oulu University Hospital, Oulu, Finland
| | - Pasi Ohtonen
- Division of Operative Care, Oulu University Hospital, Oulu, Finland
- Research Unit of Surgery, Anesthesia and Intensive Care, University of Oulu, Oulu, Finland
| | - Hannu Syrjälä
- The Departments of Infection Control, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
8
|
Rajkowska K, Koziróg A, Otlewska A, Piotrowska M, Atrián-Blasco E, Franco-Castillo I, Mitchell SG. Antifungal Activity of Polyoxometalate-Ionic Liquids on Historical Brick. Molecules 2020; 25:molecules25235663. [PMID: 33271794 PMCID: PMC7729500 DOI: 10.3390/molecules25235663] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/20/2020] [Accepted: 11/26/2020] [Indexed: 01/06/2023] Open
Abstract
Moulds inhabiting mineral-based materials may cause their biodeterioration, contributing to inestimable losses, especially in the case of cultural heritage objects and architectures. Fungi in mouldy buildings may also pose a threat to human health and constitute the main etiological factor in building related illnesses. In this context, research into novel compounds with antifungal activity is of high importance. The aim of this study was to evaluate the antifungal activity of polyoxometalate-ionic liquids (POM-ILs) and their use in the eradication of moulds from historical brick. In the disc diffusion assay, all the tested POM-ILs inhibited growth of a mixed culture of moulds including Engyodontium album, Cladosporium cladosporioides, Alternaria alternata and Aspergillus fumigatus. These were isolated from the surfaces of historical brick barracks at the Auschwitz II-Birkenau State Museum in Oświęcim, Poland. POM-IL coatings on historical brick samples, under model conditions, showed that two compounds demonstrated very high antifungal activity, completely limiting mould growth and development. The antifungal activity of the POM-ILs appeared to stem from their toxic effects on conidia, as evidenced by environmental scanning transmission electron microscopy observations. The results herein indicated that POM-ILs are promising disinfectant materials for use not only on historical objects, but probably also on other mineral-based materials.
Collapse
Affiliation(s)
- Katarzyna Rajkowska
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wólczańska 171/173, 90-924 Lodz, Poland; (A.K.); (A.O.); (M.P.)
- Correspondence: (K.R.); (S.G.M.)
| | - Anna Koziróg
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wólczańska 171/173, 90-924 Lodz, Poland; (A.K.); (A.O.); (M.P.)
| | - Anna Otlewska
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wólczańska 171/173, 90-924 Lodz, Poland; (A.K.); (A.O.); (M.P.)
| | - Małgorzata Piotrowska
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wólczańska 171/173, 90-924 Lodz, Poland; (A.K.); (A.O.); (M.P.)
| | - Elena Atrián-Blasco
- Instituto de Nanociencia y Materiales de Aragón (INMA), Consejo Superior de Investigaciones Científicas-Universidad de Zaragoza, 50009 Zaragoza, Spain; (E.A.-B.); (I.F.-C.)
- Center for Biomedical Research Network-Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Isabel Franco-Castillo
- Instituto de Nanociencia y Materiales de Aragón (INMA), Consejo Superior de Investigaciones Científicas-Universidad de Zaragoza, 50009 Zaragoza, Spain; (E.A.-B.); (I.F.-C.)
- Center for Biomedical Research Network-Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Scott G. Mitchell
- Instituto de Nanociencia y Materiales de Aragón (INMA), Consejo Superior de Investigaciones Científicas-Universidad de Zaragoza, 50009 Zaragoza, Spain; (E.A.-B.); (I.F.-C.)
- Center for Biomedical Research Network-Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (K.R.); (S.G.M.)
| |
Collapse
|
9
|
The Roles of Autoimmunity and Biotoxicosis in Sick Building Syndrome as a "Starting Point" for Irreversible Dampness and Mold Hypersensitivity Syndrome. Antibodies (Basel) 2020; 9:antib9020026. [PMID: 32580407 PMCID: PMC7345570 DOI: 10.3390/antib9020026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/13/2020] [Accepted: 06/19/2020] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND The terminology of "sick building syndrome" (SBS), meaning that a person may feel sick in a certain building, but when leaving the building, the symptoms will reverse, is imprecise. Many different environmental hazards may cause the feeling of sickness, such as high indoor air velocity, elevated noise, low or high humidity, vapors or dust. The Aim: To describe SBS in connection with exposure to indoor air dampness microbiota (DM). Methods: A search through Medline/Pubmed. Results and Conclusions: Chronic course of SBS may be avoided. By contrast, persistent or cumulative exposure to DM may make SBS potentially life-threatening and lead to irreversible dampness and mold hypersensitivity syndrome (DMHS). The corner feature of DMHS is acquired by dysregulation of the immune system in the direction of hypersensitivities (types I-IV) and simultaneous deprivation of immunity that manifests as increased susceptibility to infections. DMHS is a systemic low-grade inflammation and a biotoxicosis. There is already some evidence that DMHS may be linked to autoimmunity. Autoantibodies towards, e.g., myelin basic protein, myelin-associated glycoprotein, ganglioside GM1, smooth muscle cells and antinuclear autoantibodies were reported in mold-related illness. DMHS is also a mitochondropathy and endocrinopathy. The association of autoimmunity with DMHS should be confirmed through cohort studies preferably using chip-based technology.
Collapse
|
10
|
Hyvönen S, Poussa T, Lohi J, Tuuminen T. High prevalence of neurological sequelae and multiple chemical sensitivity among occupants of a Finnish police station damaged by dampness microbiota. ARCHIVES OF ENVIRONMENTAL & OCCUPATIONAL HEALTH 2020; 76:145-151. [PMID: 32544007 DOI: 10.1080/19338244.2020.1781034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Objectives: The aim of the study was to estimate the risks of different symptoms after the exposure to indoor air dampness microbiota (DM).Methods: This cross-sectional retrospective cohort-based study compared morbidity risks in DM exposed (n = 116) vs. unexposed cohort (n = 45). Gender-adjusted log-binomial regression models were used to calculate risk ratios (RR). The analysis of indoor dust toxicity was based on the inhibition of the motion of boar spermatozoa in vitro. Conventional microbiological work-up was performed in an accredited laboratory.Results: Compared to the unexposed cohort, the study cohort had statistically significant (p < 0.05) risks to develop symptoms of the central nervous system RR = 2.85 (95% CI 1.19-6.85), fatigue RR = 2.82 (1.55-5.11), Multiple Chemical Sensitivity (MCS) RR = 2.81 (1.06-7.46), cardiac arrhythmia RR = 9.58 (1.33-68.81) and respiratory symptoms RR = 2.66 (1.58-4.48).Conclusions: The results of this study corroborate our earlier findings that toxic indoor air may cause a plethora of neurological symptoms. Higher than in the control group the prevalence of MCS associated with the exposure to DM. Bad indoor air is therefore not only a risk for respiratory problems and asthma but should be viewed broader as a systemic biotoxicosis. Therefore, psychologization of this disorder without mentioning the underlying insulting mechanisms should be discouraged.
Collapse
Affiliation(s)
| | | | - Jouni Lohi
- Department of Pathology, Lapland Central Hospital, Rovaniemi, Finland
| | | |
Collapse
|
11
|
Veenaas C, Ripszam M, Glas B, Liljelind I, Claeson AS, Haglund P. Differences in chemical composition of indoor air in rooms associated/not associated with building related symptoms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137444. [PMID: 32325564 DOI: 10.1016/j.scitotenv.2020.137444] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 06/11/2023]
Abstract
Building related health effects or symptoms (BRS), known also as sick-building syndrome (SBS), are a phenomenon that is not well understood. In this study, air samples from 51 rooms associated with BRS and 34 control rooms were collected on multi-sorbent tubes and analyzed by a non-target approach using comprehensive two-dimensional gas chromatography and high-resolution mass spectrometry techniques. The large amount of data gathered was analyzed using multivariate statistics (principle component analysis (PCA) and partial least squares (PLS)). This new analysis approach revealed that in rooms where people experienced BRS, petrochemicals and chemicals emitted from plastics were abundant, whereas in rooms where people did not experience BRS, flavor and fragrance compounds were abundant. Among the petrochemicals benzene and 2-butoxyethanol were found in higher levels in rooms where people experienced BRS. The levels of limonene were sometimes in the range of reported odor thresholds, and similarly 3-carene and beta-myrcene were found in higher concentrations in indoor air of rooms where people did not experience BRS. It cannot be ruled out that these compounds may have influenced the perceived air quality. However, the overall variability in air concentrations was large and it was not possible to accurately predict if the air in a particular room could cause BRS or not.
Collapse
Affiliation(s)
- Cathrin Veenaas
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden.
| | - Matyas Ripszam
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden
| | - Bo Glas
- Department of Public Health and Clinical Medicine, Umeå University, 90187 Umeå, Sweden
| | - Ingrid Liljelind
- Department of Public Health and Clinical Medicine, Umeå University, 90187 Umeå, Sweden
| | | | - Peter Haglund
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden
| |
Collapse
|
12
|
Tuuminen T, Andersson M, Hyvönen S, Lohi J, Vaali K. Indoor air nontoxicity should be proven with special techniques prior claiming that it may cause a variety of mental disorders. Int J Hyg Environ Health 2020; 229:113545. [PMID: 32409255 DOI: 10.1016/j.ijheh.2020.113545] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 04/16/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Tamara Tuuminen
- Kruunuhaka Medical Center, Kaisanimenkatu 1Ba, 00180, Helsinki, Finland.
| | - Maria Andersson
- University of Helsinki, Biokeskus 1 Viikinkaari 9, Helsinki, 00140, Finland
| | | | - Jouni Lohi
- Department of Pathology, Lapland Central Hospital, Rovaniemi, Finland
| | | |
Collapse
|
13
|
Asthma Case Cluster during Renovation of a Water-Damaged and Toxic Building. Microorganisms 2019; 7:microorganisms7120642. [PMID: 31816917 PMCID: PMC6956061 DOI: 10.3390/microorganisms7120642] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 11/28/2019] [Accepted: 11/30/2019] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND An association between fungal exposure at work and asthma onset has been shown, but a causal relationship between them has not beTanle en established. METHODS The study describes an asthma cluster in workers in a building under renovation. Before renovation the work site had significant water damage, technical deficiencies, and ventilation problems. Worker protection was insufficient during renovation. In the building, toxicity was determined from dust as well as from cultured dust. Toxicity analysis was conducted in vitro using the boar spermatozoa motility assay. RESULTS During the 8-month renovation period, among 290 workers, 21 (7.2%) experienced new-onset asthma (9 women, 42.9%; 12 men, 57.1%; median age, 43 years (range, 30-60 years)). At the renovation site, they had been exposed to areas where remarkable toxicity was demonstrated in vitro. One year later, 13 (61.9%) of them still had moderate disease, and three (14.8%) had severe disease. Most patients had a poor response to inhaled corticosteroids. CONCLUSIONS This study documents a clear temporal association between occupational exposure during renovation of a water-damaged building and a cluster of 21 new occupational asthma cases. In addition, dust and cultured dust from their work spaces showed remarkable toxicity based on inhibition of boar sperm motility in vitro.
Collapse
|
14
|
Abstract
Inflammation is a common and essential event in the pathogenesis of diverse diseases. Decades of research has converged on an understanding that all combustion-derived particulate matter (PM) is inflammatory to some extent in the lungs and also systemically, substantially explaining a significant portion of the massive cardiopulmonary disease burden associated with these exposures. In general, this means that efforts to do the following can all be beneficial: reduce particulates at the source, decrease the inflammatory potential of PM output, and, where PM inhalation is unavoidable, administer anti-inflammatory treatment. A range of research, including basic illumination of inflammatory pathways, assessment of disease burden in large cohorts, tailored treatment trials, and epidemiologic, animal, and in vitro studies, is highlighted in this review. However, meaningful translation of this research to decrease the burden of disease and deliver a clear and cohesive message to guide daily clinical practice remains rudimentary. Ongoing efforts to better understand substantial differences in the concentration and type of PM to which the global community is exposed and then distill how that influences inflammation promises to have real-world benefit. This review addresses this complex topic in 3 sections, including ambient PM (typically associated with ground-level transportation), wildfire-induced PM, and PM from indoor biomass burning. Recognizing the overlap between these domains, we also describe differences and suggest future directions to better inform clinical practice and public health.
Collapse
Affiliation(s)
- Weidong Wu
- Department of Occupational and Environmental Health, School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Chris Carlsten
- Air Pollution Exposure Laboratory, Department of Medicine and School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
15
|
Kharechkina ES, Nikiforova AB, Kruglov AG. Pyridine nucleotides regulate the superoxide anion flash upon permeabilization of mitochondrial membranes: An MCLA-based study. Free Radic Biol Med 2018; 124:473-483. [PMID: 29966697 DOI: 10.1016/j.freeradbiomed.2018.06.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/25/2018] [Accepted: 06/28/2018] [Indexed: 12/11/2022]
Abstract
The permeabilization of mitochondrial membranes via permeability transition pore opening or by the pore-forming peptide alamethicin causes a flash of superoxide anion (SA) and hydrogen peroxide production and the inhibition of matrix aconitase. It was shown using the SA probe 3,7-dihydro-2-methyl-6-(4-methoxyphenyl)imidazol[1,2-a]pyrazine-3-one (MCLA) that the substrates of NAD-dependent dehydrogenases, inhibitors of the respiratory chain, and NAD(P)H at millimolar concentrations suppressed or delayed SA flashes. In the presence of added NADH and NADPH, SA flashes were observed only after considerable oxidation of pyridine nucleotides. The production of SA was maximal at NADPH and NADH redox potentials from -315 to -295 mV and from -325 to -270 mV, respectively, depending on NAD(P)H concentration. SA generation supported by NADPH was severalfold greater than that supported by NADH. In intact mitochondria, NADPH- and NADH-dependent SA generation was negligible. Respiratory substrates at physiological or lower concentrations were incapable of suppressing the NADPH-supported SA flash. These data indicate that, in conditions close to pathophysiological, matrix NADPH oxidoreductase(s), presumably, an adrenodoxin reductase in complex with adrenodoxin, can essentially contribute to SA flashes associated with transient or irreversible permeability transition pore opening or membrane permeabilization by another mechanism.
Collapse
Affiliation(s)
- Ekaterina S Kharechkina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - Anna B Nikiforova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - Alexey G Kruglov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia.
| |
Collapse
|
16
|
Tuuminen T, Rinne K. Response: Commentary: Severe Sequelae to Mold-Related Illness as Demonstrated in Two Finnish Cohorts. Front Immunol 2018; 9:1220. [PMID: 29942302 PMCID: PMC6004783 DOI: 10.3389/fimmu.2018.01220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/15/2018] [Indexed: 11/29/2022] Open
Affiliation(s)
- Tamara Tuuminen
- Medicum, Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
17
|
Vilén LK, Atosuo J, Lilius EM. The Response of Phagocytes to Indoor Air Toxicity. Front Immunol 2017; 8:887. [PMID: 28804487 PMCID: PMC5532390 DOI: 10.3389/fimmu.2017.00887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 07/11/2017] [Indexed: 11/25/2022] Open
Abstract
This perspective presents a viewpoint on potential methods assessing toxicity of indoor air. Until recently, the major techniques to document moldy environment have been microbial isolation using conventional culture techniques for fungi and bacteria as well as in some instances polymerase chain reaction to detect microbial genetic components. However, it has become increasingly evident that bacterial and fungal toxins, their metabolic products, and volatile organic substances emitted from corrupted constructions are the major health risks. Here, we illustrate how phagocytes, especially neutrophils can be used as a toxicological probe. Neutrophils can be used either in vitro as probe cells, directly exposed to the toxic agent studied, or they can act as in vivo indicators of the whole biological system exposed to the agent. There are two convenient methods assessing the responses, one is to measure chemiluminescence emission from activated phagocytes and the other is to measure quantitatively by flow cytometry the expression of complement and immunoglobulin receptors on the phagocyte surface.
Collapse
Affiliation(s)
- Liisa K Vilén
- Department of Biochemistry, University of Turku, Turku, Finland
| | - Janne Atosuo
- Department of Biochemistry, University of Turku, Turku, Finland
| | | |
Collapse
|