1
|
Chen Y, Guo C, Chung MK, Yi Q, Wang X, Wang Y, Jiang B, Liu Y, Lan M, Lin L, Cai L. The Associations of Prenatal Exposure to Fine Particulate Matter and Its Chemical Components with Allergic Rhinitis in Children and the Modification Effect of Polyunsaturated Fatty Acids: A Birth Cohort Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:47010. [PMID: 38630604 PMCID: PMC11060513 DOI: 10.1289/ehp13524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Polyunsaturated fatty acids (PUFAs) have been shown to protect against fine particulate matter < 2.5 μ m in aerodynamic diameter (PM 2.5 )-induced hazards. However, limited evidence is available for respiratory health, particularly in pregnant women and their offspring. OBJECTIVES We aimed to investigate the association of prenatal exposure to PM 2.5 and its chemical components with allergic rhinitis (AR) in children and explore effect modification by maternal erythrocyte PUFAs. METHODS This prospective birth cohort study involved 657 mother-child pairs from Guangzhou, China. Prenatal exposure to residential PM 2.5 mass and its components [black carbon (BC), organic matter (OM), sulfate (SO 4 2 - ), nitrate (NO 3 - ), and ammonium (NH 4 + )] were estimated by an established spatiotemporal model. Maternal erythrocyte PUFAs during pregnancy were measured using gas chromatography. The diagnosis of AR and report of AR symptoms in children were assessed up to 2 years of age. We used Cox regression with the quantile-based g-computation approach to assess the individual and joint effects of PM 2.5 components and examine the modification effects of maternal PUFA levels. RESULTS Approximately 5.33 % and 8.07% of children had AR and related symptoms, respectively. The average concentration of prenatal PM 2.5 was 35.50 ± 5.31 μ g / m 3 . PM 2.5 was positively associated with the risk of developing AR [hazard ratio ( HR ) = 1.85 ; 95% confidence interval (CI): 1.16, 2.96 per 5 μ g / m 3 ] and its symptoms (HR = 1.79 ; 95% CI: 1.22, 2.62 per 5 μ g / m 3 ) after adjustment for confounders. Similar associations were observed between individual PM 2.5 components and AR outcomes. Each quintile change in a mixture of components was associated with an adjusted HR of 3.73 (95% CI: 1.80, 7.73) and 2.69 (95% CI: 1.55, 4.67) for AR and AR symptoms, with BC accounting for the largest contribution. Higher levels of n-3 docosapentaenoic acid and lower levels of n-6 linoleic acid showed alleviating effects on AR symptoms risk associated with exposure to PM 2.5 and its components. CONCLUSION Prenatal exposure to PM 2.5 and its chemical components, particularly BC, was associated with AR/symptoms in early childhood. We highlight that PUFA biomarkers could modify the adverse effects of PM 2.5 on respiratory allergy. https://doi.org/10.1289/EHP13524.
Collapse
Affiliation(s)
- Yujing Chen
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Cuihua Guo
- Department of Children Health Care, Dongguan Children’s Hospital, Dongguan, Guangdong, China
| | - Ming Kei Chung
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
- Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Quanying Yi
- Department of Children Health Care, Dongguan Children’s Hospital, Dongguan, Guangdong, China
| | - Xin Wang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou, Guangdong, China
| | - Yuxuan Wang
- Global Health Research Center, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Bibo Jiang
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yu Liu
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Minyan Lan
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lizi Lin
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Li Cai
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
2
|
Wei S, Liao J, Xue T, Yu K, Fu X, Wang R, Dang X, Zhang C, Qiao H, Jiang S, Xiao J, Dong L, Yin J, Yan X, Jia W, Zhang G, Chen R, Zhou B, Song B, Li J, Yin M, Zhang L, Xie L, Dong S, Sun J, Gao P, Miao B, Li W, He L, Ning Q, Zhao L, Liu H, Cao H, Wang G. Ambient fine particulate matter and allergic symptoms in the middle-aged and elderly population: results from the PIFCOPD study. Respir Res 2023; 24:139. [PMID: 37231445 DOI: 10.1186/s12931-023-02433-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND The associations between short- and long-term exposure to ambient fine particulate matter with an aerodynamic diameter ≤ 2.5 µm (PM2.5) and allergic symptoms in middle-aged and elderly populations remain unclear, particularly in China, where most cities have severe air pollution. METHODS Participants (n = 10,142; age = 40-75 years) were recruited from ten regions in China from 2018 to 2021 for the Predictive Value of Inflammatory Biomarkers and Forced Expiratory Volume in 1 s (FEV1) for Chronic Obstructive Pulmonary Disease (PIFCOPD) study. Short-term (lag0 and lag0-7 day) and long-term (1-, 3- and 5-year) PM2.5 concentrations at residences were extracted from the air pollutant database known as Tracking Air Pollution (TAP) in China. Multivariate logistic regression models were used to estimate associations for short- and long-term PM2.5 exposure concentrations and long-term exposure models were additionally adjusted for short-term deviations. RESULTS A 10 µg/m3 increase in PM2.5 on the day the allergic symptoms questionnaire was administered (lag0 day) was associated with higher odds of allergic nasal (1.09, 95% CI 1.05, 1.12) and eye symptoms (1.08, 95% CI 1.05, 1.11), worsening dyspnea caused by allergens (1.06, 95% CI 1.02, 1.10), and ≥ 2 allergic symptoms (1.07, 95% CI 1.03, 1.11), which was similar in the lag0-7 day concentrations. A 10 µg/m3 increase in the 1-year average PM2.5 concentration was associated with an increase of 23% for allergic nasal symptoms, 22% for eye symptoms, 20% for worsening dyspnea caused by allergens, and 21% for ≥ 2 allergic symptoms, similar to the 3- and 5-year average PM2.5 concentrations. These associations between long-term PM2.5 concentration and allergic symptoms were generally unchanged after adjustment for short-term deviations. CONCLUSIONS Short- and long-term exposure to ambient PM2.5 was associated with an increased risk of allergic nasal and eye symptoms, worsening dyspnea caused by allergens, and ≥ 2 allergic symptoms. TRIAL REGISTRATION Clinical trial ID: NCT03532893 (29 Mar 2018).
Collapse
Affiliation(s)
- Shanshan Wei
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, No.8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Jiping Liao
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, No.8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Tao Xue
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Kunyao Yu
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, No.8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Xiuhua Fu
- Division of Pulmonary and Critical Care Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Ruiying Wang
- Department of Pulmonary and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaomin Dang
- Respiratory and Critical Care Medicine, Xi'an Jiaotong University Medical College First Affiliated Hospital, Xi'an, Shaanxi, China
| | - Cheng Zhang
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, No.8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Hua Qiao
- The First Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Shujuan Jiang
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jianhong Xiao
- Mindong Hospital of Ningde City, Ningde, Fujian, China
| | - Lixia Dong
- Tianjin Medical University General Hospital, Tianjin, China
| | - Jinzhi Yin
- The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Xixin Yan
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Respiratory Critical Care, Shijiazhuang, Hebei, China
| | - Weihua Jia
- General Hospital of Taiyuan Iron & Steel (Group) Co., LTD, Taiyuan, Shanxi, China
| | - Guifang Zhang
- Jinyuan Community Health Service Center, Taiyuan, Shanxi, China
| | - Rui Chen
- Division of Pulmonary and Critical Care Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Bo Zhou
- Respiratory and Critical Care Medicine, Xi'an Jiaotong University Medical College First Affiliated Hospital, Xi'an, Shaanxi, China
| | - Beibei Song
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Respiratory Critical Care, Shijiazhuang, Hebei, China
| | - Jing Li
- Department of Pulmonary and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Mengyu Yin
- Tianjin Medical University General Hospital, Tianjin, China
| | - Lina Zhang
- Jining First People's Hospital, Jining, Shandong, China
| | - Liping Xie
- General Hospital of Taiyuan Iron & Steel (Group) Co., LTD, Taiyuan, Shanxi, China
| | - Shaochen Dong
- The First Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Jian Sun
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Peng Gao
- The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Bifang Miao
- Mindong Hospital of Ningde City, Ningde, Fujian, China
| | - Wei Li
- The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Lan He
- Division of Pulmonary and Critical Care Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Qian Ning
- Respiratory and Critical Care Medicine, Xi'an Jiaotong University Medical College First Affiliated Hospital, Xi'an, Shaanxi, China
| | - Limin Zhao
- Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Hengyi Liu
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Han Cao
- Department of Biostatistics, Peking University First Hospital, Beijing, China
| | - Guangfa Wang
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, No.8 Xishiku Street, Xicheng District, Beijing, 100034, China.
| |
Collapse
|
3
|
Galveias A, Ribeiro H, Guimarães F, Costa MJ, Rodrigues P, Costa AR, Abreu I, Antunes CM. Differential Quercus spp. pollen-particulate matter interaction is dependent on geographical areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:154892. [PMID: 35378190 DOI: 10.1016/j.scitotenv.2022.154892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Particulate matter (PM) and pollen interaction, either airborne or at the respiratory mucosa needs further clarification, as allergic reaction intensification can be related to the PM physical characteristics and toxicity. This study aimed to investigate the physical-chemical properties of PM that can adhere to the pollen wall during its transport or inhalation, using Quercus spp. as a model, in three Portuguese cities with different geographical locations, meteorological influence and urbanization levels. Possible sources were evaluated through air masses trajectory analysis using the HYSPLIT model and correlation with meteorological factors. The sampling was performed using a 7-days Hirst-type volumetric sampler, and the pollen grains were observed using a Field Emission Electron Probe Microanalyser for PM analysis. A secondary electron image of each pollen grain was taken, to determine the adhered particles characteristics and energy dispersive x-ray spectroscopy (EDS) spectra were obtained for individual particles. A total of 484 pollen grains was observed, with 7683 particles counted and 1914 EDS spectra analyzed. The particle's equivalent diameter ranged from 0.3-16 μm, with most having a diameter < 3 μm. For the three cities, there were significant differences in the number of particles per pollen and the % area occupied by the particles. Particles adhered were mainly Si-rich, but variations in other dominant groups were observed. For Évora and Guarda, Ca-rich, SO-rich were second and third more representative, while Porto were Organic and Cl-rich. Metals&Oxides were found in all cities with the highest number in Porto. P-rich particles were only found in Évora. Sea salt particles were observed in Évora, coincide with air mass trajectories possible carrying them from the Mediterranean Sea. In conclusion, the PM physical characteristics are similar between the studied cities, however, the dominant chemical composition is different, certainly impacting the exposome influence and pollen-allergy intensification towards the same pollen type and concentration.
Collapse
Affiliation(s)
- Ana Galveias
- Institute of Earth Sciences (ICT), Department of Medical and Health Sciences, School of Health and Human Development, University of Évora, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal.
| | - Helena Ribeiro
- Institute of Earth Sciences (ICT), Department of Geosciences, Environment and Spatial Planning, Faculty of Sciences, University of Porto, Rua Do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Fernanda Guimarães
- Unit of Science and Mineral Technology, National Laboratory of Energy and Geology (LNEG), Portugal
| | - Maria João Costa
- Institute of Earth Sciences (ICT), Earth remote Sensing Laboratory (EaRSLab), Department of Physical, School of Sciences and Technology, University of Évora, Rua Romão Ramalho, 59, 7000-671, Portugal
| | - Pedro Rodrigues
- School of Technology and Management, Polytechnic Institute of Guarda, Av. Dr. Francisco Sá Carneiro, 50, 6300-559 Guarda, Portugal
| | - Ana R Costa
- Institute of Earth Sciences (ICT), Department of Medical and Health Sciences, School of Health and Human Development, University of Évora, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal
| | - Ilda Abreu
- Institute of Earth Sciences (ICT), Department of Biology, Faculty of Sciences, University of Porto, Rua Do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Célia M Antunes
- Institute of Earth Sciences (ICT), Department of Medical and Health Sciences, School of Health and Human Development, University of Évora, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal
| |
Collapse
|
4
|
Chen T, Norback D, Deng Q, Huang C, Qian H, Zhang X, Sun Y, Wang T, Zhang Y, Li B, Kan H, Wei L, Liu C, Xu Y, Zhao Z. Maternal exposure to PM 2.5/BC during pregnancy predisposes children to allergic rhinitis which varies by regions and exclusive breastfeeding. ENVIRONMENT INTERNATIONAL 2022; 165:107315. [PMID: 35635966 DOI: 10.1016/j.envint.2022.107315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/02/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Increasing prevalence of childhood allergic rhinitis(AR) needs a deeper understanding on the potential adverse effects of early life exposure to air pollution. OBJECTIVES The main aim was to evaluate the effects of maternal exposure to PM2.5 and chemical constituents during pregnancy on preschool children's AR, and further to explore the modification effects of regions and exclusive breastfeeding. METHODS A multi-center population-based study was performed in 6 cities from 3 regions of China in 2011-2012. Maternal exposure to ambient PM2.5 and main chemical constituents(BC, OM, SO42-, NO3-, NH4+) during pregnancy was assessed and a longitudinal prospective analysis was applied on preschool children's AR. The modification effects of regions and exclusive breastfeeding were investigated. RESULTS A total of 8.8% and 9.8% of children reported doctor-diagnosed allergic rhinitis(DDAR) and current hay fever, respectively, and 48.6% had less than 6 months of exclusive breastfeeding. The means of PM2.5 during pregnancy were 52.7 μg/m3, 70.3 μg/m3 and 76.4 μg/m3 in the east, north and central south of China, respectively. Multilevel log-binomial model regression showed that each interquartile range(IQR) increase of PM2.5 during pregnancy was associated with an average increase in prevalence ratio (PR) of DDAR by 1.43(95% confidence interval(CI): 1.11, 1.84) and current hay fever by 1.79(95% CI: 1.26, 2.55), respectively. Among chemical constituents, black carbon (BC) had the strongest associations. Across 3 regions, the eastern cities had the highest associations, followed by those in the central south and the north. For those equal to or longer than 6 months of exclusive breastfeeding, the associations were significantly reduced. CONCLUSIONS Children in east of China had the highest risks of developing AR per unit increase of maternal exposure to PM2.5 during pregnancy, especially BC constituent. Remarkable decline was found in association with an increase in breastfeeding for ≥6 months, in particular in east of China.
Collapse
Affiliation(s)
- Tianyi Chen
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Dan Norback
- Department of Medical Sciences, Uppsala University, Uppsala SE-751, Sweden
| | - Qihong Deng
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Chen Huang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hua Qian
- School of Energy & Environment, Southeast University, Nanjing 210096, China
| | - Xin Zhang
- Research Center for Environmental Science and Engineering, Shanxi University, Taiyuan 030006, China
| | - Yuexia Sun
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin University, Tianjin 300072, China
| | - Tingting Wang
- School of Nursing & Health Management, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Yinping Zhang
- Department of Building Science, Tsinghua University, Beijing 100084, China
| | - Baizhan Li
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Chongqing University, Chongqing 400030, China
| | - Haidong Kan
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety of the Ministry of Education, NHC Key Laboratory of Health Technology Assessment (Fudan University), Shanghai Typhoon Institute/CMA, Shanghai Key Laboratory of Meteorology and Health, Shanghai 200030, China; IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai 200438, China; WMO/IGAC MAP-AQ Asian Office Shanghai, Fudan University, Shanghai 200438, China
| | - Lan Wei
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Cong Liu
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China.
| | - Yanyi Xu
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety of the Ministry of Education, NHC Key Laboratory of Health Technology Assessment (Fudan University), Shanghai Typhoon Institute/CMA, Shanghai Key Laboratory of Meteorology and Health, Shanghai 200030, China; IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai 200438, China; WMO/IGAC MAP-AQ Asian Office Shanghai, Fudan University, Shanghai 200438, China.
| | - Zhuohui Zhao
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety of the Ministry of Education, NHC Key Laboratory of Health Technology Assessment (Fudan University), Shanghai Typhoon Institute/CMA, Shanghai Key Laboratory of Meteorology and Health, Shanghai 200030, China; IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai 200438, China; WMO/IGAC MAP-AQ Asian Office Shanghai, Fudan University, Shanghai 200438, China.
| |
Collapse
|
5
|
Ziemianin M, Waga J, Czarnobilska E, Myszkowska D. Changes in qualitative and quantitative traits of birch (Betula pendula) pollen allergenic proteins in relation to the pollution contamination. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:39952-39965. [PMID: 33765259 PMCID: PMC8310481 DOI: 10.1007/s11356-021-13483-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/11/2021] [Indexed: 05/17/2023]
Abstract
Birch (Betula pendula) pollen causes inhalant allergy in about 20% of human population in Europe, most of which is sensitive to the main birch allergen, Bet v1. The aim of the study was to find out (i) whether and how the analysed birch individuals differ in regard to composition of individual subunits of pollen proteins and to protein content in these subunits; (ii) whether the level of particulate matter relates to concentration of Bet v1 allergen. Study was performed in Southern Poland, in 2017-2019. Pollen material was collected at 20 sites, of highly or less polluted areas. Protein composition was analysed by SDS-PAGE, while the concentration of Bet v1 was evaluated by ELISA. The obtained results were estimated at the background of the particulate matter (PM10) level and the birch pollen seasons in Kraków. The electrophoregrams of pollen samples collected at different sites showed huge differences in staining intensities of individual protein subunits, also among important birch allergens: Bet v1, Bet v2, Bet v6 and Bet v7. The level of Bet v1 was significantly higher in the pollen samples collected at the more polluted sites. While the birch pollen allergenic potential is determined, the both pollen exposure and the content of the main allergenic components should be considered, as factors causing immunological response and clinical symptoms manifestation in sensitive individuals.
Collapse
Affiliation(s)
- Monika Ziemianin
- Department of Clinical and Environmental Allergology, Jagiellonian University Medical College, Botaniczna 3, 31-503, Kraków, Poland
| | - Jacek Waga
- Department of Plant Breeding, Physiology, and Seed Science, University of Agriculture in Kraków, Podłużna 3, 30-239, Kraków, Poland
| | - Ewa Czarnobilska
- Department of Clinical and Environmental Allergology, Jagiellonian University Medical College, Botaniczna 3, 31-503, Kraków, Poland
| | - Dorota Myszkowska
- Department of Clinical and Environmental Allergology, Jagiellonian University Medical College, Botaniczna 3, 31-503, Kraków, Poland.
| |
Collapse
|
6
|
Lam HCY, Jarvis D, Fuertes E. Interactive effects of allergens and air pollution on respiratory health: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143924. [PMID: 33310575 PMCID: PMC7812370 DOI: 10.1016/j.scitotenv.2020.143924] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/09/2020] [Accepted: 11/16/2020] [Indexed: 05/28/2023]
Abstract
BACKGROUND Studies have demonstrated an adverse role of outdoor allergens on respiratory symptoms. It is unknown whether this effect is independent or synergistic of outdoor air pollutants. METHODS We systematically reviewed all epidemiological studies that examined interaction effects between counts of outdoor airborne allergens (pollen, fungal spores) and air pollutants, on any respiratory health outcome in children and adults. We searched the MEDLINE, EMBASE and Scopus databases. Each study was summarized qualitatively and assessed for quality and risk of bias (International Prospective Register for Systematic Reviews, registration number CRD42020162571). RESULTS Thirty-five studies were identified (15 timeseries, eight case-crossovers, 11 panels and one cohort study), of which 12 reported a significant statistical interaction between an allergen and air pollutant. Eight interactions were related to asthma outcomes, including one on lung function measures and wheeze, three to medical consultations for pollinosis and one to allergic symptoms (nasal, ocular or bronchial). There was no consensus as to which allergen or air pollutant is more likely to interact. No study investigated whether interactions are stronger in atopic individuals. CONCLUSION Despite strong evidence from small experimental studies in humans, only a third of studies identified significant allergen-pollutant interactions using common epidemiological study designs. Exposure misclassification, failure to examine subgroups at risk, inadequate statistical power or absence of population-level effects are possible explanations.
Collapse
Affiliation(s)
- Holly C Y Lam
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; MRC Centre for Environment & Health, Imperial College, London, United Kingdom.
| | - Deborah Jarvis
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; MRC Centre for Environment & Health, Imperial College, London, United Kingdom.
| | - Elaine Fuertes
- National Heart and Lung Institute, Imperial College London, London, United Kingdom.
| |
Collapse
|
7
|
Bagheri O, Moeltner K, Yang W. Respiratory illness, hospital visits, and health costs: Is it air pollution or pollen? ENVIRONMENTAL RESEARCH 2020; 187:109572. [PMID: 32442787 DOI: 10.1016/j.envres.2020.109572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Both air pollution and airborne pollen can cause respiratory health problems. Since both are often jointly present in ambient air, it is important to control for one while estimating the effect of the other when considering pollution-abating policies. To date only a limited number of studies have considered the health effects of both irritants jointly for a general population, and for a sufficiently long time period to allow for variation in seasonal concentrations of both components. The primary goal of this study is to determine the causal impact of fine particulate matter (PM2.5) on hospital visits and related treatment costs, while controlling for potentially confounding pollen effects. Our study area is the metropolitan hub of Reno/Sparks in Northern Nevada. METHODS Taking advantage of a rare sample of daily pollen counts over a prolonged period of time (2009-2015), we model the effects of PM2.5 and pollen on respiratory-related hospital admissions for the population at large, plus specific age groups. Pollen data are provided by a local allergy clinic. Data on PM2.5 and other air pollutants are obtained from the U.S. Environmental Protection Agency's air quality data web site. We collect daily meteorological data from the National Centers for Environmental Information's data repository. Data on hospital admissions are given by the Nevada Center for Surveys, Evaluations, and Statistics. Our econometric approach centers on a fully robust count data (Poisson) model, estimated via Quasi-Maximum Likelihood. RESULTS We find that for our sample PM2.5 effects are largely robust to the inclusion of both pollen counts and temporal indicators. In contrast, pollen effects vanish when time fixed effects are added, pointing at their correlation with unobserved temporal confounders. At the same time, model fit improves with the inclusion of temporal indicators. Based on our preferred specification, we find a significant PM2.5 effect of approximately 0.5% additional hospital visits per day due to a one μg/m3 increase in PM2.5. This translates into expected augmented treatment costs of $2700 per day for the same unit-change in PM2.5. These figures can mount quickly when more pronounced and/or longer episodes of particulate matter pollution are considered, perhaps due to wildfire smoke. For instance, the expected increase in patients and costs due to a month-long 10-unit-jump of PM2.5 over the long-run annual average would amount to an extra 70 patients and approximately $680,000 in additional treatment costs.
Collapse
Affiliation(s)
- Omid Bagheri
- Department of Economics, Kent State University, Ohio, USA.
| | - Klaus Moeltner
- Department of Agricultural and Applied Economics, Virginia Tech, USA.
| | - Wei Yang
- Nevada Center for Surveys, Evaluation and Statistics, School of Community Health Sciences, University of Nevada, Reno, USA.
| |
Collapse
|
8
|
Joubert AI, Geppert M, Johnson L, Mills-Goodlet R, Michelini S, Korotchenko E, Duschl A, Weiss R, Horejs-Höck J, Himly M. Mechanisms of Particles in Sensitization, Effector Function and Therapy of Allergic Disease. Front Immunol 2020; 11:1334. [PMID: 32714326 PMCID: PMC7344151 DOI: 10.3389/fimmu.2020.01334] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 05/26/2020] [Indexed: 12/15/2022] Open
Abstract
Humans have always been in contact with natural airborne particles from many sources including biologic particulate matter (PM) which can exhibit allergenic properties. With industrialization, anthropogenic and combustion-derived particles have become a major fraction. Currently, an ever-growing number of diverse and innovative materials containing engineered nanoparticles (NPs) are being developed with great expectations in technology and medicine. Nanomaterials have entered everyday products including cosmetics, textiles, electronics, sports equipment, as well as food, and food packaging. As part of natural evolution humans have adapted to the exposure to particulate matter, aiming to protect the individual's integrity and health. At the respiratory barrier, complications can arise, when allergic sensitization and pulmonary diseases occur in response to particle exposure. Particulate matter in the form of plant pollen, dust mites feces, animal dander, but also aerosols arising from industrial processes in occupational settings including diverse mixtures thereof can exert such effects. This review article gives an overview of the allergic immune response and addresses specifically the mechanisms of particulates in the context of allergic sensitization, effector function and therapy. In regard of the first theme (i), an overview on exposure to particulates and the functionalities of the relevant immune cells involved in allergic sensitization as well as their interactions in innate and adaptive responses are described. As relevant for human disease, we aim to outline (ii) the potential effector mechanisms that lead to the aggravation of an ongoing immune deviation (such as asthma, chronic obstructive pulmonary disease, etc.) by inhaled particulates, including NPs. Even though adverse effects can be exerted by (nano)particles, leading to allergic sensitization, and the exacerbation of allergic symptoms, promising potential has been shown for their use in (iii) therapeutic approaches of allergic disease, for example as adjuvants. Hence, allergen-specific immunotherapy (AIT) is introduced and the role of adjuvants such as alum as well as the current understanding of their mechanisms of action is reviewed. Finally, future prospects of nanomedicines in allergy treatment are described, which involve modern platform technologies combining immunomodulatory effects at several (immuno-)functional levels.
Collapse
Affiliation(s)
- Anna I Joubert
- Division of Allergy and Immunology, Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Mark Geppert
- Division of Allergy and Immunology, Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Litty Johnson
- Division of Allergy and Immunology, Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Robert Mills-Goodlet
- Division of Allergy and Immunology, Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Sara Michelini
- Division of Allergy and Immunology, Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Evgeniia Korotchenko
- Division of Allergy and Immunology, Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Albert Duschl
- Division of Allergy and Immunology, Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Richard Weiss
- Division of Allergy and Immunology, Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Jutta Horejs-Höck
- Division of Allergy and Immunology, Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Martin Himly
- Division of Allergy and Immunology, Department of Biosciences, University of Salzburg, Salzburg, Austria
| |
Collapse
|
9
|
Sugiyama T, Ueda K, Seposo XT, Nakashima A, Kinoshita M, Matsumoto H, Ikemori F, Honda A, Takano H, Michikawa T, Nitta H. Health effects of PM 2.5 sources on children's allergic and respiratory symptoms in Fukuoka, Japan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 709:136023. [PMID: 31884280 DOI: 10.1016/j.scitotenv.2019.136023] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/24/2019] [Accepted: 12/07/2019] [Indexed: 04/14/2023]
Abstract
Exposure to fine particulate matter (PM2.5) is a potential aggravating factor for respiratory and allergic diseases. However, which PM2.5 sources are associated with such diseases remains unclear. This study aimed to investigate the association of PM2.5 sources with allergic and respiratory symptoms in schoolchildren. PM2.5 samples were collected in Fukuoka during the spring in 2014 and 2015. Asian dust was observed in 2014. Ion components, elemental components, and organic components were analyzed. Positive matrix factorization (PMF) was conducted to calculate PM2.5 concentrations from each source. Mixed logistic regression analysis with a random intercept for each schoolchild was performed to evaluate the association of components and sources with symptoms. Among 2317 schoolchildren, the mean prevalence was 28.9%, 23.6%, 11.2%, and 11.4% for lower respiratory, nasal, ocular, and skin symptoms, respectively. PMF identified the following six PM2.5 sources "Secondary sulfate and coal combustion", "Secondary nitrate", "Heavy oil combustion", "Sea salt", "Soil" and "Traffic emission". An interquartile range of PM2.5 mass was associated with nasal (Odds ratios 1.08, 95% confidence interval [1.03, 1.13]), ocular (1.10, [1.04, 1.16]), and skin symptoms (1.13, [1.06, 1.20]). Among the source factors, "Heavy oil combustion" was significantly associated with nasal symptom (1.11, [1.05, 1.18]) while "Sea salt" was associated with nasal (1.06, [1.02, 1.11]) and skin (1.073, [1.01, 1.14]) symptoms. We found "Soil", which might be affected by Asian dust, was associated with ocular (1.07, [1.03, 1.10]) and skin (1.05, [1.01, 1.08]) symptoms. Further studies in other seasons or places are needed to clarify the influence of PM2.5 sources on children's health.
Collapse
Affiliation(s)
- Taichi Sugiyama
- Graduate School of Engineering, Kyoto University, Kyoto Daigaku Katsura, Nishikyo-ku, Kyoto 615-8540, Japan
| | - Kayo Ueda
- Graduate School of Engineering, Kyoto University, Kyoto Daigaku Katsura, Nishikyo-ku, Kyoto 615-8540, Japan; Graduate School of Global Environmental Sciences, Kyoto University, Yoshida Honmachi, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Xerxes Tesoro Seposo
- Graduate School of Global Environmental Sciences, Kyoto University, Yoshida Honmachi, Sakyo-ku, Kyoto 606-8501, Japan; School of Tropical Medicine and Global Health, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, japan
| | - Ayako Nakashima
- Environmental Science Section, Fukuoka City Institute of Health and Environment, 2-1-34, Jhigohama, Chuo-ku, Fukuoka 810-0065, Japan
| | - Makoto Kinoshita
- Environmental Science Section, Fukuoka City Institute of Health and Environment, 2-1-34, Jhigohama, Chuo-ku, Fukuoka 810-0065, Japan
| | - Hiroko Matsumoto
- Environmental Science Section, Fukuoka City Institute of Health and Environment, 2-1-34, Jhigohama, Chuo-ku, Fukuoka 810-0065, Japan
| | - Fumikazu Ikemori
- Nagoya City Institute for Environmental Sciences, 5-6-18 Toyota, Minami-ku, Nagoya, 457-0841, Japan
| | - Akiko Honda
- Graduate School of Engineering, Kyoto University, Kyoto Daigaku Katsura, Nishikyo-ku, Kyoto 615-8540, Japan; Graduate School of Global Environmental Sciences, Kyoto University, Yoshida Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hirohisa Takano
- Graduate School of Engineering, Kyoto University, Kyoto Daigaku Katsura, Nishikyo-ku, Kyoto 615-8540, Japan; Graduate School of Global Environmental Sciences, Kyoto University, Yoshida Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takehiro Michikawa
- Department of Environmental and Occupational Health, School of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo 143-8540, Japan; National Institute for Environmental Studies, 16-2, Onogawa, Tsukuba 305-8506, Japan
| | - Hiroshi Nitta
- National Institute for Environmental Studies, 16-2, Onogawa, Tsukuba 305-8506, Japan
| |
Collapse
|
10
|
Ni Y, Shi G, Qu J. Indoor PM 2.5, tobacco smoking and chronic lung diseases: A narrative review. ENVIRONMENTAL RESEARCH 2020; 181:108910. [PMID: 31780052 DOI: 10.1016/j.envres.2019.108910] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
The lung is one of the most important organs exposed to environmental agents. People spend approximately 90% of their time indoors, and risks to health may thus be greater from exposure to poor air quality indoors than outdoors. Multiple indoor pollutants have been linked to chronic respiratory diseases. Environmental tobacco smoke (ETS) is known as an important source of multiple pollutants, especially in indoor environments. Indoor PM2.5 (particulate matter with aerodynamic diameter < 2.5 μm) was reported to be the most reliable marker of the presence of tobacco smoke. Recent studies have demonstrated that PM2.5 is closely correlated with chronic lung diseases. In this paper, we reviewed the relationship of tobacco smoking and indoor PM2.5 and the mechanism that underpin the link of tobacco smoke, indoor PM2.5 and chronic lung diseases.
Collapse
Affiliation(s)
- Yingmeng Ni
- Department of Pulmonary and Critical Care Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guochao Shi
- Department of Pulmonary and Critical Care Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jieming Qu
- Department of Pulmonary and Critical Care Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|