1
|
Jafarzadeh S, Yildiz Z, Yildiz P, Strachowski P, Forough M, Esmaeili Y, Naebe M, Abdollahi M. Advanced technologies in biodegradable packaging using intelligent sensing to fight food waste. Int J Biol Macromol 2024; 261:129647. [PMID: 38281527 DOI: 10.1016/j.ijbiomac.2024.129647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/07/2024] [Accepted: 01/18/2024] [Indexed: 01/30/2024]
Abstract
The limitation of conventional packaging in demonstrating accurate and real-time food expiration dates leads to food waste and foodborne diseases. Real-time food quality monitoring via intelligent packaging could be an effective solution to reduce food waste and foodborne illnesses. This review focuses on recent technological advances incorporated into food packaging for monitoring food spoilage, with a major focus on paper-based sensors and their combination with smartphone. This review paper offers a comprehensive exploration of advanced macromolecular technologies in biodegradable packaging, a general overview of paper-based probes and their incorporation into food packaging coupled with intelligent sensing mechanisms for monitoring food freshness. Given the escalating global concerns surrounding food waste, our manuscript serves as a pivotal resource, consolidating current research findings and highlighting the transformative potential of these innovative packaging solutions. We also highlight the current intelligent paper-based food freshness sensors and their various advantages and limitations. Examples of implementation of paper-based sensors/probes for food storage and their accuracy are presented. Finally, we examined how intelligent packaging can be an alternative to reduce food waste. Several technologies discussed here have good potential to be used in food packaging for real-time food monitoring, especially when combined with smartphone diagnosis.
Collapse
Affiliation(s)
- Shima Jafarzadeh
- Centre for Sustainable Bioproducts, Deakin University, Waurn Ponds Campus, Geelong, Victoria 3217, Australia.
| | - Zeynep Yildiz
- Department of Chemistry, Middle East Technical University, 06800 Çankaya, Ankara, Turkey
| | - Pelin Yildiz
- Department of Chemistry, Middle East Technical University, 06800 Çankaya, Ankara, Turkey
| | - Przemyslaw Strachowski
- Department of Biology and Biological Engineering-Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden
| | - Mehrdad Forough
- Department of Chemistry, Middle East Technical University, 06800 Çankaya, Ankara, Turkey
| | - Yasaman Esmaeili
- Department of Food Science and Technology, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Minoo Naebe
- Institute for Frontier Materials, Deakin University, Waurn Ponds Campus, Geelong, Victoria 3216, Australia.
| | - Mehdi Abdollahi
- Department of Biology and Biological Engineering-Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden.
| |
Collapse
|
2
|
Akoueson F, Paul-Pont I, Tallec K, Huvet A, Doyen P, Dehaut A, Duflos G. Additives in polypropylene and polylactic acid food packaging: Chemical analysis and bioassays provide complementary tools for risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159318. [PMID: 36220465 DOI: 10.1016/j.scitotenv.2022.159318] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Plastic food packaging represents 40 % of the plastic production worldwide and belongs to the 10 most commonly found items in aquatic environments. They are characterized by high additives contents with >4000 formulations available on the market. Thus they can release their constitutive chemicals (i.e. additives) into the surrounding environment, contributing to chemical pollution in aquatic systems and to contamination of marine organism up to the point of questioning the health of the consumer. In this context, the chemical and toxicological profiles of two types of polypropylene (PP) and polylactic acid (PLA) food packaging were investigated, using in vitro bioassays and target gas chromatography mass spectrometry analyses. Plastic additives quantification was performed both on the raw materials, and on the material leachates after 5 days of lixiviation in filtered natural seawater. The results showed that all samples (raw materials and leachates) contained additive compounds (e.g. phthalates plasticizers, phosphorous flame retardants, antioxidants and UV-stabilizers). Differences in the number and concentration of additives between polymers and suppliers were also pointed out, indicating that the chemical signature cannot be generalized to a polymer and is rather product dependent. Nevertheless, no significant toxic effects was observed upon exposure to the leachates in two short-term bioassays targeting baseline toxicity (Microtox® test) and Pacific oyster Crassostrea gigas fertilization success and embryo-larval development. Overall, this study demonstrates that both petrochemical and bio-based food containers contain harmful additives and that it is not possible to predict material toxicity solely based on chemical analysis. Additionally, it highlights the complexity to assess and comprehend the additive content of plastic packaging due to the variability of their composition, suggesting that more transparency in polymer formulations is required to properly address the risk associated with such materials during their use and end of life.
Collapse
Affiliation(s)
- Fleurine Akoueson
- ANSES - LSAl, Boulevard du Bassin Napoléon, 62200 Boulogne-sur-Mer, France.; Univ. Littoral Côte d'Opale, UMR 1158 BioEcoAgro, EA 7394, Institut Charles Viollette, USC ANSES, INRAe, Univ. Lille, Univ. Artois, Univ. Picardie Jules Verne, Uni. Liège, F-62200 Boulogne-sur-Mer, France
| | - Ika Paul-Pont
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, F-29280 Plouzané, France
| | - Kévin Tallec
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, F-29280 Plouzané, France; Cedre, 715 rue Alain Colas, 29200 Brest, France
| | - Arnaud Huvet
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, F-29280 Plouzané, France
| | - Périne Doyen
- Univ. Littoral Côte d'Opale, UMR 1158 BioEcoAgro, EA 7394, Institut Charles Viollette, USC ANSES, INRAe, Univ. Lille, Univ. Artois, Univ. Picardie Jules Verne, Uni. Liège, F-62200 Boulogne-sur-Mer, France
| | - Alexandre Dehaut
- ANSES - LSAl, Boulevard du Bassin Napoléon, 62200 Boulogne-sur-Mer, France
| | - Guillaume Duflos
- ANSES - LSAl, Boulevard du Bassin Napoléon, 62200 Boulogne-sur-Mer, France..
| |
Collapse
|
3
|
Zimmermann L, Bartosova Z, Braun K, Oehlmann J, Völker C, Wagner M. Plastic Products Leach Chemicals That Induce In Vitro Toxicity under Realistic Use Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:11814-11823. [PMID: 34488348 PMCID: PMC8427741 DOI: 10.1021/acs.est.1c01103] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Plastic products contain complex mixtures of extractable chemicals that can be toxic. However, humans and wildlife will only be exposed to plastic chemicals that are released under realistic conditions. Thus, we investigated the toxicological and chemical profiles leaching into water from 24 everyday plastic products covering eight polymer types. We performed migration experiments over 10 days at 40 °C and analyzed the migrates using four in vitro bioassays and nontarget high-resolution mass spectrometry (UPLC-QTOF-MSE). All migrates induced baseline toxicity, 22 an oxidative stress response, 13 antiandrogenicity, and one estrogenicity. Overall, between 17 and 8681 relevant chemical features were present in the migrates. In other words, between 1 and 88% of the plastic chemicals associated with one product were migrating. Further, we tentatively identified ∼8% of all detected features implying that most plastic chemicals remain unknown. While low-density polyethylene, polyvinyl chloride, and polyurethane induced most toxicological endpoints, a generalization for other materials is not possible. Our results demonstrate that plastic products readily leach many more chemicals than previously known, some of which are toxic in vitro. This highlights that humans are exposed to many more plastic chemicals than currently considered in public health science and policies.
Collapse
Affiliation(s)
- Lisa Zimmermann
- Department
Aquatic Ecotoxicology, Goethe University
Frankfurt am Main, Max-von-Laue-Str. 13, 60438 Frankfurt, Germany
| | - Zdenka Bartosova
- Department
of Biology, Norwegian University of Science
and Technology (NTNU), Høgskoleringen 5, 7491 Trondheim, Norway
| | - Katharina Braun
- Department
Aquatic Ecotoxicology, Goethe University
Frankfurt am Main, Max-von-Laue-Str. 13, 60438 Frankfurt, Germany
| | - Jörg Oehlmann
- Department
Aquatic Ecotoxicology, Goethe University
Frankfurt am Main, Max-von-Laue-Str. 13, 60438 Frankfurt, Germany
| | - Carolin Völker
- Institute
for Social-Ecological Research, Hamburger Allee 45, 60486 Frankfurt am Main, Germany
| | - Martin Wagner
- Department
of Biology, Norwegian University of Science
and Technology (NTNU), Høgskoleringen 5, 7491 Trondheim, Norway
| |
Collapse
|
4
|
Liwarska-Bizukojc E, Stevens CV, Delbeke EIP, Van Geem KM. Endocrine disrupting potency and toxicity of novel sophorolipid quaternary ammonium salts. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:658-666. [PMID: 33730294 PMCID: PMC8060166 DOI: 10.1007/s10646-021-02378-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
A new class of biosurfactants, namely quaternary ammonium sophorolipids (SQAS), suitable for pharmaceutical applications, was tested for the evaluation of their (anti)estrogenic and (anti)androgenic potency with the help of YES/YAS assays. Also their toxicity towards yeasts (Saccharomyces cerevisiae) and bacteria (Escherichia coli) was checked. The results achieved for SQAS, which can be regarded as potential micropollutants, were compared with those obtained for two well-known micropollutants diclofenac and 17α-ethinylestradiol subjected to the same testing procedures. This work demonstrated that acetylation of the hydroxyl group of the carbohydrate head of SQAS decreased the toxicity of this class of biosurfactants towards Saccharomyces cerevisiae. Furthermore, it contributed to the decrease of their endocrine disrupting potency. None of the SQAS studied showed clear agonist activity for female or male hormones. SQAS1 and SQAS2 revealed weak antiestrogenic and antiandrogenic potency. All of these properties were weaker, not only to the potency of the appropriate positive control in the antagonists bioassays, but also compared to the potency of other tested compounds, i.e. DCF and EE2. SQAS3 possessed most probably inhibitory activity towards male hormones. Moreover, cytotoxicity of two out of four studied SQAS at the highest concentrations towards the strains of Saccharomyces cerevisiae interfered with the endocrine disruption activity. It would be also worth studying it with the use of another endocrine activity test.
Collapse
Affiliation(s)
- Ewa Liwarska-Bizukojc
- Institute of Environmental Engineering and Building Installations, Lodz University of Technology, Al. Politechniki 6, 90-924, Lodz, Poland.
| | - Christian V Stevens
- Faculty of Bioscience Engineering, Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Elisabeth I P Delbeke
- Faculty of Bioscience Engineering, Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Kevin M Van Geem
- Faculty of Engineering and Architecture, Department of Materials, Textile and Chemical Engineering, Ghent University, Technologiepark 914, B-9052, Ghent-Zwijnaarde, Belgium
| |
Collapse
|
5
|
Osorio J, Aznar M, Nerín C, Birse N, Elliott C, Chevallier O. Ambient mass spectrometry as a tool for a rapid and simultaneous determination of migrants coming from a bamboo-based biopolymer packaging. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122891. [PMID: 32512447 DOI: 10.1016/j.jhazmat.2020.122891] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/22/2020] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
New bamboo-based biopolymers are used as food packaging materials, but it must be evaluated to ensure consumers safety. In this study, migration from a commercial bamboo-based biopolymer to ethanol 10% (v/v), acetic acid 3% (w/v) and ethanol 95% (v/v) was studied. The migrants were determined from three different perspectives. Volatile and semi-volatile compounds were analyzed by gas chromatography-mass spectrometry (GC-MS). Twenty-five compounds were detected. In addition, a number of phytosterols were detected in ethanol 95%. Non-volatile compounds were identified and quantified by ultra-performance liquid chromatography coupled to time-of-flight mass spectrometry (UPLC-Q/ToF). Twelve non-volatile compounds were detected in migration solutions, mainly melamine and its derivatives, coming from polymer resins present in the biopolymer. Melamine migration was higher than 50 mg/Kg in the third sequential migration test. Finally, the migration samples were analyzed by DART-SVP (direct analysis in real time coupled to standardized voltage and pressure). This methodology was able to detect simultaneously the main volatile and non-volatile migrants and their adducts in a very rapid and effective way and is shown as a promising tool to test the safety and legal compliance of food packaging materials.
Collapse
Affiliation(s)
- Jazmín Osorio
- Analytical Chemistry Department, GUIA Group, I3A, EINA, University of Zaragoza, Mª de Luna 3, 50018 Zaragoza, Spain; ASSET Technology Centre, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 9 Northern Ireland, UK
| | - Margarita Aznar
- Analytical Chemistry Department, GUIA Group, I3A, EINA, University of Zaragoza, Mª de Luna 3, 50018 Zaragoza, Spain
| | - Cristina Nerín
- Analytical Chemistry Department, GUIA Group, I3A, EINA, University of Zaragoza, Mª de Luna 3, 50018 Zaragoza, Spain.
| | - Nicholas Birse
- ASSET Technology Centre, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 9 Northern Ireland, UK
| | - Christopher Elliott
- ASSET Technology Centre, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 9 Northern Ireland, UK
| | - Olivier Chevallier
- ASSET Technology Centre, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 9 Northern Ireland, UK
| |
Collapse
|
6
|
Latos-Brozio M, Masek A. The application of natural food colorants as indicator substances in intelligent biodegradable packaging materials. Food Chem Toxicol 2020; 135:110975. [DOI: 10.1016/j.fct.2019.110975] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 11/01/2019] [Accepted: 11/13/2019] [Indexed: 02/01/2023]
|
7
|
Influence of Storage Time and Temperature on the Toxicity, Endocrine Potential, and Migration of Epoxy Resin Precursors in Extracts of Food Packaging Materials. Molecules 2019; 24:molecules24234396. [PMID: 31810163 PMCID: PMC6930607 DOI: 10.3390/molecules24234396] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 11/16/2022] Open
Abstract
The aim of the present study was to establish a standard methodology for the extraction of epoxy resin precursors from several types of food packages (cans, multi-layered composite material, and cups) with selected simulation media (distilled water, 5% ethanol, 3% dimethyl sulfoxide, 5% acetic acid, artificial saliva) at different extraction times and temperatures (factors). Biological analyses were conducted to determine the acute toxicity levels of the extracts (with Vibrio fischeri bacteria) and their endocrine potential (with Saccharomyces cerevisiae yeasts). In parallel, liquid chromatography-tandem mass spectrometry was performed to determine levels of bisphenol A diglycidyl ether (BADGE), bisphenol F diglycidyl ether (mixture of isomers, BFDGE), ring novolac glycidyl ether (3-ring NOGE), and their derivatives. The variation induced by the different experimental factors was statistically evaluated with analysis of variance simultaneous component analysis (ASCA). Our findings demonstrate the value of using a holistic approach to best partition the effects contributing to the end points of these assessments, and offer further guidance for adopting such a methodology, thus being a broadly useful reference for understanding the phenomena related to the impacts of food packaging materials on quality for long- and short-term storage, while offering a general method for analysis.
Collapse
|
8
|
Determination of volatile non intentionally added substances coming from a starch-based biopolymer intended for food contact by different gas chromatography-mass spectrometry approaches. J Chromatogr A 2019; 1599:215-222. [PMID: 30975529 DOI: 10.1016/j.chroma.2019.04.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/29/2019] [Accepted: 04/03/2019] [Indexed: 12/21/2022]
Abstract
The rapid growth of polymer technology in the field of food contact materials (FCMs) needs to be supported by continuous improvement in material testing, in order to ensure the safety of foodstuff. In this work, a range of different starch-based biopolymer samples, in the shape of pellets and retail samples (cups and dishes) were studied. The optimized extraction process was performed on three different pellet shapes: pellets with no modification (spherical), pellets shattered under high pressure (lentils), and pellets cryogenically ground (powder). The analysis of unknown volatile and semi-volatile compounds was carried out by gas chromatography-mass spectrometry, using both electron ionization with a single quadrupole mass analyzer (GC-EI-MS), and atmospheric pressure gas chromatography with a quadrupole/time of flight mass analyzer (APGC-Q/ToF). The identification process was implemented using the latest advances in the understanding of APGC ionization pathways. Chemical migration was also assessed on prototype samples using the food simulants: ethanol 10% v/v, acetic acid 3% w/V, ethanol 95% v/v, isooctane, and vegetable oil. Each migration test was performed three consecutive times, as recommended for materials intended for repeated use.
Collapse
|
9
|
Chemometric Assessment and Best-Fit Function Modelling of the Toxic Potential of Selected Food Packaging Extracts. Molecules 2018; 23:molecules23113028. [PMID: 30463317 PMCID: PMC6278273 DOI: 10.3390/molecules23113028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 11/12/2018] [Accepted: 11/17/2018] [Indexed: 11/16/2022] Open
Abstract
Food packaging materials constitute an ever more threatening environmental pollutant. This study examined options to specifically assess the ecotoxicity of packaged wastes, such as cans, subjected to various experimental treatments (in terms of extraction media, time of exposure, and temperature) that imitate several basic conditions of the process of food production. The extracts were studied for their ecotoxicity with bioluminescent Vibrio fischeri bacteria. The first objective of this study was to find patterns of similarity between different experimental conditions; we used multivariate statistical methods, such as hierarchical cluster analysis, to interpret the impact of experimental conditions on the ecotoxicity signals of the package extracts. Our second objective was to apply best-fit function modelling for additional data interpretation, taking into account, that ecotoxicity for various temperature conditions is time- and temperature dependent. We mathematically confirmed that chemometric data treatment allows for better understanding how different experimental conditions imitating the real use of food packaging. We also demonstrate that the level of ecotoxicity depends on different extraction media, time of exposure, and temperature regime.
Collapse
|