1
|
Kim BY, Sohn E, Lee MY, Jeon WY, Jo K, Kim YJ, Jeong SJ. Neurodegenerative pathways and metabolic changes in the hippocampus and cortex of mice exposed to urban particulate matter: Insights from an integrated interactome analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173673. [PMID: 38839008 DOI: 10.1016/j.scitotenv.2024.173673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024]
Abstract
Recently, urban particulate matter (UPM) exposure has been associated with the development of brain disorders. This study uses bioinformatic analyses to elucidate the molecular unexplored mechanisms underlying the effects of UPM exposure on the brain. Mice are exposed to UPM (from 3 days to 20 weeks), and their behavioral patterns measured. We measure pathology and gene expression in the hippocampus and cortical regions of the brain. An integrated interactome of genes is established, which enriches information on metabolic processes. Using this network, we isolate the core genes that are differentially expressed in the samples. We observe cognitive loss and pathological changes in the brains of mice at 16 or 20 weeks of exposure. Through network analysis of core-differential genes and measurement of pathway activity, we identify differences in the response to UPM exposure between the hippocampus and cortex. However, neurodegenerative disease pathways are implicated in both tissues following short-term exposure to UPM. There were also significant changes in metabolic function in both tissues depending on UPM exposure time. Additionally, the cortex of UPM-exposed mice shows more similarities with psychiatric disorders than with neurodegenerative diseases. The connectivity map database is used to isolate genes contributing to changes in expression due to UPM exposure. New approaches for inhibiting or preventing the brain damage caused by UPM exposure can be developed by targeting the functions and selected genes identified in this study.
Collapse
Affiliation(s)
- Bu-Yeo Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Republic of Korea.
| | - Eunjin Sohn
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Mee-Young Lee
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Woo-Young Jeon
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Kyuhyung Jo
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Yu Jin Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Soo-Jin Jeong
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Republic of Korea.
| |
Collapse
|
2
|
Hanlon N, Gillan N, Neil J, Seidler K. The role of the aryl hydrocarbon receptor (AhR) in modulating intestinal ILC3s to optimise gut pathogen resistance in lupus and benefits of nutritional AhR ligands. Clin Nutr 2024; 43:1199-1215. [PMID: 38631087 DOI: 10.1016/j.clnu.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/28/2024] [Accepted: 04/04/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND AND AIMS Dysbiosis is emerging as a potential trigger of systemic lupus erythematosus (SLE). Group 3 innate lymphoid cells (ILC3s) are recognised as key regulators of intestinal homeostasis. The aryl hydrocarbon receptor (AhR) is critical to intestinal ILC3 development and function. This mechanistic review aimed to investigate whether AhR activation of gut ILC3s facilitates IL-22-mediated antimicrobial peptide (AMP) production to enhance colonisation resistance and ameliorate SLE pathology associated with intestinal dysbiosis. Furthermore, nutritional AhR ligand potential to enhance pathogen resistance was explored. METHODOLOGY This mechanistic review involved a three-tranche systematic literature search (review, mechanism, intervention) using PubMed with critical appraisal. Data was synthesised into themes and summarised in a narrative analysis. RESULTS Preclinical mechanistic data indicate that AhR modulation of intestinal ILC3s optimises pathogen resistance via IL-22-derived AMPs. Pre-clinical research is required to validate this mechanism in SLE. Data on systemic immune consequences of AhR modulation in lupus suggest UVB-activated ligands induce aberrant AhR signalling while many dietary ligands exert beneficial effects. Data on xenobiotic-origin ligands is varied, although considerable evidence has demonstrated negative effects on Th17 to Treg balance. Limited human evidence supports the role of nutritional AhR ligands in modulating SLE pathology. Preclinical and clinical data support anti-inflammatory effects of dietary AhR ligands. CONCLUSION Current evidence is insufficient to fully validate the hypothesis that AhR modulation of intestinal ILC3s can enhance pathogen resistance to ameliorate lupus pathology driven by dysbiosis. However, anti-inflammatory effects of dietary AhR ligands suggest a promising role as a therapeutic intervention for SLE.
Collapse
Affiliation(s)
- Niamh Hanlon
- CNELM (Centre for Nutrition Education and Lifestyle Management), 14 Rectory Road, Wokingham, Berkshire RG40 1DH, UK.
| | - Natalie Gillan
- CNELM (Centre for Nutrition Education and Lifestyle Management), 14 Rectory Road, Wokingham, Berkshire RG40 1DH, UK.
| | - James Neil
- CNELM (Centre for Nutrition Education and Lifestyle Management), 14 Rectory Road, Wokingham, Berkshire RG40 1DH, UK.
| | - Karin Seidler
- CNELM (Centre for Nutrition Education and Lifestyle Management), 14 Rectory Road, Wokingham, Berkshire RG40 1DH, UK.
| |
Collapse
|
3
|
Ahmadi M, Soleimanifar N, Rostamian A, Sadr M, Mojtahedi H, Mazari A, Hossein Nicknam M, Assadiasl S. Aryl hydrocarbon receptor gene expression in ankylosing spondylitis and its correlation with interleukin-17, RAR-related orphan receptor gamma t expression, and disease activity indices. Arch Rheumatol 2024; 39:123-132. [PMID: 38774696 PMCID: PMC11104753 DOI: 10.46497/archrheumatol.2023.10203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/01/2023] [Indexed: 05/24/2024] Open
Abstract
Objectives Considering the role of T helper (Th)17 cells in the pathogenesis of ankylosing spondylitis (AS), the aim of this study was to determine the correlation between aryl hydrocarbon receptor (AHR) gene expression and the expression of Th17-related genes including interleukin (IL)-17 and RAR-related orphan receptor gamma t (RORγt) transcription factor. Patients and methods Thirty patients with AS (26 males, 4 females; mean age: 36.1±8.1 years) and 30 age- and sex-matched healthy individuals (26 males, 4 females; mean age: 36.2±14.6 years) were recruited for the case-control study between June 2021 and January 2022. Ribonucleic acid (RNA) was extracted from peripheral blood cells and expression levels of AHR, IL-17, RORγt, and AHR repressor (AHRR) genes were evaluated using real-time polymerase chain reaction technique. The serum level of IL-17 was evaluated with enzyme-linked immunosorbent assay. Results The results showed a nonsignificant elevation of AHR, IL-17, and RORγt gene expression in the patient group compared to the control. There was a direct correlation between AHR gene expression and IL-17 and RORγt genes and a negative correlation between AHR and AHRR expression. Moreover, AHR gene expression showed a weak correlation with disease activity indices, including Bath Ankylosing Spondylitis Disease Activity Index, Bath Ankylosing Spondylitis Functional Index, Bath Ankylosing Spondylitis Metrology Index, Bath Ankylosing Spondylitis Global Score, and Ankylosing Spondylitis Quality of Life. Moreover, the serum level of IL-17 was higher in AS patients compared to the healthy group (p=0.02). Conclusion Upregulated expression of the AHR gene in ankylosing spondylitis and its correlation with IL-17 and ROR-γ t gene expression suggests that it could be a potential diagnostic and therapeutic target for AS.
Collapse
Affiliation(s)
- Maryam Ahmadi
- Department of Immunology, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Narjes Soleimanifar
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdolrahman Rostamian
- Department of Rheumatology, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Sadr
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanieh Mojtahedi
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Abeda Mazari
- Department of Immunology, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Mohammad Hossein Nicknam
- Department of Immunology, School of Medicine, Tehran University of Medical Science, Tehran, Iran
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Assadiasl
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Ruiz-Sobremazas D, Ruiz Coca M, Morales-Navas M, Rodulfo-Cárdenas R, López-Granero C, Colomina MT, Perez-Fernandez C, Sanchez-Santed F. Neurodevelopmental consequences of gestational exposure to particulate matter 10: Ultrasonic vocalizations and gene expression analysis using a bayesian approach. ENVIRONMENTAL RESEARCH 2024; 240:117487. [PMID: 37918762 DOI: 10.1016/j.envres.2023.117487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
Air pollution has been associated with a wide range of health issues, particularly regarding cardio-respiratory diseases. Increasing evidence suggests a potential link between gestational exposure to environmental pollutants and neurodevelopmental disorders such as autism spectrum disorder. The respiratory pathway is the most commonly used exposure model regarding PM due to valid and logical reasons. However, PM deposition on food (vegetables, fruits, cereals, etc.) and water has been previously described. Although this justifies the need of unforced, oral models of exposure, preclinical studies using oral exposure are uncommon. Specifically, air pollution can modify normal brain development at genetic, cellular, and structural levels. The present work aimed to investigate the effects of oral gestational exposure to particulate matter (PM) on ultrasonic vocalizations (USV). To this end, pregnant rats were exposed to particulate matter during gestation. The body weight of the pups was monitored until the day of recording the USVs. The results revealed that the exposed group emitted more USV calls when compared to the control group. Furthermore, the calls from the exposed group were longer in duration and started earlier than those from the non-exposed group. Gene expression analyses showed that PM exposure down-regulates the expression of Gabrg2 and Maoa genes in the brain, but no effect was detected on glutamate or other neurotransmission systems. These findings suggest that gestational exposure to PM10 may be related to social deficits or other phenomena that can be analyzed with USV. In addition, we were able to detect abnormalities in the expression of genes related to different neurotransmitter systems, such as the GABAergic and monoaminergic systems. Further research is needed to fully understand the possible effects of air pollutant exposure on neurodevelopmental disorders as well as the way in which these effects are linked to differences in neurotransmission systems.
Collapse
Affiliation(s)
- Diego Ruiz-Sobremazas
- Department of Psychology, Health Research Center (CEINSA), Almeria University, 04120, Almeria, Spain; University of Zaragoza, Department of Psychology and Sociology, Teruel, Spain
| | - Mario Ruiz Coca
- Department of Psychology, Health Research Center (CEINSA), Almeria University, 04120, Almeria, Spain
| | - Miguel Morales-Navas
- Department of Psychology, Health Research Center (CEINSA), Almeria University, 04120, Almeria, Spain
| | - Rocío Rodulfo-Cárdenas
- Universitat Rovira I Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain; Universitat Rovira I Virgili, Department of Psychology and Research Center for Behavior Assessment (CRAMC), Tarragona, Spain; Universitat Rovira I Virgili, Center of Environmental, Food and Toxicological Technology (TECNATOX), Reus, Spain
| | | | - Maria Teresa Colomina
- Universitat Rovira I Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain; Universitat Rovira I Virgili, Department of Psychology and Research Center for Behavior Assessment (CRAMC), Tarragona, Spain; Universitat Rovira I Virgili, Center of Environmental, Food and Toxicological Technology (TECNATOX), Reus, Spain
| | - Cristian Perez-Fernandez
- Department of Psychology, Health Research Center (CEINSA), Almeria University, 04120, Almeria, Spain
| | - Fernando Sanchez-Santed
- Department of Psychology, Health Research Center (CEINSA), Almeria University, 04120, Almeria, Spain.
| |
Collapse
|
5
|
Wang J, Zeng Y, Song J, Zhu M, Zhu G, Cai H, Chen C, Jin M, Song Y. Perturbation of arachidonic acid and glycerolipid metabolism promoted particulate matter-induced inflammatory responses in human bronchial epithelial cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114839. [PMID: 36989558 DOI: 10.1016/j.ecoenv.2023.114839] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Particulate matter (PM) has become the main risk factor for public health, being linked with an increased risk of respiratory diseases. However, the potential mechanisms underlying PM-induced lung injury have not been well elucidated. In this study, we systematically integrated the metabolomics, lipidomics, and transcriptomics data obtained from the human bronchial epithelial cells (HBECs) exposed to PM to reveal metabolic disorders in PM-induced lung injury. We identified 170 differentially expressed metabolites (82 upregulated and 88 downregulated metabolites), 218 differentially expressed lipid metabolites (125 upregulated and 93 downregulated lipid metabolites), and 1417 differentially expressed genes (643 upregulated and 774 downregulated genes). Seven key metabolites (prostaglandin E2, inosinic acid, L-arginine, L-citrulline, L-leucine, adenosine, and adenosine monophosphate), and two main lipid subclasses (triglyceride and phosphatidylcholine) were identified in PM-exposed HBECs. The amino acid metabolism, lipid metabolism, and carbohydrate metabolism were the significantly enriched pathways of identified differentially expressed genes. Then, conjoint analysis of these three omics data and further qRT-PCR validation showed that arachidonic acid metabolism, glycerolipid metabolism, and glutathione metabolism were the key metabolic pathways in PM-exposed HBECs. The knockout of AKR1C3 in arachidonic acid metabolism or GPAT3 in glycerolipid metabolism could significantly inhibit PM-induced inflammatory responses in HBECs. These results revealed the potential metabolic pathways in PM-exposed HBECs and provided a new target to protect from PM-induced airway damage.
Collapse
Affiliation(s)
- Jian Wang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yingying Zeng
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Juan Song
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Mengchan Zhu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Guiping Zhu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hui Cai
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Cuicui Chen
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Meiling Jin
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Yuanlin Song
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Infectious Disease and Biosecurity, Shanghai 200032, China; Shanghai Respiratory Research Institute, Shanghai 200032, China.
| |
Collapse
|
6
|
Yu YY, Jin H, Lu Q. Effect of polycyclic aromatic hydrocarbons on immunity. J Transl Autoimmun 2022; 5:100177. [PMID: 36561540 PMCID: PMC9763510 DOI: 10.1016/j.jtauto.2022.100177] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 09/06/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Nearly a quarter of the total number of deaths in the world are caused by unhealthy living or working environments. Therefore, we consider it significant to introduce the effect of a widely distributed component of air/water/food-source contaminants, polycyclic aromatic hydrocarbons (PAHs), on the human body, especially on immunity in this review. PAHs are a large class of organic compounds containing two or more benzene rings. PAH exposure could occur in most people through breath, smoke, food, and direct skin contact, resulting in both cellular immunosuppression and humoral immunosuppression. PAHs usually lead to the exacerbation of autoimmune diseases by regulating the balance of T helper cell 17 and regulatory T cells, and promoting type 2 immunity. However, the receptor of PAHs, aryl hydrocarbon receptor (AhR), appears to exhibit duality in the immune response, which seems to explain some seemingly opposite experimental results. In addition, PAH exposure was also able to exacerbate allergic reactions and regulate monocytes to a certain extent. The specific regulation mechanisms of immune system include the assistance of AhR, the activation of the CYP-ROS axis, the recruitment of intracellular calcium, and some epigenetic mechanisms. This review aims to summarize our current understanding on the impact of PAHs in the immune system and some related diseases such as cancer, autoimmune diseases (rheumatoid arthritis, type 1 diabetes, multiple sclerosis, and systemic lupus erythematosus), and allergic diseases (asthma and atopic dermatitis). Finally, we also propose future research directions for the prevention or treatment on environmental induced diseases.
Collapse
Affiliation(s)
- Yang-yiyi Yu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China,Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences (2019RU027), Changsha, China
| | - Hui Jin
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China,Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences (2019RU027), Changsha, China,Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China,Corresponding author. Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China.
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China,Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences (2019RU027), Changsha, China,Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China,Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China,Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu, 210042, China,Corresponding author. Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
7
|
Huang KS, Chen CY, Sun CY, Su YJ. Serum parabens and its correlations with immunologic and cellular markers in Southern Taiwan industrialized city systemic lupus erythematosus patients. J Chin Med Assoc 2022; 85:993-999. [PMID: 36206526 DOI: 10.1097/jcma.0000000000000802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND Although the immune systems of patients with systemic lupus erythematosus (SLE) are affected by both personal characteristics and environmental factors, the effects of parabens on patients with SLE have not been well studied. We investigated the indirect effects of four parabens-methylparaben (MP), ethylparaben (EP), propylparaben (n-PrP), and butylparaben (n-BuP)-on several immunological markers. METHODS We assessed the serum levels of MP, EP, n-PrP, and n-BuP in 25 SLE patients and correlated the concentration of each paraben with available clinical and laboratory markers, including intracellular markers of antiviral immunity and apoptosis. RESULTS The expression of aryl hydrocarbon receptor (AhR) was significantly negatively correlated with n-PrP levels (p = 0.03, r = -0.434). In monocytes, APO2.7 was significantly positively correlated with n-BuP levels (p = 0.019, r = 0.467). Glutathione levels were significantly negatively correlated with n-BuP levels (p = 0.019, r = -0.518). Anti- β2 glycoprotein I IgM was significantly positively correlated with both MP (p = 0.011, r = 0.585) and EP levels (p = 0.032, r = 0.506). Anti-cardiolipin IgA was significantly positively correlated with both MP (p = 0.038, r = 0.493) and n-PrP levels (p = 0.031, r = 0.508). On CD8 T cells, the early apoptotic marker annexin V was significantly negatively correlated with both MP (p < 0.05, r = -0.541) and n-BuP levels (p = 0.02, r = -0.616), and L-selectin was significantly positively correlated with both MP (p < 0.05, r = 0.47) and n-PrP levels (p = 0.02, r = 0.556). CONCLUSION Our findings suggest that higher parabens levels were associated with lower AhR expression in leukocytes, increased monocyte apoptosis, lower serum glutathione levels, reduced annexin V expression on CD8 T cells, and higher L-selectin levels on leukocytes.
Collapse
Affiliation(s)
- Kun-Siang Huang
- Department of Family Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, ROC
- College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
| | - Chun-Yu Chen
- College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan, ROC
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan, ROC
| | - Chiao-Yin Sun
- College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan, ROC
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan, ROC
| | - Yu-Jih Su
- College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
- Department of Internal Medicine, Division of Rheumatology, Allergy and Immunology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, ROC
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, ROC
- Institute of biopharmaceutical science, National Sun Yat-Sen University, Kaohsiung, Taiwan, ROC
| |
Collapse
|
8
|
Liang N, Emami S, Patten KT, Valenzuela AE, Wallis CD, Wexler AS, Bein KJ, Lein PJ, Taha AY. Chronic exposure to traffic-related air pollution reduces lipid mediators of linoleic acid and soluble epoxide hydrolase in serum of female rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 93:103875. [PMID: 35550873 PMCID: PMC9353974 DOI: 10.1016/j.etap.2022.103875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Chronic exposure to traffic-related air pollution (TRAP) is known to promote systemic inflammation, which is thought to underlie respiratory, cardiovascular, metabolic and neurological disorders. It is not known whether chronic TRAP exposure dampens inflammation resolution, the homeostatic process for stopping inflammation and repairing damaged cells. In vivo, inflammation resolution is facilitated by bioactive lipid mediators known as oxylipins, which are derived from the oxidation of polyunsaturated fatty acids. To understand the effects of chronic TRAP exposure on lipid-mediated inflammation resolution pathways, we measured total (i.e. free+bound) pro-inflammatory and pro-resolving lipid mediators in serum of female rats exposed to TRAP or filtered air (FA) for 14 months. Compared to rats exposed to FA, TRAP-exposed rats showed a significant 36-48% reduction in fatty acid alcohols, specifically, 9-hydroxyoctadecadienoic acid (9-HODE), 11,12-dihydroxyeicosatetraenoic acid (11,12-DiHETE) and 16,17-dihydroxydocosapentaenoic acid (16, 17-DiHDPA). The decrease in fatty acid diols (11,12-DiHETE and 16, 17-DiHDPA) corresponded to a significant 34-39% reduction in the diol to epoxide ratio, a marker of soluble epoxide hydrolase activity; this enzyme is typically upregulated during inflammation. The findings demonstrate that 14 months exposure to TRAP reduced pro-inflammatory 9-HODE concentration and dampened soluble epoxide hydrolase activation, suggesting adaptive immune changes in lipid mediator pathways involved in inflammation resolution.
Collapse
Affiliation(s)
- Nuanyi Liang
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California Davis, Davis, CA, USA
| | - Shiva Emami
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California Davis, Davis, CA, USA
| | - Kelley T Patten
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Anthony E Valenzuela
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | | | - Anthony S Wexler
- Mechanical and Aerospace Engineering, University of California, Davis, CA 95616, USA; Air Quality Research Center, University of California, Davis, Davis, CA, USA
| | - Keith J Bein
- Air Quality Research Center, University of California, Davis, Davis, CA, USA; Center for Health and the Environment, University of California, Davis, Davis, CA, USA
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Ameer Y Taha
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California Davis, Davis, CA, USA; West Coast Metabolomics Center, Genome Center, University of California Davis, Davis, CA, USA.
| |
Collapse
|
9
|
Han B, Li X, Ai RS, Deng SY, Ye ZQ, Deng X, Ma W, Xiao S, Wang JZ, Wang LM, Xie C, Zhang Y, Xu Y, Zhang Y. Atmospheric particulate matter aggravates CNS demyelination through involvement of TLR-4/NF-kB signaling and microglial activation. eLife 2022; 11:72247. [PMID: 35199645 PMCID: PMC8893720 DOI: 10.7554/elife.72247] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 02/18/2022] [Indexed: 11/24/2022] Open
Abstract
Atmospheric Particulate Matter (PM) is one of the leading environmental risk factors for the global burden of disease. Increasing epidemiological studies demonstrated that PM plays a significant role in CNS demyelinating disorders; however, there is no direct testimony of this, and yet the molecular mechanism by which the occurrence remains unclear. Using multiple in vivo and in vitro strategies, in the present study we demonstrate that PM exposure aggravates neuroinflammation, myelin injury, and dysfunction of movement coordination ability via boosting microglial pro-inflammatory activities, in both the pathological demyelination and physiological myelinogenesis animal models. Indeed, pharmacological disturbance combined with RNA-seq and ChIP-seq suggests that TLR-4/NF-kB signaling mediated a core network of genes that control PM-triggered microglia pathogenicity. In summary, our study defines a novel atmospheric environmental mechanism that mediates PM-aggravated microglia pathogenic activities, and establishes a systematic approach for the investigation of the effects of environmental exposure in neurologic disorders.
Collapse
Affiliation(s)
- Bing Han
- Shaanxi Normal University, Xi'an, China
| | - Xing Li
- Shaanxi Normal University, Xi'an, China
| | | | | | | | - Xin Deng
- Shaanxi Normal University, Xi'an, China
| | - Wen Ma
- Shaanxi Normal University, Xi'an, China
| | - Shun Xiao
- Shaanxi Normal University, Xi'an, China
| | | | - Li-Mei Wang
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chong Xie
- Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yan Zhang
- Shaanxi Normal University, Xi'an, China
| | - Yan Xu
- Shaanxi Normal University, Xi'an, China
| | | |
Collapse
|
10
|
Chu CC, Chen SY, Chyau CC, Wang SC, Chu HL, Duh PD. Djulis ( Chenopodium formosanum) and Its Bioactive Compounds Protect Human Lung Epithelial A549 Cells from Oxidative Injury Induced by Particulate Matter via Nrf2 Signaling Pathway. Molecules 2021; 27:253. [PMID: 35011484 PMCID: PMC8746626 DOI: 10.3390/molecules27010253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 11/16/2022] Open
Abstract
The protective effects of water extracts of djulis (Chenopodium formosanum) (WECF) and their bioactive compounds on particulate matter (PM)-induced oxidative injury in A549 cells via the nuclear factor-erythroid 2-related factor 2 (Nrf2) signaling were investigated. WECF at 50-300 µg/mL protected A549 cells from PM-induced cytotoxicity. The cytoprotection of WECF was associated with decreases in reactive oxygen species (ROS) generation, thiobarbituric acid reactive substances (TBARS) formation, and increases in superoxide dismutase (SOD) activity and glutathione (GSH) contents. WECF increased Nrf2 and heme oxygenase-1 (HO-1) expression in A549 cells exposed to PM. SP600125 (a JNK inhibitor) and U0126 (an ERK inhibitor) attenuated the WECF-induced Nrf2 and HO-1 expression. According to the HPLC-MS/MS analysis, rutin (2219.7 µg/g) and quercetin derivatives (2648.2 µg/g) were the most abundant bioactive compounds present in WECF. Rutin and quercetin ameliorated PM-induced oxidative stress in the cells. Collectively, the bioactive compounds present in WECF can protect A549 cells from PM-induced oxidative injury by upregulating Nrf2 and HO-1 via activation of the ERK and JUN signaling pathways.
Collapse
Affiliation(s)
- Chin-Chen Chu
- Department of Anesthesiology, Chi-Mei Medical Center, Tainan 710402, Taiwan;
| | - Shih-Ying Chen
- Department of Health and Nutrition, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan;
| | - Charng-Cherng Chyau
- Research Institute of Biotechnology, Hungkuang University, 34 Chung-Chie Road, Shalu County, Taichung 43302, Taiwan;
| | - Shu-Chen Wang
- Department of Food Science and Technology, Chia Nan University of Pharmacy and Science, 60 Erh-Jen Road, Section 1, Pao-An, Jen-Te District, Tainan 71710, Taiwan; (S.-C.W.); (H.-L.C.)
| | - Heuy-Ling Chu
- Department of Food Science and Technology, Chia Nan University of Pharmacy and Science, 60 Erh-Jen Road, Section 1, Pao-An, Jen-Te District, Tainan 71710, Taiwan; (S.-C.W.); (H.-L.C.)
| | - Pin-Der Duh
- Department of Food Science and Technology, Chia Nan University of Pharmacy and Science, 60 Erh-Jen Road, Section 1, Pao-An, Jen-Te District, Tainan 71710, Taiwan; (S.-C.W.); (H.-L.C.)
| |
Collapse
|
11
|
Tang C, Li QR, Mao YM, Xia YR, Guo HS, Wang JP, Shuai ZW, Ye DQ. Association between ambient air pollution and multiple sclerosis: a systemic review and meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:58142-58153. [PMID: 34109523 DOI: 10.1007/s11356-021-14577-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
Recently, increasing attention has been paid to the effects of air pollutants on autoimmune diseases. The results of relationship between ambient air pollution and multiple sclerosis (MS) showed a variety of differences. Thus, the purpose of this study is to further clarify and quantify the relationship between ambient air pollutants and MS through meta-analysis. Through electronic literature search, literature related to our research topic was collected in Cochrane Library, Embase, and PubMed till August 18, 2020, according to certain criteria. Pooled risk estimate and 95% confidence intervals (95%CI) were calculated by random-effect model analysis. After removing copies, browsing titles and abstracts, and reading full text, 6 studies were finally included. The results showed that only particulate matter (PM) with aerodynamic diameter ≤ 10 (PM10) was related to MS (pooled HR = 1.058, 95% CI = 1.050-1.066), and no correlation was found between PM with aerodynamic diameter < 2.5 (PM2.5), nitrogen dioxide (NO2), carbon monoxide (CO), ozone (O3), benzene (C6H6), major road < 50 m, and MS. There was no publication bias, and the heterogeneity analysis results were stable. PM10 is correlated with the disease MS, while other pollution is not connected with MS. Therefore, it is important for MS patients to take personal protection against particulate pollution and avoid exposure to higher levels of PM.
Collapse
Affiliation(s)
- Chao Tang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Province Laboratory of Inflammation and Immune Mediated Diseases, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Qing-Ru Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Province Laboratory of Inflammation and Immune Mediated Diseases, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yan-Mei Mao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Province Laboratory of Inflammation and Immune Mediated Diseases, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yuan-Rui Xia
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Province Laboratory of Inflammation and Immune Mediated Diseases, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Heng-Sheng Guo
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Province Laboratory of Inflammation and Immune Mediated Diseases, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jun-Ping Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Province Laboratory of Inflammation and Immune Mediated Diseases, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Zong-Wen Shuai
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China.
| | - Dong-Qing Ye
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Province Laboratory of Inflammation and Immune Mediated Diseases, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
12
|
A Review of Metal Levels in Urban Dust, Their Methods of Determination, and Risk Assessment. ATMOSPHERE 2021. [DOI: 10.3390/atmos12070891] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review gives insights into the levels of metals in urban dust, their determination methods, and risk assessment. Urban dust harbors a number of pollutants, including heavy metals. There are various methods used for the sampling of urban dust for heavy-metal analysis and source-apportionment purposes, with the predominant one being the use of plastic sampling materials to avoid prior contamination. There are also various methods for the determination of metals, which include: atomic absorption spectroscopy (AAS) and inductively coupled plasma-mass spectrometry (ICP-MS), among others. Studies have shown that pollutants in urban dust are mainly derived from industrial activities and coal combustion, whereas traffic emissions are also an important, but not a predominant source of pollution. The varying particle-size distribution of urban dust and its large surface area makes it easier for the deposition and transport of heavy metals. Risk-assessment studies have shown that metals in urban dust could cause such problems as human pulmonary toxicity and reduction of invertebrate populations. The risk levels seem to be higher in children than adults, as some studies have shown. It is therefore important that studies on metals in urban dust should always incorporate risk assessment as one of the main issues.
Collapse
|
13
|
Jankowska-Kieltyka M, Roman A, Nalepa I. The Air We Breathe: Air Pollution as a Prevalent Proinflammatory Stimulus Contributing to Neurodegeneration. Front Cell Neurosci 2021; 15:647643. [PMID: 34248501 PMCID: PMC8264767 DOI: 10.3389/fncel.2021.647643] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
Air pollution is regarded as an important risk factor for many diseases that affect a large proportion of the human population. To date, accumulating reports have noted that particulate matter (PM) is closely associated with the course of cardiopulmonary disorders. As the incidence of Alzheimer’s disease (AD), Parkinson’s disease (PD), and autoimmune disorders have risen and as the world’s population is aging, there is an increasing interest in environmental health hazards, mainly air pollution, which has been slightly overlooked as one of many plausible detrimental stimuli contributing to neurodegenerative disease onset and progression. Epidemiological studies have indicated a noticeable association between exposure to PM and neurotoxicity, which has been gradually confirmed by in vivo and in vitro studies. After entering the body directly through the olfactory epithelium or indirectly by passing through the respiratory system into the circulatory system, air pollutants are subsequently able to reach the brain. Among the potential mechanisms underlying particle-induced detrimental effects in the periphery and the central nervous system (CNS), increased oxidative stress, inflammation, mitochondrial dysfunction, microglial activation, disturbance of protein homeostasis, and ultimately, neuronal death are often postulated and concomitantly coincide with the main pathomechanisms of neurodegenerative processes. Other complementary mechanisms by which PM could mediate neurotoxicity and contribute to neurodegeneration remain unconfirmed. Furthermore, the question of how strong and proven air pollutants are as substantial adverse factors for neurodegenerative disease etiologies remains unsolved. This review highlights research advances regarding the issue of PM with an emphasis on neurodegeneration markers, symptoms, and mechanisms by which air pollutants could mediate damage in the CNS. Poor air quality and insufficient knowledge regarding its toxicity justify conducting scientific investigations to understand the biological impact of PM in the context of various types of neurodegeneration.
Collapse
Affiliation(s)
- Monika Jankowska-Kieltyka
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Adam Roman
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Irena Nalepa
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| |
Collapse
|
14
|
Sendra VG, Tau J, Zapata G, Lasagni Vitar RM, Illian E, Chiaradía P, Berra A. Polluted Air Exposure Compromises Corneal Immunity and Exacerbates Inflammation in Acute Herpes Simplex Keratitis. Front Immunol 2021; 12:618597. [PMID: 33841400 PMCID: PMC8025944 DOI: 10.3389/fimmu.2021.618597] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 01/14/2021] [Indexed: 11/13/2022] Open
Abstract
Air pollution is a serious environmental issue worldwide in developing countries’ megacities, affecting the population’s health, including the ocular surface, by predisposing or exacerbating other ocular diseases. Herpes simplex keratitis (HSK) is caused by the herpes simplex virus type 1 (HSV-1). The primary or recurring infection in the ocular site causes progressive corneal scarring that may result in visual impairment. The present study was designed to study the immunopathological changes of acute HSK under urban polluted air, using the acute HSK model combined with an experimental urban polluted air exposure from Buenos Aires City. We evaluated the corneal clinical outcomes, viral DNA and pro-inflammatory cytokines by RT-PCR and ELISA assays, respectively. Then, we determined the innate and adaptive immune responses in both cornea and local lymph nodes after HSV-1 corneal by immunofluorescence staining and flow cytometry. Our results showed that mice exposed to polluted air develop a severe form of HSK with increased corneal opacity, neovascularization, HSV-1 DNA and production of TNF-α, IL-1β, IFN-γ, and CCL2. A high number of corneal resident immune cells, including activated dendritic cells, was observed in mice exposed to polluted air; with a further significant influx of bone marrow-derived cells including GR1+ cells (neutrophils and inflammatory monocytes), CD11c+ cells (dendritic cells), and CD3+ (T cells) during acute corneal HSK. Moreover, mice exposed to polluted air showed a predominant Th1 type T cell response over Tregs in local lymph nodes during acute HSK with decreased corneal Tregs. These findings provide strong evidence that urban polluted air might trigger a local imbalance of innate and adaptive immune responses that exacerbate HSK severity. Taking this study into account, urban air pollution should be considered a key factor in developing ocular inflammatory diseases.
Collapse
Affiliation(s)
- Victor G Sendra
- Laboratorio Traslacional de Inmunopatología y Oftalmología, Departamento de Patología, Facultad de Medicina, Universidad de Buenos Aires, Cuidad Autónoma de Buenos Aires, Argentina
| | - Julia Tau
- Laboratorio Traslacional de Inmunopatología y Oftalmología, Departamento de Patología, Facultad de Medicina, Universidad de Buenos Aires, Cuidad Autónoma de Buenos Aires, Argentina
| | - Gustavo Zapata
- Laboratorio Traslacional de Inmunopatología y Oftalmología, Departamento de Patología, Facultad de Medicina, Universidad de Buenos Aires, Cuidad Autónoma de Buenos Aires, Argentina
| | - Romina M Lasagni Vitar
- Departamento de Química Analítica y Fisicoquímica, Facultad de Farmacia y Bioquímica, CONICET-Instituto de Bioquímica y Medicina Molecular (IBIMOL), Universidad de Buenos Aires, Cuidad Autónoma de Buenos Aires, Argentina
| | - Eduardo Illian
- Neurovirosis, Departamento de Virología, Instituto Nacional de Enfermedades Infecciosas (INEI), Administración Nacional de Laboratorios e Institutos de Salud (ANLIS) Malbrán, Cuidad Autónoma de Buenos Aires, Argentina
| | - Pablo Chiaradía
- Departamento de Oftalmología, Hospital de Clínicas, Universidad de Buenos Aires, Cuidad Autónoma de Buenos Aires, Argentina
| | - Alejandro Berra
- Laboratorio Traslacional de Inmunopatología y Oftalmología, Departamento de Patología, Facultad de Medicina, Universidad de Buenos Aires, Cuidad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
15
|
Mazuryk O, Stochel G, Brindell M. Variations in Reactive Oxygen Species Generation by Urban Airborne Particulate Matter in Lung Epithelial Cells-Impact of Inorganic Fraction. Front Chem 2021; 8:581752. [PMID: 33392147 PMCID: PMC7773840 DOI: 10.3389/fchem.2020.581752] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/03/2020] [Indexed: 11/23/2022] Open
Abstract
Air pollution is associated with numerous negative effects on human health. The toxicity of organic components of air pollution is well-recognized, while the impact of their inorganic counterparts in the overall toxicity is still a matter of various discussions. The influence of airborne particulate matter (PM) and their inorganic components on biological function of human alveolar-like epithelial cells (A549) was investigated in vitro. A novel treatment protocol based on covering culture plates with PM allowed increasing the studied pollutant concentrations and prolonging their incubation time without cell exposure on physical suffocation and mechanical disturbance. PM decreased the viability of A549 cells and disrupted their mitochondrial membrane potential and calcium homeostasis. For the first time, the difference in the reactive oxygen species (ROS) profiles generated by organic and inorganic counterparts of PM was shown. Singlet oxygen generation was observed only after treatment of cells with inorganic fraction of PM, while hydrogen peroxide, hydroxyl radical, and superoxide anion radical were induced after exposure of A549 cells to both PM and their inorganic fraction.
Collapse
Affiliation(s)
- Olga Mazuryk
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| | - Grazyna Stochel
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| | | |
Collapse
|
16
|
Dai Q, Xu X, Eskenazi B, Asante KA, Chen A, Fobil J, Bergman Å, Brennan L, Sly PD, Nnorom IC, Pascale A, Wang Q, Zeng EY, Zeng Z, Landrigan PJ, Bruné Drisse MN, Huo X. Severe dioxin-like compound (DLC) contamination in e-waste recycling areas: An under-recognized threat to local health. ENVIRONMENT INTERNATIONAL 2020; 139:105731. [PMID: 32315892 DOI: 10.1016/j.envint.2020.105731] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 02/05/2023]
Abstract
Electrical and electronic waste (e-waste) burning and recycling activities have become one of the main emission sources of dioxin-like compounds (DLCs). Workers involved in e-waste recycling operations and residents living near e-waste recycling sites (EWRS) are exposed to high levels of DLCs. Epidemiological and experimental in vivo studies have reported a range of interconnected responses in multiple systems with DLC exposure. However, due to the compositional complexity of DLCs and difficulties in assessing mixture effects of the complex mixture of e-waste-related contaminants, there are few studies concerning human health outcomes related to DLC exposure at informal EWRS. In this paper, we have reviewed the environmental levels and body burdens of DLCs at EWRS and compared them with the levels reported to be associated with observable adverse effects to assess the health risks of DLC exposure at EWRS. In general, DLC concentrations at EWRS of many countries have been decreasing in recent years due to stricter regulations on e-waste recycling activities, but the contamination status is still severe. Comparison with available data from industrial sites and well-known highly DLC contaminated areas shows that high levels of DLCs derived from crude e-waste recycling processes lead to elevated body burdens. The DLC levels in human blood and breast milk at EWRS are higher than those reported in some epidemiological studies that are related to various health impacts. The estimated total daily intakes of DLCs for people in EWRS far exceed the WHO recommended total daily intake limit. It can be inferred that people living in EWRS with high DLC contamination have higher health risks. Therefore, more well-designed epidemiological studies are urgently needed to focus on the health effects of DLC pollution in EWRS. Continuous monitoring of the temporal trends of DLC levels in EWRS after actions is of highest importance.
Collapse
Affiliation(s)
- Qingyuan Dai
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, China
| | - Brenda Eskenazi
- School of Public Health, University of California, Berkeley, USA
| | | | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, USA
| | - Julius Fobil
- School of Public Health, University of Ghana, Ghana
| | - Åke Bergman
- Department of Environmental Science, Stockholm University, Sweden; Department of Science and Technology, Örebro University, Sweden; College of Environmental Science and Engineering, Tongji University, China
| | - Lesley Brennan
- Department of Obstetrics and Gynaecology, University of Alberta, Canada
| | - Peter D Sly
- Child Health Research Centre, University of Queensland, Australia
| | | | - Antonio Pascale
- Department of Toxicology, University of the Republic, Uruguay
| | - Qihua Wang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, China
| | - Eddy Y Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, China
| | - Zhijun Zeng
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, China
| | | | - Marie-Noel Bruné Drisse
- Department of Environment, Climate Change and Health, World Health Organization, Geneva, Switzerland
| | - Xia Huo
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, China.
| |
Collapse
|
17
|
Vogel CFA, Van Winkle LS, Esser C, Haarmann-Stemmann T. The aryl hydrocarbon receptor as a target of environmental stressors - Implications for pollution mediated stress and inflammatory responses. Redox Biol 2020; 34:101530. [PMID: 32354640 PMCID: PMC7327980 DOI: 10.1016/j.redox.2020.101530] [Citation(s) in RCA: 254] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/20/2020] [Accepted: 03/31/2020] [Indexed: 02/08/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor regulating the expression of genes, for instance encoding the monooxygenases cytochrome P450 (CYP) 1A1 and CYP1A2, which are important enzymes in metabolism of xenobiotics. The AHR is activated upon binding of polycyclic aromatic hydrocarbons (PAHs), persistent organic pollutants (POPs), and related ubiquitous environmental chemicals, to mediate their biological and toxic effects. In addition, several endogenous and natural compounds can bind to AHR, thereby modulating a variety of physiological processes. In recent years, ambient particulate matter (PM) associated with traffic related air pollution (TRAP) has been found to contain significant amounts of PAHs. PM containing PAHs are of increasing concern as a class of agonists, which can activate the AHR. Several reports show that PM and AHR-mediated induction of CYP1A1 results in excessive generation of reactive oxygen species (ROS), causing oxidative stress. Furthermore, exposure to PM and PAHs induce inflammatory responses and may lead to chronic inflammatory diseases, including asthma, cardiovascular diseases, and increased cancer risk. In this review, we summarize findings showing the critical role that the AHR plays in mediating effects of environmental pollutants and stressors, which pose a risk of impacting the environment and human health. PAHs present on ambient air pollution particles are ligands of the cellular AHR. AHR-dependent induction of CYP1, AKR, NOX and COX-2 genes can be a source of ROS generation. AHR signaling and NRF2 signaling interact to regulate the expression of antioxidant genes. Air pollution and ROS can affect inflammation, which is partially triggered by AHR and associated immune responses. Skin, lung, and the cardiovascular system are major target sites for air pollution-induced inflammation.
Collapse
Affiliation(s)
- Christoph F A Vogel
- Center for Health and the Environment, University of California, One Shields Avenue, Davis, CA, 95616, USA; Department of Environmental Toxicology, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Laura S Van Winkle
- Center for Health and the Environment, University of California, One Shields Avenue, Davis, CA, 95616, USA; School of Veterinary Medicine Department of Anatomy, University of California, One Shields Avenue, Davis, CA, 5616, USA
| | - Charlotte Esser
- IUF - Leibniz-Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany
| | | |
Collapse
|
18
|
O’Driscoll CA, Gallo ME, Hoffmann EJ, Fechner JH, Schauer JJ, Bradfield CA, Mezrich JD. Polycyclic aromatic hydrocarbons (PAHs) present in ambient urban dust drive proinflammatory T cell and dendritic cell responses via the aryl hydrocarbon receptor (AHR) in vitro. PLoS One 2018; 13:e0209690. [PMID: 30576387 PMCID: PMC6303068 DOI: 10.1371/journal.pone.0209690] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/10/2018] [Indexed: 12/25/2022] Open
Abstract
Atmospheric particulate matter (PM) is a complex component of air pollution that is a composed of inorganic and organic constituents. The chemically-extracted organic fraction (OF) of PM excludes inorganics but retains most organic constituents like polycyclic aromatic hydrocarbons (PAHs). PAHs are ubiquitous environmental toxicants and known aryl hydrocarbon receptor (AHR) ligands. The AHR is a ligand activated transcription factor that responds to endogenous ligands and exogenous ligands including PAHs. Activation of the AHR leads to upregulation of cytochrome P450 (CYP) metabolizing enzymes which are important for the biotransformation of toxicants to less toxic, or in the case of PAHs, more toxic intermediates. Additionally, the AHR plays an important role in balancing regulatory and effector T cell responses. This study aimed to determine whether PAHs present in PM aggravate inflammation by driving inflammatory T cell and dendritic cell (DC) responses and their mechanism of action. This study tests the hypothesis that PAHs present in PM activate the AHR and alter the immune balance shifting from regulation to inflammation. To test this, the effects of SRM1649b OF on T cell differentiation and DC function were measured in vitro. SRM1649b OF enhanced Th17 differentiation in an AHR and CYP-dependent manner and increased the percent of IFNγ positive DCs in an AHR-dependent manner. SRM1649b PAH mixtures enhanced Th17 differentiation in an AHR-dependent but CYP-independent manner and increased the percent of IFNγ positive DCs. Cumulatively, these results suggest that PAHs present in PM are active components that contribute to immune responses in both T cells and BMDCs through the AHR and CYP metabolism. Understanding the role of AHR and CYP metabolism of PAHs in immune cells after PM exposure will shed light on new targets that will shift the immune balance from inflammation to regulation.
Collapse
Affiliation(s)
- Chelsea A. O’Driscoll
- Department of Surgery, Division of Transplantation, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States of America
- Molecular and Environmental Toxicology Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Madeline E. Gallo
- Department of Surgery, Division of Transplantation, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Erica J. Hoffmann
- Department of Surgery, Division of Transplantation, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States of America
| | - John H. Fechner
- Department of Surgery, Division of Transplantation, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States of America
| | - James J. Schauer
- Wisconsin State Lab of Hygiene, Madison, WI, United States of America
- Civil and Environmental Engineering, College of Engineering, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Christopher A. Bradfield
- Molecular and Environmental Toxicology Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States of America
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Joshua D. Mezrich
- Department of Surgery, Division of Transplantation, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States of America
- * E-mail:
| |
Collapse
|
19
|
O'Driscoll CA, Mezrich JD. The Aryl Hydrocarbon Receptor as an Immune-Modulator of Atmospheric Particulate Matter-Mediated Autoimmunity. Front Immunol 2018; 9:2833. [PMID: 30574142 PMCID: PMC6291477 DOI: 10.3389/fimmu.2018.02833] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/16/2018] [Indexed: 12/22/2022] Open
Abstract
This review examines the current literature on the effects of atmospheric particulate matter (PM) on autoimmune disease and proposes a new role for the aryl hydrocarbon receptor (AHR) as a modulator of T cells in PM-mediated autoimmune disease. There is a significant body of literature regarding the strong epidemiologic correlations between PM exposures and worsened autoimmune diseases. Genetic predispositions account for 30% of all autoimmune disease leaving environmental factors as major contributors. Increases in incidence and prevalence of autoimmune disease have occurred concurrently with an increase in air pollution. Currently, atmospheric PM is considered to be the greatest environmental health risk worldwide. Atmospheric PM is a complex heterogeneous mixture composed of diverse adsorbed organic compounds such as polycyclic aromatic hydrocarbons (PAHs) and dioxins, among others. Exposure to atmospheric PM has been shown to aggravate several autoimmune diseases. Despite strong correlations between exposure to atmospheric PM and worsened autoimmune disease, the mechanisms underlying aggravated disease are largely unknown. The AHR is a ligand activated transcription factor that responds to endogenous and exogenous ligands including toxicants present in PM, such as PAHs and dioxins. A few studies have investigated the effects of atmospheric PM on AHR activation and immune function and demonstrated that atmospheric PM can activate the AHR, change cytokine expression, and alter T cell differentiation. Several studies have found that the AHR modulates the balance between regulatory and effector T cell functions and drives T cell differentiation in vitro and in vivo using murine models of autoimmune disease. However, there are very few studies on the role of AHR in PM-mediated autoimmune disease. The AHR plays a critical role in the balance of effector and regulatory T cells and in autoimmune disease. With increased incidence and prevalence of autoimmune disease occurring concurrently with increases in air pollution, potential mechanisms that drive inflammatory and exacerbated disease need to be elucidated. This review focuses on the AHR as a potential mechanistic target for modulating T cell responses associated with PM-mediated autoimmune disease providing the most up-to-date literature on the role of AHR in autoreactive T cell function and autoimmune disease.
Collapse
Affiliation(s)
- Chelsea A. O'Driscoll
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Molecular and Environmental Toxicology Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Joshua D. Mezrich
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|