1
|
Park JW, Kang M, Kim G, Hyun SY, Shin J, Kim SY, Lee JH, Choi WS, Lee JH, Lee K, Kim SH, Cho WS, Kim HS. The impact of atmospheric ultrafine particulate matter on IgE-mediated type 1 hypersensitivity reaction. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136705. [PMID: 39637818 DOI: 10.1016/j.jhazmat.2024.136705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 11/16/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
The effect of atmospheric ultrafine particulate matter (UPM) on respiratory allergic diseases has been investigated for decades; however, the precise molecular mechanisms underlying these effects remain poorly understood. In this study, we used a simulated UPM (sUPM) generated via the spark discharge method to refine black carbon, a core particle that closely mimics real-world UPM, including the size (i.e., size of agglomerates: 165 nm) and organic carbon/elemental carbon ratio (i.e., 2.62). When 25 μg/mouse of dispersed sUPM was instilled into the lungs of mice, it promoted the infiltration and degranulation response of pulmonary mast cells, and exposure to sUPM in an immunoglobulin E (IgE)-mediated passive anaphylaxis model intensified the degranulation response of peripheral mast cells. These effects of sUPM were demonstrated to amplify the downstream signaling mechanism of the high-affinity IgE receptor (FcεRI) mediated by IgE when tested using rat basophil leukemia (RBL)-2H3 and mouse bone marrow-derived mast cells (BMMCs) collected from the bone marrow of BALB/c mice. These results indicate that airborne UPM can exacerbate type 1 hypersensitivity reactions by enhancing the IgE-mediated signaling pathways within mast cells. Furthermore, this study provided mechanistic evidence on exacerbated allergic pulmonary diseases induced by UPM inhalation.
Collapse
Affiliation(s)
- Jeong Won Park
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Minseong Kang
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Gyuri Kim
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Seung Yeun Hyun
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Juhyun Shin
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Seon Young Kim
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Jun Ho Lee
- Department of Korean Medicine, College of Korean Medicine, Woosuk University, Jeonju 54986, Republic of Korea
| | - Wahn Soo Choi
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Jong-Ho Lee
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea; Department of Biomedical Sciences, College of Natural Science, Dong-A University, Busan 49315, Republic of Korea
| | - Kyuhong Lee
- Inhalation Toxicology Center for Airborne Risk Factor, Korea Institute of Toxicology, 30 Baehak1-gil, Jeongeup, Jeollabuk-do 56212, Republic of Korea
| | - Seok-Ho Kim
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Wan-Seob Cho
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea.
| | - Hyuk Soon Kim
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea; Department of Biomedical Sciences, College of Natural Science, Dong-A University, Busan 49315, Republic of Korea.
| |
Collapse
|
2
|
Targino AC, da Costa CC, Krecl P. A first screening of black carbon concentrations whilst commuting by diesel-fuelled buses in Montevideo, Uruguay. Heliyon 2025; 11:e41697. [PMID: 39897776 PMCID: PMC11783451 DOI: 10.1016/j.heliyon.2025.e41697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/26/2024] [Accepted: 01/03/2025] [Indexed: 02/04/2025] Open
Abstract
Urban bus commuters are exposed to a range of traffic-related air pollutants, including black carbon (BC) particles, a major hazardous component of vehicle exhaust emissions. This study provides the first assessment of in-cabin BC concentrations aboard diesel-fuelled public buses in Montevideo, Uruguay. Our objective was to assess BC concentrations during evening peak commuting hours and to examine how specific traffic elements, such as bus stops, traffic lights and traffic volume, influence exposure levels. We implemented a structured sampling strategy to maximise the reliability of our findings by collecting data during four consecutive weekdays within the same timeframe (17:00-18:00 h) in May 2019. We measured BC concentrations at a high-frequency sampling rate using a handheld aethalometer, focusing on two bus routes. The mean in-cabin BC concentration was 14.28 ± 14.38 μg m⁻³, with considerable spatial variability. Notably, BC concentrations were significantly higher at traffic lights and bus stops, where stop-and-go driving patterns and idling contribute to increased emissions, while the constant opening and closing of doors allows outside air to infiltrate. We found a positive trend between traffic volume and median BC concentrations, consistent with previous studies conducted in other cities. Compared to similar studies in South America, BC concentrations were found to be intermediate, but considerably higher than those observed in North American and European cities. This study underscores the importance of implementing targeted interventions in urban transport policies, specifically addressing congestion points, like bus stops and traffic lights, to effectively reduce commuter exposure to harmful air pollutants. Whilst our study focused on Montevideo, interventions to combat traffic-related air pollutants should be expanded across Latin American cities, where reliance on diesel-powered public transportation remains prevalent.
Collapse
Affiliation(s)
- Admir Créso Targino
- Graduate Program in Environmental Engineering, Federal University of Technology, Av. Pioneiros 3131, 86036-370, Londrina, PR, Brazil
| | - Camila Couto da Costa
- Department of Environmental Engineering, Federal University of Technology, Av. Pioneiros 3131, 86036-370, Londrina, PR, Brazil
| | - Patricia Krecl
- Graduate Program in Environmental Engineering, Federal University of Technology, Av. Pioneiros 3131, 86036-370, Londrina, PR, Brazil
| |
Collapse
|
3
|
Nayem A, Zaman SU, Begum F, Salam A. Wintertime black carbon assessment in dhaka, Bangladesh: Integrated health risk analysis. Heliyon 2025; 11:e41809. [PMID: 39882473 PMCID: PMC11774791 DOI: 10.1016/j.heliyon.2025.e41809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/31/2025] Open
Abstract
This study investigated the ramifications of black carbon (BC) emissions on human health during the winter season of December 2019 to February 2020 in Dhaka, Bangladesh. BC, arising from incomplete combustion of fossil and biofuels, underwent meticulous measurement of densities, concentrations, and emissions at two pivotal sites. Employing low-volume air samplers with Quartz filters and subsequent analysis with an Aethalometer (Soot scanner, OT21, USA), the study unveiled monthly average BC densities of 1.64 μg cm-2, concentrations of 4.99 μg m-3, and emissions of 0.038 μg J-1. Health risk assessments revealed higher cancer risks (CRs) at Site-1 (children: 2.82 × 10-4 and adult: 4.72 × 10-4) compared to Site-2 (children: 2.56 × 10-4 and adult: 4.30 × 10-4). Hazard quotients (HQs) averaged 0.29 for children and 0.19 for adults in Dhaka. BC exposure escalated relative risks (RR) for all-cause mortality (RR = 1.136), cardiovascular mortality (RR = 1.169), and respiratory mortality (RR = 1.277). These findings underscore the substantial implications of BC's influence, particularly in a nation like Bangladesh, and furnish invaluable insights into aerosol characteristics and emission sources in South Asia, facilitating the formulation of emission inventories.
Collapse
Affiliation(s)
- A.K.M. Nayem
- Department of Chemistry, Faculty of Science, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Shahid Uz Zaman
- Department of Chemistry, Faculty of Science, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
| | - Farida Begum
- Department of Chemistry, Faculty of Science, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Abdus Salam
- Department of Chemistry, Faculty of Science, University of Dhaka, Dhaka, 1000, Bangladesh
| |
Collapse
|
4
|
He G, Wang Y, Cheng C, Guo J, Lin Z, Liang Z, Jin B, Tao L, Rong L, Chen L, Lin T, Hua Y, Park S, Mo Y, Li J, Jiang X. PM 2.5 constituents associated with mortality and kidney failure in childhood-onset lupus nephritis: A 19-year cohort study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175333. [PMID: 39111418 DOI: 10.1016/j.scitotenv.2024.175333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/22/2024] [Accepted: 08/04/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND Childhood-onset lupus nephritis (cLN) is a severe form of systemic lupus erythematosus (SLE) with high morbidity and mortality. The impact of long-term exposure to fine particulate matter (PM2.5) on adverse outcomes in cLN remains unclear. METHODS We combined a 19-years cLN cohort from seven provinces in China with high-resolution PM2.5 dataset from 2001 to 2020, investigating the association between long-term exposure to PM2.5 and its constituents (sulfate, nitrate, organic matter, black carbon, ammonium) with the risk of death and kidney failure, analyzed with multiple variables Cox models. We also evaluated the association between 3-year average PM2.5 exposure before study entry and baseline SLE disease activity index (SLEDAI) scores using linear regression models. RESULTS Each 10 μg/m3 increase in annual average PM2.5 exposure was associated with an increased risk of death and kidney failure (HR = 1.58, 95 % CI: 1.24-2.02). Black carbon showed the strongest association (HR = 2.14, 95 % CI: 1.47-3.12). Higher 3-year average exposures to PM2.5 and its constituents were significantly associated with higher baseline SLEDAI scores. CONCLUSIONS These findings highlight the significant role of environmental pollutants in cLN progression and emphasize the need for strategies to mitigate exposure to harmful PM2.5 constituents, particularly in vulnerable pediatric populations.
Collapse
Affiliation(s)
- Guohua He
- Department of Pediatric Nephrology and Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yaqi Wang
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China
| | - Cheng Cheng
- Department of Pediatric Nephrology and Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Jianhui Guo
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China
| | - Zhilang Lin
- Department of Pediatric Nephrology and Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Ziyun Liang
- The First Clinical School of Medicine, Southern Medical University, Guangzhou 510091, China
| | - Bei Jin
- Department of Pediatric Nephrology and Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Liyuan Tao
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing 100191, China
| | - Liping Rong
- Department of Pediatric Nephrology and Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Lizhi Chen
- Department of Pediatric Nephrology and Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Tianxin Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Clinical Research Centre for Urological Diseases, Guangzhou 510120, China
| | - Yining Hua
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, Boston, MA 02115, USA
| | - Seungkyo Park
- Division of Integrated Medicine, Department of Internal Medicine, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - Ying Mo
- Department of Pediatric Nephrology and Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Jing Li
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China.
| | - Xiaoyun Jiang
- Department of Pediatric Nephrology and Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
5
|
Hua C, Ma W, Zheng F, Zhang Y, Xie J, Ma L, Song B, Yan C, Li H, Liu Z, Liu Q, Kulmala M, Liu Y. Health risks and sources of trace elements and black carbon in PM 2.5 from 2019 to 2021 in Beijing. J Environ Sci (China) 2024; 142:69-82. [PMID: 38527897 DOI: 10.1016/j.jes.2023.05.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 03/27/2024]
Abstract
A comprehensive health risk assessment of PM2.5 is meaningful to understand the current status and directions regarding further improving air quality from the perspective of human health. In this study, we evaluated the health risks of PM2.5 as well as highly toxic inorganic components, including heavy metals (HMs) and black carbon (BC) based on long-term observations in Beijing from 2019 to 2021. Our results showed that the relative risks of chronic obstructive pulmonary disease, lung cancer, acute lower respiratory tract infection, ischemic heart disease, and stroke decreased by 4.07%-9.30% in 2020 and 2.12%-6.70% in 2021 compared with 2019. However, they were still at high levels ranging from 1.26 to 1.77, in particular, stroke showed the highest value in 2021. Mn had the highest hazard quotient (HQ, from 2.18 to 2.56) for adults from 2019 to 2021, while Ni, Cr, Pb, As, and BC showed high carcinogenic risks (CR > 1.0×10-6) for adults. The HQ values of Mn and As and the CR values of Pb and As showed constant or slight upwards trends during our observations, which is in contrast to the downward trends of other HMs and PM2.5. Mn, Cr, and BC are crucial toxicants in PM2.5. A significant shrink of southern region sourcesof HMs and BCshrank suggests the increased importance of local sources. Industry, dust, and biomass burning are the major contributors to the non-carcinogenic risks, while traffic emissions and industry are the dominant contributors to the carcinogenic risks in Beijing.
Collapse
Affiliation(s)
- Chenjie Hua
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wei Ma
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Feixue Zheng
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yusheng Zhang
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiali Xie
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Li Ma
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Boying Song
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chao Yan
- Institute for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Hongyan Li
- School of Environment and Safety, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Zhen Liu
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Markku Kulmala
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Institute for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Yongchun Liu
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
6
|
Zhang X, Zhang Y, Xiu M, Zhang Y, Zhu B, Ou Y, Wang S, Zheng C. Independent risk evaluation associated with short-term black carbon exposure on mortality in two megacities of Yangtze River Delta, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163273. [PMID: 37028672 DOI: 10.1016/j.scitotenv.2023.163273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/19/2023] [Accepted: 03/31/2023] [Indexed: 05/27/2023]
Abstract
The adverse health effects of PM2.5 have been well demonstrated by many studies. However, as a component of PM2.5, evidence on the mortality risk of black carbon (BC) is still limited. In this study, based on the data of daily mean PM2.5 concentration, BC concentration, meteorological factors, total non-accidental (all-cause) and cardiovascular mortality in Shanghai and Nanjing during 2015-2016, a semi-parameter generalized additive model (GAM) in the time series and the constituent residual approach were employed to explore the exposure-response relationship between BC and human mortality in these two megacities of Yangtze River Delta, China. The main objective was to separate the health effects of BC from total PM2.5, and compare the difference of mortality ER related to BC original concentration and adjusted concentration after controlling PM2.5. Results showed that there were all significantly associated with daily mortality for PM2.5 and BC. The percentage excess risk (ER) increases in all-cause and cardiovascular categories were 1.68 % (95 % s 1.28, 2.08) and 2.16 % (95 % CI: 1.54, 2.79) with 1 μg/m3 increment in original BC concentration in Shanghai. And the ER in Nanjing was smaller than that in Shanghai. After eliminating PM2.5 confounding effects by a constituent residual approach, the BC residual concentration still had a strong significant ER. The ER for BC residual in Shanghai got an obvious increase, and ER of the cardiovascular mortality for all, females and males increased by 0.55 %, 1.46 % and 0.62 %, respectively, while the ER in Nanjing decreased slightly. It also revealed that females were more sensitive to the health risk associated with short-term BC exposure than males. Our findings provide additional important evidence and ER for mortality related to independent BC exposure. Therefore, BC emission reduction should be paid more attention in air pollution control strategies to reduce BC-related health burdens.
Collapse
Affiliation(s)
- Xiaoling Zhang
- Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu 610225, China; Chengdu Plain Urban Meteorology and Environment Sichuan Provincial Field Scientific Observation and Research Station, Chengdu 610225, China.
| | - Yuanrui Zhang
- Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu 610225, China
| | - Meng Xiu
- Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu 610225, China; Chengdu Plain Urban Meteorology and Environment Sichuan Provincial Field Scientific Observation and Research Station, Chengdu 610225, China
| | - Ying Zhang
- Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu 610225, China
| | - Bin Zhu
- Key Laboratory of Meteorological Disaster (KLME), Ministry of Education, Collaborative Innovation Centre on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing, China
| | - Yihan Ou
- Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu 610225, China
| | - Shigong Wang
- Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu 610225, China
| | - Canjun Zheng
- National Institute for Communicable Disease Control and Prevention, Chinese Centre for Disease Control and Prevention, Beijing 102206, China
| |
Collapse
|
7
|
Kamińska JA, Turek T, Van Poppel M, Peters J, Hofman J, Kazak JK. Whether cycling around the city is in fact healthy in the light of air quality - Results of black carbon. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 337:117694. [PMID: 36933537 DOI: 10.1016/j.jenvman.2023.117694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/31/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Studying the air quality and exposure of the inhabitants of urban agglomerations to pollution is the basis for the creation and development of more sustainable cities. Although research on black carbon (BC) has not yet reached the official acceptable levels and guidelines, the World Health Organization clearly indicates the need to measure and control the level of this pollutant. In Poland, monitoring of the level of BC concentration is not included in the air quality monitoring network. To estimate the extent of this pollutant to which pedestrians and cyclists are exposed, mobile measurements were carried out on over 26 km of bicycle paths in Wrocław. The obtained results indicate the influence of urban greenery next to the bicycle path (especially if the cyclist is separated from the street lane by hedges or other tall plants) and the 'breathability' (i.e., associated with surrounding infrastructure) of the area on the obtained concentrations; the average concentration of BC in such places ranged from 1.3 to 2.2 μg/m3, whereas a cyclist riding directly on bike paths adjacent to the main roads in the city center is exposed to concentrations in the range of 2.3-14 μg/m3. The results of the measurements, also related to stationary measurements made at a selected point of one of the routes, clearly indicate the importance of the infrastructure surrounding the bicycle paths, their location, and the impact of urban traffic on the obtained BC concentrations. The results presented in our study are based only on short-term-field campaigns preliminary studies. To determine the quantitative impact of the characteristics of the bicycle route on the concentration of pollutants, and thus the exposure of users, the systematized research should cover a greater part of the city and be representative in terms of various hours of the day.
Collapse
Affiliation(s)
- Joanna A Kamińska
- Wrocław University of Environmental and Life Sciences, Department of Applied Mathematics, Grunwaldzka 53, 50-357, Wrocław, Poland.
| | - Tomasz Turek
- Wrocław University of Environmental and Life Sciences, Department of Applied Mathematics, Grunwaldzka 53, 50-357, Wrocław, Poland.
| | | | - Jan Peters
- VITO, Flemish Institute for Technological Research, 2400, Mol, Belgium.
| | - Jelle Hofman
- VITO, Flemish Institute for Technological Research, 2400, Mol, Belgium.
| | - Jan K Kazak
- Wrocław University of Environmental and Life Sciences, Institute of Spatial Management, Grunwaldzka 55, 50-357, Wrocław, Poland.
| |
Collapse
|
8
|
Zhou X, Zhou X, Wang C, Zhou H. Environmental and human health impacts of volatile organic compounds: A perspective review. CHEMOSPHERE 2023; 313:137489. [PMID: 36513206 DOI: 10.1016/j.chemosphere.2022.137489] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/28/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Volatile organic compounds (VOCs) are synthetic chemicals that are broadly used in the production of numerous day-to-day products for residential and commercial-based applications. VOCs are naturally occurring in the environment; however, average annual emissions of man-made volatile organic compounds may have increased dramatically in recent decades. Although many factors were attributed to influencing volatile compounds' emission, only mankind's activities are mainly proclaimed. Since vehicle and industrial pollution are mounting for years and years, urban areas are highly prone to the impacts of VOCs. Generally, volatile compounds are highly spontaneous and readily react with the particles of ambiance and produce a polluted atmosphere through several physical and chemical reactions. Though the volatile compounds play an indispensable role in the manufacture and maintaining the stability of many products, the health impacts associated with their prolonged exposure are gaining attention as recent research reports underline the influence of a wide range of diseases and disorders. Likewise, since the modern way of life applies a lot of day-to-day chemicals, it is imperative to spread a wide knowledge and safety aspects about these chemicals so that people of a wide category can implement preventive measures according to their exposure and living style. In this context, the review article attempts to shed light on past and current updates concerning the relationship between VOCs exposure and environmental and human health impacts.
Collapse
Affiliation(s)
- Xihe Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Xiang Zhou
- Sinomaple Furnishing (Jiangsu) Co., Ltd., 99 Fen an Dong Lu, Wujiang District, Suzhou, Jiangsu, 215200, China
| | - Chengming Wang
- Holtrop & Jansma (Qingdao) Environmental Protection Equipment Co., Ltd., 8 Tongshun Road, High-tech District, Qingdao, Shandong, 266114, China
| | - Handong Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| |
Collapse
|
9
|
Li Y, Zheng C, An X, Hou Q. Acute effects of black carbon on mortality in nine megacities of China, 2008-2016: a time-stratified case-crossover study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:57873-57884. [PMID: 35357648 DOI: 10.1007/s11356-022-19899-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Black carbon (BC) may have more adverse effects on human health than other constituents of PM2.5. The daily mean concentrations of BC in China are much higher than those in developed countries and are estimated to account for more than a quarter of global anthropogenic BC emissions. However, reports on the health effects of BC in China have been limited. Thus, a time-stratified case-crossover study was conducted to evaluate the impacts of BC on daily mortality risk in nine Chinese megacities from 2008-2016. Our results show that for all-cause mortality, when compared to the interquartile range (IQR) of BC concentration increased, odds ratios (ORs) were in the range of 1.01-1.06 (95% CIs: 0.99-1.10). For cardiovascular mortality, ORs were in the range of 1.02-1.07 (95% CIs: 1.003-1.12), and for respiratory mortality, ORs were in the range of 1.01-1.15 (95% CIs: 1.00-1.18). The effects of BC in the nine cities were robust after adjusting for PM2.5, or even became more prominent. Furthermore, BC had stronger effects in spring and winter in northern cities, whereas in mid-latitude cities, BC had stronger effects in the warm seasons. In southern cities, BC had stronger effects in the cool and dry seasons. Our findings support an association between residential exposure to BC and mortality and thus provide further evidence that BC negatively impacts human health and is helpful for decision-making.
Collapse
Affiliation(s)
- Yi Li
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing, 100081, China
| | - Canjun Zheng
- Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xingqin An
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing, 100081, China
| | - Qing Hou
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing, 100081, China.
| |
Collapse
|
10
|
Hou Q, An X, Sun Z, Zhang C, Liang K. Assessment of black carbon exposure level and health economic loss in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:52123-52132. [PMID: 35258732 DOI: 10.1007/s11356-021-17776-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
Based on the geographic information system (GIS) software and the application of the black carbon (BC) and fine particulate matter ([Formula: see text]) ratio method, this paper analyzed and calculated the national BC distribution from 2015 to 2017 and evaluated the national human exposure to BC. The results showed that from 2015 to 2017, 2/3 of the national land area and nearly half of the population were exposed to 1-3 [Formula: see text], and the area and population exposed to a concentration less than 2 [Formula: see text] increased yearly, while the area and population exposed to a concentration higher than 9 [Formula: see text] decreased yearly. The estimated economic loss showed that 77.3% of the targeted districts or counties claimed a loss per square kilometer of 50 million Chinese Yuan (CNY) or less from the perspective of annual changes, and districts and counties in Beijing-Tianjin-Hebei and Hunan with annual losses between 50 and 500 million CNY showed an increasing trend. The BC ratio (the proportion of BC economic loss to GDP) of Beijing-Tianjin-Hebei and Hunan also showed an increasing trend yearly.
Collapse
Affiliation(s)
- Qing Hou
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing, 100081, China
| | - Xingqin An
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing, 100081, China.
| | - Zhaobin Sun
- Institute of Urban Meteorology, China Meteorological Administration, Beijing, 100089, China
| | - Chao Zhang
- SuperMap Software Co., Ltd, Beijing, 100015, China
| | - Ke Liang
- China Meteorological Administration, Beijing, 100081, China
| |
Collapse
|
11
|
Shen Y, Wang C, Yu G, Meng X, Wang W, Kan H, Zhang J, Cai J. Associations of Ambient Fine Particulate Matter and Its Chemical Constituents with Birth Weight for Gestational Age in China: A Nationwide Survey. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8406-8415. [PMID: 35609000 DOI: 10.1021/acs.est.1c08393] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This study examined the associations of fine particulate matter (PM2.5) and its chemical constituents with risks of small for gestational age (SGA) and large for gestational age (LGA). Based on the China Labor and Delivery Survey, we included 70,206 birth records from 24 provinces in China. Concentrations of PM2.5 mass and six main constituents were estimated using satellite-based models. Logistic regression analysis was used to examine the associations, adjusted for sociodemographic characteristics and time trends. We found that an interquartile range increase in PM2.5 exposure during pregnancy was associated with 16% (95% confidence interval [CI]: 3-30%) and 11% (95% CI: 1-22%) higher risk of SGA and LGA, respectively. Elevated risk of SGA was associated with exposure to black carbon [odds ratio (OR) = 1.15, 95% CI: 1.00-1.32], ammonium (OR = 1.12, 95% CI: 1.01-1.25), and sulfate (OR = 1.12, 95% CI: 1.04-1.21); while increased risk of LGA was associated with exposure to black carbon (OR = 1.13, 95% CI: 1.02-1.26), ammonium (OR = 1.13, 95% CI: 1.03-1.24), sulfate (OR = 1.08, 95% CI: 1.01-1.15), and nitrate (OR = 1.14, 95% CI: 1.03-1.27). Our findings provide evidence that PM2.5 exposure was associated with increased risks of SGA and LGA, and constituents related to emissions from anthropogenic sources may play important roles in these associations.
Collapse
Affiliation(s)
- Yang Shen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Cuiping Wang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200092, China
| | - Guoqi Yu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200092, China
| | - Xia Meng
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Weidong Wang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200092, China
| | - Jing Cai
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai 200032, China
| |
Collapse
|
12
|
Wang Y, Shupler M, Birch A, Chu YL, Jeronimo M, Rangarajan S, Mustaha M, Heenan L, Seron P, Lanas F, Salazar L, Saavedra N, Oliveros MJ, Lopez-Jaramillo P, Camacho PA, Otero J, Perez-Mayorga M, Yeates K, West N, Ncube T, Ncube B, Chifamba J, Yusuf R, Khan A, Liu Z, Bo H, Wei L, Tse LA, Mohan D, Kumar P, Gupta R, Mohan I, Jayachitra KG, Mony PK, Rammohan K, Nair S, Lakshmi PVM, Sagar V, Khawaja R, Iqbal R, Kazmi K, Yusuf S, Brauer M, Hystad P. Measuring and predicting personal and household Black Carbon levels from 88 communities in eight countries. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151849. [PMID: 34822894 DOI: 10.1016/j.scitotenv.2021.151849] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
Black Carbon (BC) is an important component of household air pollution (HAP) in low- and middle- income countries (LMICs), but levels and drivers of exposure are poorly understood. As part of the Prospective Urban and Rural Epidemiological (PURE) study, we analyzed 48-hour BC measurements for 1187 individual and 2242 household samples from 88 communities in 8 LMICs (Bangladesh, Chile, China, Colombia, India, Pakistan, Tanzania, and Zimbabwe). Light absorbance (10-5 m-1) of collected PM2.5 filters, a proxy for BC concentrations, was calculated via an image-based reflectance method. Surveys of household/personal characteristics and behaviors were collected after monitoring. The geometric mean (GM) of personal and household BC measures was 2.4 (3.3) and 3.5 (3.9)·10-5 m-1, respectively. The correlation between BC and PM2.5 was r = 0.76 for personal and r = 0.82 for household measures. A gradient of increasing BC concentrations was observed for cooking fuels: BC increased 53% (95%CI: 30, 79) for coal, 142% (95%CI: 117, 169) for wood, and 190% (95%CI: 149, 238) for other biomass, compared to gas. Each hour of cooking was associated with an increase in household (5%, 95%CI: 3, 7) and personal (5%, 95%CI: 2, 8) BC; having a window in the kitchen was associated with a decrease in household (-38%, 95%CI: -45, -30) and personal (-31%, 95%CI: -44, -15) BC; and cooking on a mud stove, compared to a clean stove, was associated with an increase in household (125%, 95%CI: 96, 160) and personal (117%, 95%CI: 71, 117) BC. Male participants only had slightly lower personal BC (-0.6%, 95%CI: -1, 0.0) compared to females. In multivariate models, we were able to explain 46-60% of household BC variation and 33-54% of personal BC variation. These data and models provide new information on exposure to BC in LMICs, which can be incorporated into future exposure assessments, health research, and policy surrounding HAP and BC.
Collapse
Affiliation(s)
- Ying Wang
- College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, United States
| | - Matthew Shupler
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada; Department of Public Health, Policy and Systems, University of Liverpool, Liverpool, United Kingdom
| | - Aaron Birch
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yen Li Chu
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Matthew Jeronimo
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sumathy Rangarajan
- Population Health Research Institute, Hamilton Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Maha Mustaha
- Population Health Research Institute, Hamilton Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Laura Heenan
- Population Health Research Institute, Hamilton Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | | | | - Paul A Camacho
- Fundación Oftalmológica de Santander (FOSCAL), Floridablanca, Colombia
| | - Johnna Otero
- Fundación Oftalmológica de Santander (FOSCAL), Floridablanca, Colombia
| | - Maritza Perez-Mayorga
- Facultad de Medicina Universidad Militar Nueva Granada and Clinica de Marly, Bogota, Colombia
| | - Karen Yeates
- Pamoja Tunaweza Research Centre, Moshi, Tanzania; Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Nicola West
- Pamoja Tunaweza Research Centre, Moshi, Tanzania
| | - Tatenda Ncube
- Department of Biomedical Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Brian Ncube
- Department of Biomedical Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Jephat Chifamba
- Department of Biomedical Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Rita Yusuf
- School of Life Sciences, Independent University, Dhaka, Bangladesh
| | - Afreen Khan
- School of Life Sciences, Independent University, Dhaka, Bangladesh
| | - Zhiguang Liu
- Beijing An Zhen Hospital of the Capital University of Medical Sciences, China
| | - Hu Bo
- Medical Research & Biometrics Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences, China
| | - Li Wei
- Medical Research & Biometrics Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences, China
| | - L A Tse
- Jockey Club School of Public health and Primary Care, the Chinese University of Hong Kong, HKSAR, China
| | - Deepa Mohan
- Madras Diabetes Research Foundation, Chennai, India
| | | | - Rajeev Gupta
- Eternal Heart Care Centre & Research Institute, Jaipur, India
| | - Indu Mohan
- Mahatma Gandhi University of Medical Sciences and Technology, Jaipur, India
| | - K G Jayachitra
- St. John's Medical College & Research Institute, Bangalore, India
| | - Prem K Mony
- St. John's Medical College & Research Institute, Bangalore, India
| | - Kamala Rammohan
- Health Action By People, Government Medical College, Trivandrum, India
| | - Sanjeev Nair
- Health Action By People, Government Medical College, Trivandrum, India
| | - P V M Lakshmi
- Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Vivek Sagar
- Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Rehman Khawaja
- Department of Community Health Science, Aga Khan University Hospital, Karachi, Pakistan
| | - Romaina Iqbal
- Department of Community Health Science, Aga Khan University Hospital, Karachi, Pakistan
| | - Khawar Kazmi
- Department of Community Health Science, Aga Khan University Hospital, Karachi, Pakistan
| | - Salim Yusuf
- Population Health Research Institute, Hamilton Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Michael Brauer
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Perry Hystad
- College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, United States.
| |
Collapse
|
13
|
Tran PTM, Adam MG, Balasubramanian R. Assessment and mitigation of toddlers' personal exposure to black carbon before and during the COVID-19 pandemic: A case study in Singapore. ENVIRONMENTAL RESEARCH 2021; 202:111711. [PMID: 34280416 PMCID: PMC9749899 DOI: 10.1016/j.envres.2021.111711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 05/17/2023]
Abstract
Black carbon (BC), an important indicator of traffic-related air pollution (TRAP) in urban environments, is receiving increased attention because of its adverse health effects. Personal exposure (PE) of adults to BC has been widely studied, but little is known about the exposure of young children (toddlers) to BC in cities. We carried out a pilot study to investigate the integrated daily PE of toddlers to BC in a city-state with a high population density (Singapore). We studied the impact of urban traffic on the PE of toddlers to BC by comparing and contrasting on-road traffic flow (i.e., volume and composition) in Singapore in 2019 (before the COVID-19 pandemic) and in 2020 (during the COVID-19 pandemic). Our observations indicate that the daily BC exposure levels and inhaled doses increased by about 25% in 2020 (2.9 ± 0.3 μg m-3 and 35.5 μg day-1) compared to that in 2019 (2.3 ± 0.4 μg m-3 and 28.5 μg day-1 for exposure concentration and inhaled dose, respectively). The increased BC levels were associated with the increased traffic volume on both weekdays and weekends in 2020 compared to the same time period in 2019. Specifically, we observed an increase in the number of trucks as well as cars/taxis and motorcycles (private transport) and a decline in the number of buses (public transport) in 2020. The implementation of lockdown measures in 2020 resulted in significant changes in the time, place and duration of PE of toddlers to BC. The recorded daily time-activity patterns indicated that toddlers spent almost all the time in indoor environments during the measurement period in 2020. When we compared different ventilation options (natural ventilation (NV), air conditioning (AC), and portable air cleaner (PAC)) for mitigation of PE to BC in the home environment, we found a significant decrease (>30%) in daily BC exposure levels while using the PAC compared to the NV scenario. Our case study shows that the PE of toddlers to BC is of health concern in indoor environments in 2020 because of the migration of the increased TRAP into naturally ventilated residential homes and more time spent indoors than outdoors. Since toddlers' immune system is weak, technological intervention is necessary to protect their health against inhalation exposure to air pollutants.
Collapse
Affiliation(s)
- Phuong T M Tran
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, 117576, Singapore; Faculty of Environment, University of Science and Technology, The University of Danang, 54 Nguyen Luong Bang Street, Lien Chieu District, Danang City, Viet Nam
| | - Max G Adam
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Rajasekhar Balasubramanian
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, 117576, Singapore.
| |
Collapse
|
14
|
Fu S, Yue D, Lin W, Hu Q, Yuan L, Zhao Y, Zhai Y, Mai D, Zhang H, Wei Q, He L. Insights into the source-specific health risk of ambient particle-bound metals in the Pearl River Delta region, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112642. [PMID: 34399126 DOI: 10.1016/j.ecoenv.2021.112642] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 05/16/2023]
Abstract
Quantification of source-specific health risks of PM2.5 plays an essential role in health-oriented air pollution control. However, there is limited evidence supporting the source-based risk apportionment of particle-bound metals. In this study, source-specific cancer and non-cancer risk characterization of 12 particle-bound metals was performed in the Pearl River Delta (PRD) region, China. A combination of health risk assessment model and receptor-based source apportionment modeling with positive matrix factorization (PMF) was applied for characterizing the spatial-temporal patterns for inhalation health risks of particle-bound metals in three main city clusters, inland area and coastal area in the region from December 2014 through July 2016. Results showed that the carcinogenic risk of particle-bound metals for adults (4.13 × 10-5) was higher than that for children (9.53 × 10-6) in the PRD region. The highest and significant non-carcinogenic risk was found in the northwest city cluster. Industrial emission (63.3%) were the dominant contributors to the cancer risk, while the main contributors to the non-cancer risk were the vehicle emission source (33.2%) in the dry season and industrial emission (30.8%) in the wet season. Our results provide important evidence for spatial source-specific health risks with temporal characteristics of particle-bound metals in most densely populated areas in the southern China, and suggest that reduction of industrial and vehicle emissions could facilitate more cost-effective PM2.5 control measures to improve human health.
Collapse
Affiliation(s)
- Shaojie Fu
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Dingli Yue
- Guangdong Ecological and Environmental Monitoring Center, State Environmental Protection Key Laboratory of Regional Air Quality Monitoring, Guangzhou 510308, China
| | - Weiwei Lin
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Qiansheng Hu
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Luan Yuan
- Guangdong Ecological and Environmental Monitoring Center, State Environmental Protection Key Laboratory of Regional Air Quality Monitoring, Guangzhou 510308, China
| | - Yan Zhao
- Guangdong Ecological and Environmental Monitoring Center, State Environmental Protection Key Laboratory of Regional Air Quality Monitoring, Guangzhou 510308, China
| | - Yuhong Zhai
- Guangdong Ecological and Environmental Monitoring Center, State Environmental Protection Key Laboratory of Regional Air Quality Monitoring, Guangzhou 510308, China
| | - Dejian Mai
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Hedi Zhang
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Qing Wei
- Experimental Teaching Center, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Lingyan He
- Key Laboratory for Urban Habitat Environmental Science and Technology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| |
Collapse
|
15
|
Suhaimi NF, Jalaludin J, Abu Bakar S. The Influence of Traffic-Related Air Pollution (TRAP) in Primary Schools and Residential Proximity to Traffic Sources on Histone H3 Level in Selected Malaysian Children. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18157995. [PMID: 34360284 PMCID: PMC8345469 DOI: 10.3390/ijerph18157995] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/12/2021] [Accepted: 07/21/2021] [Indexed: 02/07/2023]
Abstract
This study aimed to investigate the association between traffic-related air pollution (TRAP) exposure and histone H3 modification among school children in high-traffic (HT) and low-traffic (LT) areas in Malaysia. Respondents' background information and personal exposure to traffic sources were obtained from questionnaires distributed to randomly selected school children. Real-time monitoring instruments were used for 6-h measurements of PM10, PM2.5, PM1, NO2, SO2, O3, CO, and total volatile organic compounds (TVOC). Meanwhile, 24-h measurements of PM2.5-bound black carbon (BC) were performed using air sampling pumps. The salivary histone H3 level was captured using an enzyme-linked immunosorbent assay (ELISA). HT schools had significantly higher PM10, PM2.5, PM1, BC, NO2, SO2, O3, CO, and TVOC than LT schools, all at p < 0.001. Children in the HT area were more likely to get higher histone H3 levels (z = -5.13). There were positive weak correlations between histone H3 level and concentrations of NO2 (r = 0.37), CO (r = 0.36), PM1 (r = 0.35), PM2.5 (r = 0.34), SO2 (r = 0.34), PM10 (r = 0.33), O3 (r = 0.33), TVOC (r = 0.25), and BC (r = 0.19). Overall, this study proposes the possible role of histone H3 modification in interpreting the effects of TRAP exposure via non-genotoxic mechanisms.
Collapse
Affiliation(s)
- Nur Faseeha Suhaimi
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Juliana Jalaludin
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
- Department of Occupational Health and Safety, Faculty of Public Health, Universitas Airlangga, Surabaya 60115, Indonesia
- Correspondence: ; Tel.: +603-97692401
| | - Suhaili Abu Bakar
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| |
Collapse
|
16
|
Zhao S, Yin D, Yu Y, Kang S, Ren X, Zhang J, Zou Y, Qin D. PM 1 chemical composition and light absorption properties in urban and rural areas within Sichuan Basin, southwest China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 280:116970. [PMID: 33780845 DOI: 10.1016/j.envpol.2021.116970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Sichuan Basin is encircled by high mountains and plateaus with the heights ranging from 1 km to 3 km, and is one of the most polluted regions in China. However, the dominant chemical species and light absorption properties of aerosol particles is still not clear in rural areas. Chemical composition in PM1 (airborne particulate matter with an aerodynamic diameter less than 1 μm) and light-absorbing properties were determined in Chengdu (urban) and Sanbacun (rural) in western Sichuan Basin (WSB), Southwest China. Carbonaceous aerosols and secondary inorganic ions (NH4+, NO3- and SO42-) dominate PM1 pollution, contributing more than 85% to PM1 mass at WSB. The mean concentrations of organic and elemental carbon (OC, EC), K+ and Cl- are 19.69 μg m-3, 8.00 μg m-3, 1.32 μg m-3, 1.16 μg m-3 at the rural site, which are 26.2%, 65.3%, 34.7% and 48.7% higher than those at the urban site, respectively. BrC (brown carbon) light absorption coefficient at 405 nm is 63.90 ± 27.81 M m-1 at the rural site, contributing more than half of total absorption, which is about five times higher than that at urban site (10.43 ± 4.74 M m-1). Compared with secondary OC, rural BrC light absorption more depends on primary OC from biomass and coal burning. The rural MAEBrC (BrC mass absorption efficiency) at 405 nm ranges from 0.6 to 5.1 m2 g-1 with mean value of 3.5 ± 0.8 m2 g-1, which is about three times higher than the urban site.
Collapse
Affiliation(s)
- Suping Zhao
- Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; Pingliang Land Surface Process & Severe Weather Research Station, Pingliang, 744015, China
| | - Daiying Yin
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Ye Yu
- Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; Pingliang Land Surface Process & Severe Weather Research Station, Pingliang, 744015, China
| | - Shichang Kang
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; CAS Centre for Excellence in Tibetan Plateau Earth Sciences, Beijing, 100101, China
| | - Xiaolin Ren
- Maerkang Meteorological Bureau, Maerkang, 624000, China
| | - Jing Zhang
- Maerkang Meteorological Bureau, Maerkang, 624000, China
| | - Yong Zou
- Lixian Meteorological Bureau, Lixian, 624000, China
| | - Dahe Qin
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| |
Collapse
|
17
|
Rahmatinia M, Hadei M, Hopke PK, Querol X, Shahsavani A, Namvar Z, Kermani M. Relationship between ambient black carbon and daily mortality in Tehran, Iran: a distributed lag nonlinear time series analysis. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2021; 19:907-916. [PMID: 34150281 PMCID: PMC8172677 DOI: 10.1007/s40201-021-00659-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
PURPOSE The aim of the present study was to investigate the effect of short-term exposure to ambient black carbon (BC) on daily cause-specific mortality, including mortality due to respiratory, cardiovascular, ischemic heart and cerebrovascular diseases in Tehran, Iran. MATERIALS AND METHODS Daily non-accidental death counts, meteorological data and hourly concentrations of air pollutants from 2014 to 2017 were collected in Tehran. A distributed lag non-linear model was used to assess the association between exposure to BC and daily mortality. RESULTS The mean daily BC concentration during the study period was 3.96 ± 1.19 µg/m3. The results indicated that BC was significantly associated with cardiovascular, ischemic heart disease, and cerebrovascular mortality, but not with respiratory mortality. In first model, each 10 µg/m3 increase in at lag 3, lag 4 and lag 5 were associated with cardiovascular mortality in 16-65 year age group with the relative risks (RRs) of 1.17 (95 % CI: 1.02-1.33), 1.17 (95 % CI: 1.04-1.31) and 1.12 (95 % CI: 1.02-1.24), respectively. The highest mortality rate per 10 µg/m3 increase in exposure was found for ischemic heart diseases with RR of 3.98 (95 % CI: 1.04-1.81, lag 01) for 16-65 age group. Cerebrovascular mortality was associated with 10 µg/m3 increases in non-cumulative exposure with RR of 1.17 (95 % 1.009-1.35, lag 5) in the age group ≥ 65 years. In the second model for a 10 µg/m3 increase in BC, cardiovascular mortality at specific lag days (5 and 6 days) in the age group ≤ 16 years were associated with RR of 1.34 (95 % CI 1.08-1.66) and 1.35(95 % CI 1.02-1.77), respectively. CONCLUSIONS This study in Tehran found significant effects of BC exposure on daily mortality for cardiovascular, ischemic heart disease, cerebrovascular disease. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s40201-021-00659-0.
Collapse
Affiliation(s)
- Masoumeh Rahmatinia
- Student Research Committee, Department of Environmental Health Engineering, School of Public Health and safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Hadei
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Philip K. Hopke
- Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642 USA
- Center for Air Resources Engineering and Science, Clarkson University, 13699 Potsdam, NY USA
| | - Xavier Querol
- Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Barcelona, Spain
| | - Abbas Shahsavani
- Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Namvar
- Student Research Committee, Department of Environmental Health Engineering, School of Public Health and safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Kermani
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Hu Q, Wang D, Yue D, Xu C, Hu B, Cheng P, Zhai Y, Mai H, Li P, Gong J, Zeng X, Jiang T, Mai D, Fu S, Guo L, Lin W. Association of ambient particle pollution with gestational diabetes mellitus and fasting blood glucose levels in pregnant women from two Chinese birth cohorts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:143176. [PMID: 33158526 DOI: 10.1016/j.scitotenv.2020.143176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 08/21/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Fasting blood glucose may capture the adverse effects of air pollution on pregnant women better than the incidence of gestational diabetes mellitus (GDM), but evidence on the association between air pollution and maternal glucose concentrations is limited. OBJECTIVE To investigate the associations between air pollutants, GDM and fasting blood glucose during pregnancy. METHODS We recruited 2326 pregnant women from two birth cohorts located in Guangzhou and Heshan, the Pearl River Delta region (PRD), China. PM10, PM2.5 and black carbon (BC) exposure concentrations in the first and second trimesters of pregnancy were collected at fixed-site monitoring stations for each cohort. Multiple logistic regressions were employed to estimate the associations between particle pollution and GDM. Mixed-effects models were used to evaluate the associations of air pollutants with blood glucose levels. Restricted cubic spline functions were fitted to visualize the concentration-response relationships. Distributed lag non-linear models were used to estimate week-specific lag effects of particle pollution exposure on GDM and blood glucose. Unconstrained distributed lag models with lags of 0-3 weeks were used to examine potential cumulative effects. RESULTS We observed positive and significant associations of PM10, PM2.5 and BC exposure with fasting glucose, particularly in the second trimester. PM10, PM2.5 and BC were strongly correlated and displayed similar cumulative (lag 0-3 weeks) associations with fasting blood glucose. Exposure to particle pollution was not associated with 1-h or 2-h blood glucose. Models estimating the association between air pollutants and GDM were consistent with statistical insignificance. CONCLUSIONS Based on the results of the present study, exposure to air pollution during pregnancy exerts cumulative, adverse effects on fasting glucose levels. This study provides preliminary support for the use of blood glucose levels to explore the potential health impact of air pollution on pregnant women.
Collapse
Affiliation(s)
- Qiansheng Hu
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Duo Wang
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Dingli Yue
- Guangdong Environmental Monitoring Center, State Environmental Protection Key Laboratory of Regional Air Quality Monitoring, Guangzhou 510308, Guangdong, China
| | - Chengfang Xu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, Guangdong, China
| | - Bo Hu
- Department of Clinical Laboratory, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, Guangdong, China
| | - Peng Cheng
- Institute of Mass Spectrometer and Atmospheric Environment, Jinan University, Guangzhou 510632, Guangdong, China
| | - Yuhong Zhai
- Guangdong Environmental Monitoring Center, State Environmental Protection Key Laboratory of Regional Air Quality Monitoring, Guangzhou 510308, Guangdong, China
| | - Huiying Mai
- Department of Obstetrics and Gynecology, Heshan Maternal and Child Health Hospital, Heshan, 529700 Jiangmen, Guangdong, China
| | - Ping Li
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, Guangdong, China
| | - Jiao Gong
- Department of Clinical Laboratory, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, Guangdong, China
| | - Xiaoling Zeng
- Department of Obstetrics and Gynecology, Heshan Maternal and Child Health Hospital, Heshan, 529700 Jiangmen, Guangdong, China
| | - Tingwu Jiang
- Department of Clinical Laboratory, Heshan Maternal and Child Health Hospital, Heshan, 529700 Jiangmen, Guangdong, China
| | - Dejian Mai
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Shaojie Fu
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Lihua Guo
- Department of Obstetrics and Gynecology, Heshan Maternal and Child Health Hospital, Heshan, 529700 Jiangmen, Guangdong, China
| | - Weiwei Lin
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, China.
| |
Collapse
|
19
|
Pani SK, Wang SH, Lin NH, Chantara S, Lee CT, Thepnuan D. Black carbon over an urban atmosphere in northern peninsular Southeast Asia: Characteristics, source apportionment, and associated health risks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 259:113871. [PMID: 31918141 DOI: 10.1016/j.envpol.2019.113871] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 05/24/2023]
Abstract
Black carbon (BC) has been demonstrated to pose significant negative impacts on climate and human health. Equivalent BC (EBC) measurements were conducted using a 7-wavelength aethalometer, from March to May 2016, over an urban atmosphere, viz., Chiang Mai (98.957°E, 18.795°N, 373 m above sea level), Thailand in northern peninsular Southeast Asia. Daily variations in aerosol light absorption were mainly governed by open fire activities in the region. The mean mass-specific absorption cross-section (MAC) value of EBC at 880 nm was estimated to be 9.3 m2 g-1. The median EBC mass concentration was the highest in March (3.3 μg m-3) due to biomass-burning (comprised of forest fire and agricultural burning) emissions accompanied by urban air pollution within the planetary boundary layer under favorable meteorological conditions. Daily mean absorption Ångström exponent (AAE470/950) varied between 1.3 and 1.7 and could be due to variations in EBC emission sources and atmospheric mixing processes. EBC source apportionment results revealed that biomass-burning contributed significantly more to total EBC concentrations (34-92%) as compared to fossil-fuel (traffic emissions). Health risk estimates of EBC in relation to different health outcomes were assessed in terms of passive cigarette equivalence, highlighting the considerable health effects associated with exposure to EBC levels. As a necessary action, the reduction of EBC emissions would promote considerable climate and health co-benefits.
Collapse
Affiliation(s)
- Shantanu Kumar Pani
- Department of Atmospheric Sciences, National Central University, Taoyuan, 32001, Taiwan
| | - Sheng-Hsiang Wang
- Department of Atmospheric Sciences, National Central University, Taoyuan, 32001, Taiwan
| | - Neng-Huei Lin
- Department of Atmospheric Sciences, National Central University, Taoyuan, 32001, Taiwan; Center for Environmental Monitoring and Technology, National Central University, Taoyuan, 32001, Taiwan.
| | - Somporn Chantara
- Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chung-Te Lee
- Graduate Institute of Environmental Engineering, National Central University, Taoyuan, 32001, Taiwan
| | - Duangduean Thepnuan
- Environmental Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| |
Collapse
|