1
|
Wang J, Yin J, Peng D, Zhang X, Shi Z, Li W, Shi Y, Sun M, Jiang N, Cheng B, Meng X, Liu R. 4-Nitrophenol at environmentally relevant concentrations mediates reproductive toxicity in Caenorhabditis elegans via metabolic disorders-induced estrogen signaling pathway. J Environ Sci (China) 2025; 147:244-258. [PMID: 39003044 DOI: 10.1016/j.jes.2023.09.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/16/2023] [Accepted: 09/24/2023] [Indexed: 07/15/2024]
Abstract
4-Nitrophenol (4-NP), as a toxic and refractory pollutant, has generated significant concern due to its adverse effects. However, the potential toxic effects and mechanism remained unclear. In this study, the reproduction, development, locomotion and reactive oxygen species (ROS) production of Caenorhabditis elegans were investigated to evaluate the 4-NP toxicity. We used metabolomics to assess the potential damage mechanisms. The role of metabolites in mediating the relationship between 4-NP and phenotypes was examined by correlation and mediation analysis. 4-NP (8 ng/L and 8 µg/L) caused significant reduction of brood size, ovulation rate, total germ cells numbers, head thrashes and body bends, and an increase in ROS. However, the oosperm numbers in uterus, body length and body width were decreased in 8 µg/L. Moreover, 36 differential metabolites were enriched in the significant metabolic pathways, including lysine biosynthesis, β-alanine metabolism, tryptophan metabolism, pentose phosphate pathway, pentose and glucuronate interconversions, amino sugar and nucleotide sugar metabolism, starch and sucrose metabolism, galactose metabolism, propanoate metabolism, glycerolipid metabolism, and estrogen signaling pathway. The mechanism of 4-NP toxicity was that oxidative stress caused by the perturbation of amino acid, which had effects on energy metabolism through disturbing carbohydrate and lipid metabolism, and finally affected the estrogen signaling pathway to exert toxic effects. Moreover, correlation and mediation analysis showed glycerol-3P, glucosamine-6P, glucosamine-1P, UDP-galactose, L-aspartic acid, and uracil were potential markers for the reproduction and glucose-1,6P2 for developmental toxicity. The results provided insight into the pathways involved in the toxic effects caused by 4-NP and developed potential biomarkers to evaluate 4-NP toxicity.
Collapse
Affiliation(s)
- Jia Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Jiechen Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Danhong Peng
- Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Xiaoqian Zhang
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215002, China
| | - Zhouhong Shi
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215002, China
| | - Weixi Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Yingchi Shi
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Mingjun Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Nan Jiang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Beijing Cheng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Xingchen Meng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
2
|
Boon D, Burns CJ. Biomonitoring of 2,4-dichlorophenoxyacetic acid (2,4-D) herbicide: A global view. Regul Toxicol Pharmacol 2024; 152:105687. [PMID: 39168368 DOI: 10.1016/j.yrtph.2024.105687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/23/2024]
Abstract
We conducted a literature review of urinary 2,4-D in populations not associated with a herbicide application. Of the 33 studies identified, the median/mean concentrations were similar for children, adults, and pregnant women regardless of geography. Individuals with highest concentrations may have had opportunities to directly contact 2,4-D outside of an application. Most studies were conducted in populations in North America and did not examine potential sources of 2,4-D, or what factors might influence higher or lower urinary 2,4-D concentrations. In the future, prioritizing the examination of 2,4-D biomonitoring in other regions and collecting information on sources and factors influencing exposures would better our understanding of 2,4-D exposures globally. In all the studies reviewed the concentrations of urinary 2,4-D observed were orders of magnitude below the US regulatory endpoints, suggesting that people are not being exposed to 2,4-D at levels high enough to result in adverse health effects.
Collapse
Affiliation(s)
| | - Carol J Burns
- Burns Epidemiology Consulting, LLC, Thompsonville, MI, 49683 USA.
| |
Collapse
|
3
|
Sun YX, Ji BT, Chen JH, Gao LL, Sun Y, Deng ZP, Zhao B, Li JG. Ratiometric emission of Tb(III)-functionalized Cd-based layered MOFs for portable visual detection of trace amounts of diquat in apples, potatoes and corn. Food Chem 2024; 449:139259. [PMID: 38626667 DOI: 10.1016/j.foodchem.2024.139259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/18/2024]
Abstract
Diquat (DQ) is a typical bipyridine herbicide widely used to control weeds in fields and orchards. The severe toxicity of diquat poses a serious threat to the environment and human health. Metal-organic frameworks (MOFs) have received widespread attention due to their unique physical and chemical properties and applications in the detection of toxic and harmful substances. In this work, a two-dimensional (2D) Tb(III) functionalized MOF Tb(III)@1 (1 = [Cd(HTATB)(bimb)]n·H2O (Cd-MOF), H3TATB = 4,4',4″-triazine-2,4,6-tribenzoicacid, bimb = 1,4-bis((1H-imidazol-1-yl)methyl)benzene) has been prepared and characterized. Tb(III)@1 has excellent optical properties and high water and chemical stability. After the Tb(III) is fixed by the uncoordinated -COO- in the 1 framework, Tb(III)@1 emits the typical green fluorescence of the lanthanide ion Tb(III) through the "antenna effect". It is worth noting that Tb(III)@1 can be used as a dual emission fluorescence chemical sensor for the ratio fluorescence detection of pesticide DQ, exhibiting a relatively low detection limit of 0.06 nM and a wide detection range of 0-50 nM. After the addition of DQ, a rapid color change of Tb(III)@1 fluorescence from green to blue was observed due to the combined effects of IFE, FRET and dynamic quenching. Therefore, a simple test paper box has been designed for direct on-site determination of pesticide DQ. In addition, the developed sensor has been successfully applied to the detection of DQ in real samples (fruits a Yin-Xia Sun and Bo-Tao Ji contributed equally to this work and should be considered co-first authors.nd vegetables) with satisfactory results. The results indicate that the probe developed in this study has broad application prospects in both real sample detection and actual on-site testing.
Collapse
Affiliation(s)
- Yin-Xia Sun
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, PR China.
| | - Bo-Tao Ji
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, PR China
| | - Jiang-Hai Chen
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, PR China
| | - Lu-Lu Gao
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, PR China
| | - Yu Sun
- Experimental Teaching Department of Northwest Minzu University, Lanzhou 730030, China
| | - Zhe-Peng Deng
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, PR China.
| | - Biao Zhao
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, PR China
| | - Jin-Guo Li
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, PR China
| |
Collapse
|
4
|
Zhang Y, Gao Y, Liu QS, Zhou Q, Jiang G. Chemical contaminants in blood and their implications in chronic diseases. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133511. [PMID: 38262316 DOI: 10.1016/j.jhazmat.2024.133511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/27/2023] [Accepted: 01/10/2024] [Indexed: 01/25/2024]
Abstract
Artificial chemical products are widely used and ubiquitous worldwide and pose a threat to the environment and human health. Accumulating epidemiological and toxicological evidence has elucidated the contributions of environmental chemical contaminants to the incidence and development of chronic diseases that have a negative impact on quality of life or may be life-threatening. However, the pathways of exposure to these chemicals and their involvements in chronic diseases remain unclear. We comprehensively reviewed the research progress on the exposure risks of humans to environmental contaminants, their body burden as indicated by blood monitoring, and the correlation of blood chemical contaminants with chronic diseases. After entering the human body through various routes of exposure, environmental contaminants are transported to target organs through blood circulation. The application of the modern analytical techniques based on human plasma or serum specimens is promising for determining the body burden of environmental contaminants, including legacy persistent organic pollutants, emerging pollutants, and inorganic elements. Furthermore, their body burden, as indicated by blood monitoring correlates with the incidence and development of metabolic syndromes, cancers, chronic nervous system diseases, cardiovascular diseases, and reproductive disorders. On this basis, we highlight the urgent need for further research on environmental pollution causing health problems in humans.
Collapse
Affiliation(s)
- Yuzhu Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yurou Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qian S Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, PR China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, PR China
| |
Collapse
|
5
|
Peng FJ, Lin CA, Wada R, Bodinier B, Iglesias-González A, Palazzi P, Streel S, Guillaume M, Vuckovic D, Chadeau-Hyam M, Appenzeller BMR. Association of hair polychlorinated biphenyls and multiclass pesticides with obesity, diabetes, hypertension and dyslipidemia in NESCAV study. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132637. [PMID: 37788552 DOI: 10.1016/j.jhazmat.2023.132637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/11/2023] [Accepted: 09/25/2023] [Indexed: 10/05/2023]
Abstract
Obesity, diabetes, hypertension and dyslipidemia are well-established risk factors for cardiovascular diseases (CVDs), and have been associated with exposure to persistent organic pollutants. However, studies have been lacking as regards effects of non-persistent pesticides on CVD risk factors. Here, we investigated whether background chronic exposure to polychlorinated biphenyls (PCBs) and multiclass pesticides were associated with the prevalence of these CVD risk factors in 502 Belgian and 487 Luxembourgish adults aged 18-69 years from the Nutrition, environment and cardiovascular health (NESCAV) study 2007-2013. We used hair analysis to evaluate the chronic internal exposure to three PCBs, seven organochlorine pesticides (OCs) and 18 non-persistent pesticides. We found positive associations of obesity with hexachlorobenzene (HCB), β-hexachlorocyclohexane (β-HCH) and chlorpyrifos, diabetes with pentachlorophenol (PCP), fipronil and fipronil sulfone, hypertension with PCB180 and chlorpyrifos, and dyslipidemia with diflufenican and oxadiazon, among others. However, we also found some inverse associations, such as obesity with PCP, diabetes with γ-HCH, hypertension with diflufenican, and dyslipidemia with chlorpyrifos. These results add to the existing evidence that OC exposure may contribute to the development of CVDs. Additionally, the present study revealed associations between CVD risk factors and chronic environmental exposure to currently used pesticides such as organophosphorus and pyrethroid pesticides.
Collapse
Affiliation(s)
- Feng-Jiao Peng
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Chia-An Lin
- MRC/PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Rin Wada
- MRC/PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Barbara Bodinier
- MRC/PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Alba Iglesias-González
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Paul Palazzi
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Sylvie Streel
- Public Health Sciences Department, University of Liege, Liège, Belgium
| | - Michèle Guillaume
- Public Health Sciences Department, University of Liege, Liège, Belgium
| | - Dragana Vuckovic
- MRC/PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Marc Chadeau-Hyam
- MRC/PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Brice M R Appenzeller
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445 Strassen, Luxembourg.
| |
Collapse
|
6
|
Boonupara T, Udomkun P, Khan E, Kajitvichyanukul P. Airborne Pesticides from Agricultural Practices: A Critical Review of Pathways, Influencing Factors, and Human Health Implications. TOXICS 2023; 11:858. [PMID: 37888709 PMCID: PMC10611335 DOI: 10.3390/toxics11100858] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023]
Abstract
This critical review examines the release of pesticides from agricultural practices into the air, with a focus on volatilization, and the factors influencing their dispersion. The review delves into the effects of airborne pesticides on human health and their contribution to anthropogenic air pollution. It highlights the necessity of interdisciplinary research encompassing science, technology, public policy, and agricultural practices to effectively mitigate the risks associated with pesticide volatilization and spray dispersion. The text acknowledges the need for more research to understand the fate and transport of airborne pesticides, develop innovative application technologies, improve predictive modeling and risk assessment, and adopt sustainable pest management strategies. Robust policies and regulations, supported by education, training, research, and development, are crucial to ensuring the safe and sustainable use of pesticides for human health and the environment. By providing valuable insights, this review aids researchers and practitioners in devising effective and sustainable solutions for safeguarding human health and the environment from the hazards of airborne pesticides.
Collapse
Affiliation(s)
- Thirasant Boonupara
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand (P.U.)
| | - Patchimaporn Udomkun
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand (P.U.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Eakalak Khan
- Civil and Environmental Engineering and Construction Department, University of Nevada, Las Vegas, NV 89154-4015, USA
| | - Puangrat Kajitvichyanukul
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand (P.U.)
| |
Collapse
|
7
|
Palaniswamy S, Abass K, Rysä J, Grimalt JO, Odland JØ, Rautio A, Järvelin MR. Investigating the relationship between non-occupational pesticide exposure and metabolomic biomarkers. Front Public Health 2023; 11:1248609. [PMID: 37900012 PMCID: PMC10602903 DOI: 10.3389/fpubh.2023.1248609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/14/2023] [Indexed: 10/31/2023] Open
Abstract
The relationship between pesticide exposures and metabolomics biomarkers is not well understood. We examined the changes in the serum metabolome (early biomarkers) and the metabolic pathways associated with various pesticide exposure scenarios (OPE: overall exposure, PEM: exposure in months, PEY: exposure in years, and PEU: reported specific pesticides use) using data from the Northern Finland Birth Cohort 1966 31-year cross-sectional examination. We utilized questionnaire data on pesticide exposures and serum samples for nuclear magnetic resonance (NMR)-based metabolomics analyses. For exposures and metabolites associations, participants size varied between 2,361 and 5,035. To investigate associations between metabolomics biomarkers and exposure to pesticide scenarios compared to those who reported no exposures multivariable regression analyses stratified by sex and adjustment with covariates (season of pesticide use, socioeconomic position (SEP), alcohol consumption, BMI, and latitude of residence) were performed. Multiple testing by Benjamini-Hochberg false discovery rate (FDR) correction applied. Pesticide exposures differed by sex, season of pesticide use, alcohol, SEP, latitude of residence. Our results showed that all pesticide exposure scenarios were negatively associated with decreased HDL concentrations across all lipoprotein subclasses in women. OPE, PEY, and PEU were associated with decreased branched-chain amino acid concentrations in men and decreased albumin concentrations in women. OPE, PEY and PEU were also associated with changes in glycolysis metabolites and ketone bodies in both sexes. Specific pesticides exposure was negatively associated with sphingolipids and inflammatory biomarkers in men. In women, OPE, PEM, and PEU were associated with decreased apolipoprotein A1 and increased apolipoprotein B/apolipoprotein A1 ratio. Our findings suggest that identification of early biomarkers of disease risk related to pesticide exposures can inform strategies to reduce exposure and investigate causal pathways. Women may be more susceptible to non-occupational pesticide exposures when compared to men, and future sex-specific studies are warranted.
Collapse
Affiliation(s)
- Saranya Palaniswamy
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
- Arctic Health, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Khaled Abass
- Arctic Health, Faculty of Medicine, University of Oulu, Oulu, Finland
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Jaana Rysä
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Joan O. Grimalt
- Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Barcelona, Spain
| | - Jon Øyvind Odland
- The Norwegian University of Science and Technology, Trondheim, Norway
- School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Arja Rautio
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Thule Institute, University of Arctic, University of Oulu, Oulu, Finland
| | - Marjo-Riitta Järvelin
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
- Unit of Primary Care, Oulu University Hospital, Oulu, Finland
- MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, United Kingdom
| |
Collapse
|
8
|
Jia C, Qiu G, Wang H, Zhang S, An J, Cheng X, Li P, Li W, Zhang X, Yang H, Yang K, Jing T, Guo H, Zhang X, Wu T, He M. Lipid metabolic links between serum pyrethroid levels and the risk of incident type 2 diabetes: A mediation study in the prospective design. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132082. [PMID: 37473566 DOI: 10.1016/j.jhazmat.2023.132082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/24/2023] [Accepted: 07/16/2023] [Indexed: 07/22/2023]
Abstract
Emerging evidence revealed that pyrethroids and circulating lipid metabolites are involved in incident type 2 diabetes (T2D). However, the pyrethroid-associated lipid profile and its potential role in the association of pyrethroids with T2D remain unknown. Metabolome-wide association or mediation analyses were performed among 1006 pairs of T2D cases and matched controls nested within the prospective Dongfeng-Tongji cohort. We identified 59 lipid metabolites significantly associated with serum deltamethrin levels, of which eight were also significantly associated with serum fenvalerate (false discovery rate [FDR] < 0.05). Pathway enrichment analysis showed that deltamethrin-associated lipid metabolites were significantly enriched in the glycerophospholipid metabolism pathway (FDR = 0.02). Furthermore, we also found that several deltamethrin-associated lipid metabolites (i.e., phosphatidylcholine [PC] 32:0, PC 34:4, cholesterol ester 20:0, triacylglycerol 52:5 [18:2]), and glycerophosphoethanolamine-enriched latent variable mediated the association between serum deltamethrin levels and T2D risk, with the mediated proportions being 44.81%, 15.92%, 16.85%, 16.66%, and 22.86%, respectively. Serum pyrethroids, particularly deltamethrin, may lead to an altered circulating lipid profile primarily in the glycerophospholipid metabolism pathway represented by PCs and lysophosphatidylcholines, potentially mediating the association between serum deltamethrin and T2D. The study provides a new perspective in elucidating the potential mechanisms through which pyrethroid exposure might induce T2D.
Collapse
Affiliation(s)
- Chengyong Jia
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Gaokun Qiu
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Hao Wang
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Shiyang Zhang
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Jun An
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xu Cheng
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Peiwen Li
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Wending Li
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xin Zhang
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Handong Yang
- Department of Cardiovascular Diseases, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan 442008, Hubei, China
| | - Kun Yang
- Department of Endocrinology, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan 442008, Hubei, China
| | - Tao Jing
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Huan Guo
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Tangchun Wu
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Meian He
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| |
Collapse
|
9
|
Donat-Vargas C, Schillemans T, Kiviranta H, Rantakokko P, de Faire U, Arrebola JP, Wolk A, Leander K, Åkesson A. Blood Levels of Organochlorine Contaminants Mixtures and Cardiovascular Disease. JAMA Netw Open 2023; 6:e2333347. [PMID: 37698859 PMCID: PMC10498337 DOI: 10.1001/jamanetworkopen.2023.33347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/27/2023] [Indexed: 09/13/2023] Open
Abstract
Importance Cardiovascular toxic effects derived from high exposures to individual organochlorine compounds are well documented. However, there is no evidence on low but continuous exposure to combined organochlorine compounds in the general population. Objective To evaluate the association of combined exposure to several organochlorine compounds, including organochlorine pesticides and polychlorinated biphenyls, with incident cardiovascular disease (CVD) in the general population. Design, Setting, and Participants This prospective nested case-control study included data from 2 cohorts: the Swedish Mammography Cohort-Clinical (SMC-C) and the Cohort of 60-Year-Olds (60YO), with matched case-control pairs based on age, sex, and sample date. Baseline blood sampling occurred from November 2003 to September 2009 (SMC-C) and from August 1997 to March 1999 (60YO), with follow-up through December 2017 (SMC-C) and December 2014 (60YO). Participants with myocardial infarction or ischemic stroke were matched with controls for composite CVD evaluation. Data were analyzed from September 2020 to May 2023. Exposures A total of 25 organochlorine compounds were measured in blood at baseline by gas chromatography-triple quadrupole mass spectrometry. For 7 compounds, more than 75% of the samples were lower than the limit of detection and not included. Main Outcomes and Measures Incident cases of primary myocardial infarction and ischemic stroke were ascertained via linkage to the National Patient Register (International Statistical Classification of Diseases and Related Health Problems, Tenth Revision codes I21 and I63). The quantile-based g-computation method was used to estimate the association between the combined exposure to several organochlorine compounds and composite CVD. Results Of 1528 included participants, 1024 (67.0%) were female, and the mean (SD) age was 72 (7.0) years in the SMC-C and 61 (0.1) years in the 60YO. The odds ratio of composite CVD was 1.71 (95% CI, 1.11-2.64) per 1-quartile increment of total organochlorine compounds mixture. Organochlorinated pesticides were the largest contributors, and β-hexachlorocyclohexane and transnonachlor had the highest impact. Most of the outcome was not explained by disturbances in the main cardiometabolic risk factors, ie, high body mass index, hypertension, lipid alteration, or diabetes. Conclusions and Relevance In this prospective nested case-control study, participants with higher exposures to organochlorines had an increased probability of experiencing a cardiovascular event, the major cause of death worldwide. Measures may be required to reduce these exposures.
Collapse
Affiliation(s)
- Carolina Donat-Vargas
- Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- ISGlobal, Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Madrid, Spain
| | - Tessa Schillemans
- Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Hannu Kiviranta
- Department of Health Security, National Institute for Health and Welfare, Kuopio, Finland
| | - Panu Rantakokko
- Department of Health Security, National Institute for Health and Welfare, Kuopio, Finland
| | - Ulf de Faire
- Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Juan Pedro Arrebola
- CIBER Epidemiología y Salud Pública, Madrid, Spain
- Universidad de Granada, Department of Preventive Medicine and Public Health, Granada, Spain
- Instituto de Investigación Biosanitaria, Granada, Spain
| | - Alicja Wolk
- Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Karin Leander
- Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Agneta Åkesson
- Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
10
|
Pérez-Carrascosa FM, Barrios-Rodríguez R, Gómez-Peña C, Salcedo-Bellido I, Velasco-García ME, Jiménez-Moleón JJ, García-Ruiz A, Navarro-Espigares JL, Requena P, Muñoz-Sánchez C, Arrebola JP. Public healthcare costs associated with long-term exposure to mixtures of persistent organic pollutants in two areas of Southern Spain: A longitudinal analysis. ENVIRONMENTAL RESEARCH 2022; 213:113609. [PMID: 35667403 DOI: 10.1016/j.envres.2022.113609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/24/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Polychlorinated biphenyls and organochlorine pesticides are persistent organic pollutants (POPs) that had been banned or restricted in many countries, including Spain. However, their ubiquity still poses environmental and human health threats. OBJECTIVE To longitudinally explore public healthcare costs associated with long-term exposure to a mixture of 8 POPs in a cohort of residents of two areas of Granada Province, Southern Spain. METHODS Longitudinal study in a subsample (n = 385) of GraMo adult cohort. Exposure assessment was performed by analyzing adipose tissue POP concentrations at recruitment. Average primary care (APC) and average hospital care (AHC) expenditures of each participant over 14 years were estimated using the data from their medical records. Data analyses were performed by robust MM regression, weighted quantile sum regression (WQS) and G-computation analysis. RESULTS In the adjusted robust MM models for APC, most POPs showed positive beta coefficients, being Hexachlorobenzene (HCB) significantly associated (β: 1.87; 95% Confidence interval (95%CI): 0.17, 3.57). The magnitude of this association increased (β: 3.72; 95%CI: 0.80, 6.64) when the analyses were restricted to semi-rural residents, where β-HCH was also marginally-significantly associated to APC (β: 3.40; 95%CI: -0.10, 6.90). WQS revealed a positive but non-significant mixture association with APC (β: 0.14; 95%CI: -0.06, 0.34), mainly accounted for by β-HCH (54%) and HCB (43%), that was borderline-significant in the semi-rural residents (β: 0.23; 95%CI: -0.01, 0.48). No significant results were observed in G-Computation analyses. CONCLUSION Long-term exposure to POP mixtures might represent a modifiable factor increasing healthcare costs, thus affecting the efficiency of the healthcare systems. However, and owing the complexity of the potential causal pathways and the limitations of the present study, further research is warranted to fully elucidate ascertain whether interventions to reduce human exposure should be considered in healthcare policies.
Collapse
Affiliation(s)
- Francisco Miguel Pérez-Carrascosa
- Universidad de Granada, Departamento de Medicina Preventiva y Salud Pública, Granada, Spain; Instituto de Investigación Biosanitaria IBS.GRANADA, Spain; Servicio de Oncología Radioterápica, Hospital Universitario Virgen de Las Nieves, Granada, Spain
| | - Rocío Barrios-Rodríguez
- Universidad de Granada, Departamento de Medicina Preventiva y Salud Pública, Granada, Spain; Instituto de Investigación Biosanitaria IBS.GRANADA, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Celia Gómez-Peña
- Instituto de Investigación Biosanitaria IBS.GRANADA, Spain; Servicio de Farmacia Hospitalaria, Hospital Universitario San Cecilio, Granada, Spain
| | - Inmaculada Salcedo-Bellido
- Universidad de Granada, Departamento de Medicina Preventiva y Salud Pública, Granada, Spain; Instituto de Investigación Biosanitaria IBS.GRANADA, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | | | - José Juan Jiménez-Moleón
- Universidad de Granada, Departamento de Medicina Preventiva y Salud Pública, Granada, Spain; Instituto de Investigación Biosanitaria IBS.GRANADA, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Antonio García-Ruiz
- Departamento de Farmacología y Pediatría, Universidad de Málaga, Málaga, Spain; Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - José Luis Navarro-Espigares
- Universidad de Granada, Departamento de Economía Internacional y de España, Granada, Spain; Dirección Económica y Servicios Generales, Hospital Universitario Virgen de Las Nieves, Granada, Spain
| | - Pilar Requena
- Universidad de Granada, Departamento de Medicina Preventiva y Salud Pública, Granada, Spain; Instituto de Investigación Biosanitaria IBS.GRANADA, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Carmen Muñoz-Sánchez
- Unidad de Tecnologías de La Información y Comunicaciones, Hospital Universitario San Cecilio, Granada, Spain
| | - Juan Pedro Arrebola
- Universidad de Granada, Departamento de Medicina Preventiva y Salud Pública, Granada, Spain; Instituto de Investigación Biosanitaria IBS.GRANADA, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| |
Collapse
|
11
|
Pesticide Exposure in Relation to the Incidence of Abnormal Glucose Regulation: A Retrospective Cohort Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19127550. [PMID: 35742799 PMCID: PMC9223857 DOI: 10.3390/ijerph19127550] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 12/04/2022]
Abstract
Diabetes and prediabetes (called abnormal glucose regulation (AGR)) are adverse health effects associated with exposure to pesticides. However, there are few epidemiological studies on the relationship between pesticide use and the incidence of AGR. We examined the causal relationship between pesticide use and AGR incidence in a rural population using data from a Korean Farmers’ Cohort study of 1076 participants. Poisson regression with robust error variance was used to calculate the relative risks (RR) and 95% confidence intervals (CI) to estimate the relationship between pesticide exposure and AGR. The incidence of AGR in the pesticide-exposed group was 29.1%. Pesticide use increased the RR of AGR (RR 1.32, 95% CI 1.03–1.69). We observed a low-dose effect related to exposure of pesticides to AGR and a U-shaped dose–response relationship in men. Pesticide exposure is related to the incidence of AGR, and the causal relationship differs between men and women.
Collapse
|
12
|
Huang J, Hu L, Yang J. Dietary Magnesium Intake Ameliorates the Association Between Household Pesticide Exposure and Type 2 Diabetes: Data From NHANES, 2007-2018. Front Nutr 2022; 9:903493. [PMID: 35669066 PMCID: PMC9165529 DOI: 10.3389/fnut.2022.903493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/27/2022] [Indexed: 12/03/2022] Open
Abstract
Aims/Hypothesis This study aimed to explore whether household pesticide exposure in the general population increased the risk of developing type 2 diabetes and whether intake of dietary magnesium could lower type 2 diabetes from household pesticide exposure. Methods For this cross-sectional study, we obtained the data of 9,187 United States adults from the National Health and Nutrition Examination Surveys, 2007-2018. Participants were subdivided into two groups based on the amount of daily dietary magnesium in the population: low group: <175 mg/day and high group: ≥175 mg/day. Using multivariable logistic regression analysis, we evaluated the relationship between pesticide exposure in the home and type 2 diabetes. Results Compared to those unexposed at home, individuals who were exposed to pesticides in their households had a relatively higher odds ratio for type 2 diabetes (OR = 1.22, 95% CI: 1.04-1.44). The association of pesticide exposure in the home with the incidence of type 2 diabetes was different for low and high dietary magnesium groups, OR = 1.66, 95% Cl: 1.19-2.33 vs. OR = 1.1, 95% Cl: 0.92-1.32, respectively. An interaction (P = 0.035) between household pesticide exposure and magnesium intake, suggested that high dietary magnesium intake may reduce the risk of developing type 2 diabetes from pesticide exposure. Conclusions Household pesticide exposure in the general population is associated with an elevated risk of type 2 diabetes. We report for the first time possible clinical relevance in that high magnesium intake may ameliorate the increased risk of type 2 diabetes from pesticide exposure.
Collapse
Affiliation(s)
- Jungao Huang
- Key Laboratory of Environment and Disease-Related Gene, Ministry of Education, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, China
- Ganzhou Maternal and Child Health Hospital, Ganzhou, China
| | - Liqin Hu
- Ganzhou Maternal and Child Health Hospital, Ganzhou, China
| | - Juan Yang
- Key Laboratory of Environment and Disease-Related Gene, Ministry of Education, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
13
|
Gene expression profiles of two testicular somatic cell lines respond differently to 4-nitrophenol mediating vary reproductive toxicity. Toxicology 2021; 463:152991. [PMID: 34673133 DOI: 10.1016/j.tox.2021.152991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/04/2021] [Accepted: 10/13/2021] [Indexed: 11/20/2022]
Abstract
4-Nitrophenol (PNP) has been extensively used in manufacturing for several decades. Its toxic effects on the male reproductive system have been reported, but the underlying mechanisms remain unclear. In this study, we utilized two testicular somatic cell lines (TM3 and TM4 cells) to explore the possible toxic effects of PNP on the male reproductive system. The activity of the cells after exposure to different doses of PNP (0.01, 0.1, 1, 10 and 100 μM) was evaluated. PNP treatment at 10 μM significantly inhibited cell viability, and 10 μM PNP was thus selected for subsequent experiments. Although PNP (10 μM) inhibited cell proliferation, promoted cell apoptosis, and changed the cell cycle distribution and ultrastructure in both types of cells, these effects were more significant in the TM4 cells. In addition, an Agilent mouse mRNA array was used to identify the gene expression differences between the control and PNP (10 μM) exposed TM3 and TM4 cells. The microarray analysis identified 67 and 1372 differentially expressed genes mainly concentrated in endothelial cell morphogenesis and anatomical structure development in TM3 cells and associated with cardiovascular system development and circulatory system development in TM4 cells. Moreover, a pathway analysis revealed that PNP not only predominately affected meiotic recombination and meiosis in TM3 cells, but also influenced axon guidance and developmental biology in TM4 cells. These results suggest that TM3 and TM4 cells exhibit different responses to PNP, which might mediate different toxic mechanisms.
Collapse
|
14
|
Ueda RMR, de Souza VM, Magalhães LR, Chagas PHN, Veras ASC, Teixeira GR, Nai GA. Neurotoxicity associated with chronic exposure to dichlorophenoxyacetic acid (2,4-D) - a simulation of environmental exposure in adult rats. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2021; 56:695-705. [PMID: 34125002 DOI: 10.1080/03601234.2021.1939622] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) is the second most widely used herbicide in the world. The objective of this study was to evaluate the neurotoxic effects and the possible role of the dysregulation of apoptosis in the genesis of brain damage in chronic exposure to 2,4-D in rats. Eighty adult male rats were distributed into eight groups (n = 10) and exposed orally (contaminated feed) and via inhalation, with two groups exposed to distilled water (control) and six to 2,4-D in three distinct concentrations. They were exposed for 6 months. A neurobehavioral assessment was performed, and the brain was collected for histopathology and immunohistochemistry. The animals in the control groups showed greater motility in the open-field test and a greater number of entries in the elevated-plus-maze test than those exposed to 2,4-D (p < 0.05). Neuronal necrosis was more incident in animals exposed to 2,4-D (p < 0.05). There was a negative correlation between the expression of BAX and the measurement of the cerebral cortex thickness (r = -0.713; p = 0.047). Regardless of the route of exposure, 2,4-D led to a deficit in neurobehavioral tests and decreased thickness of the cerebral cortex associated with increased expression of the pro-apoptotic protein BAX.
Collapse
Affiliation(s)
- Rose Meire R Ueda
- Faculty of Psychology, Universidade do Oeste Paulista (UNOESTE), Presidente Prudente, São Paulo, Brazil
| | - Verena M de Souza
- Faculty of Medicine, Universidade do Oeste Paulista (UNOESTE), Presidente Prudente, São Paulo, Brazil
| | - Letícia R Magalhães
- Faculty of Medicine, Universidade do Oeste Paulista (UNOESTE), Presidente Prudente, São Paulo, Brazil
| | - Pedro Henrique N Chagas
- Faculty of Medicine, Universidade do Oeste Paulista (UNOESTE), Presidente Prudente, São Paulo, Brazil
| | - Allice S C Veras
- Department of Physical Education, Faculdade de Ciências e Tecnologia, Universidade Estadual Paulista "Júlio de Mesquita Filho" - UNESP, Presidente Prudente, São Paulo, Brazil
| | - Giovana R Teixeira
- Department of Physical Education, Faculdade de Ciências e Tecnologia, Universidade Estadual Paulista "Júlio de Mesquita Filho" - UNESP, Presidente Prudente, São Paulo, Brazil
| | - Gisele A Nai
- Department of Pathology and Graduate Program in Animal Science, Universidade do Oeste Paulista (UNOESTE), Presidente Prudente, São Paulo, Brazil
| |
Collapse
|
15
|
Lovison Sasso E, Cattaneo R, Rosso Storck T, Spanamberg Mayer M, Sant'Anna V, Clasen B. Occupational exposure of rural workers to pesticides in a vegetable-producing region in Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:25758-25769. [PMID: 33469792 DOI: 10.1007/s11356-021-12444-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
The health of family farmers is at risk due to occupational exposure to pesticides. The aims of the current study were to investigate the level of farmers' perception of risks associated with pesticide use and to assess their health condition based on biochemical and immunological tests. Family farmers living in a vegetable-producing region in Southern Brazil were selected to participate in the study. More than 70% of the family farmers were often exposed to more than one type of pesticides; 41.2% were intensively using several pesticides for more than one decade and 74.4% were not using personal protective equipment (PPE) at the time of pesticide handling due to low perception of the risks posed by these chemicals. Enzymatic analysis performed in participants' blood samples showed changes in catalase (CAT) and glutathione reductase (GR) activity, in lipid peroxidation (TBARS) and carbonylated protein levels, as well as in chemoattractant (IL-8) and anti-inflammatory (IL-10) interleukin expression. Low perception of health-related risks posed by pesticides can be attributed to factors such as low schooling and lack of information, which put farmers' health at risk, as evidenced by blood biochemical and immunological changes.
Collapse
Affiliation(s)
- Eloisa Lovison Sasso
- Postgraduate Program in Environment and Sustainability (PPGAS), Environmental Toxicology Research Group, State University of Rio Grande do Sul, São Francisco de Paula, RS, Brazil
| | - Roberta Cattaneo
- Laboratory of Oxidative Stress and Medicinal Plants, Postgraduate Program in Integral Health Care (PPGAIS), University of Cruz Alta, Cruz Alta, RS, Brazil
| | - Tamiris Rosso Storck
- Environmental Toxicology Research Group, Postgraduate Program in Environmental Engineering (PPGEAmb), Technology Center, Federal University of Santa Maria (UFSM), Av. Roraima, n. 1000, Santa Maria, RS, 97105-900, Brazil
| | - Mariana Spanamberg Mayer
- Laboratory of Oxidative Stress and Medicinal Plants, Postgraduate Program in Integral Health Care (PPGAIS), University of Cruz Alta, Cruz Alta, RS, Brazil
| | - Voltaire Sant'Anna
- Postgraduate Program in Environment and Sustainability (PPGAS), Environmental Toxicology Research Group, State University of Rio Grande do Sul, São Francisco de Paula, RS, Brazil
| | - Barbara Clasen
- Postgraduate Program in Environment and Sustainability (PPGAS), Environmental Toxicology Research Group, State University of Rio Grande do Sul, São Francisco de Paula, RS, Brazil.
- Environmental Toxicology Research Group, Postgraduate Program in Environmental Engineering (PPGEAmb), Technology Center, Federal University of Santa Maria (UFSM), Av. Roraima, n. 1000, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
16
|
Li M, Yang T, Gao L, Xu H. An inadvertent issue of human retina exposure to endocrine disrupting chemicals: A safety assessment. CHEMOSPHERE 2021; 264:128484. [PMID: 33022499 DOI: 10.1016/j.chemosphere.2020.128484] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/07/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are a group of chemical compounds that present a considerable public health problem due to their pervasiveness and associations with chronic diseases. EDCs can interrupt the endocrine system and interfere with hormone homeostasis, leading to abnormalities in human physiology. Much attention has been focused on the adverse effects EDCs have on the reproductive system, neurogenesis, neuroendocrine system, and thyroid dysfunction. The eye is usually directly exposed to the surrounding environment; however, the influences of EDCs on the eye have received comparatively little attention. Ocular diseases, such as ocular surface diseases and retinal diseases, have been implicated in hormone deficiency or excess. Epidemiologic studies have shown that EDC exposure not only causes ocular surface disorders, such as dry eye, but also associates with visual deficits and retinopathy. EDCs can pass through the human blood-retinal barrier and enter the neural retina, and can then accumulate in the retina. The retina is an embryologic extension of the central nervous system, and is extremely sensitive and vulnerable to EDCs that could be passed across the placenta during critical periods of retinal development. Subtle alterations in the retinal development process usually result in profound immediate, long-term, and delayed effects late in life. This review, based on extensive literature survey, briefly summarizes the current knowledge about the impact of representative manufactured EDCs on retinal toxicity, including retinal structure alterations and dysfunction. We also highlight the potential mechanism of action of EDCs on the retina, and the predictive retinal models of EDC exposure.
Collapse
Affiliation(s)
- Minghui Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Tian Yang
- Department of Cold Environmental Medicine, College of High Altitude Military Medicine, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lixiong Gao
- Department of Ophthalmology, Third Medical Center of PLA General Hospital, Beijing, China
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China.
| |
Collapse
|
17
|
Abela AG, Fava S. Why is the Incidence of Type 1 Diabetes Increasing? Curr Diabetes Rev 2021; 17:e030521193110. [PMID: 33949935 DOI: 10.2174/1573399817666210503133747] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/14/2021] [Accepted: 03/11/2021] [Indexed: 11/22/2022]
Abstract
Type 1 diabetes is a condition that can lead to serious long-term complications and can have significant psychological and quality of life implications. Its incidence is increasing in all parts of the world, but the reasons for this are incompletely understood. Genetic factors alone cannot explain such a rapid increase in incidence; therefore, environmental factors must be implicated. Lifestyle factors have been classically associated with type 2 diabetes. However, there are data implicating obesity and insulin resistance to type 1 diabetes as well (accelerator hypothesis). Cholesterol has also been shown to be correlated with the incidence of type 1 diabetes; this may be mediated by immunomodulatory effects of cholesterol. There is considerable interest in early life factors, including maternal diet, mode of delivery, infant feeding, childhood diet, microbial exposure (hygiene hypothesis), and use of anti-microbials in early childhood. Distance from the sea has recently been shown to be negatively correlated with the incidence of type 1 diabetes. This may contribute to the increasing incidence of type 1 diabetes since people are increasingly living closer to the sea. Postulated mediating mechanisms include hours of sunshine (and possibly vitamin D levels), mean temperature, dietary habits, and pollution. Ozone, polychlorinated biphenyls, phthalates, trichloroethylene, dioxin, heavy metals, bisphenol, nitrates/nitrites, and mercury are amongst the chemicals which may increase the risk of type 1 diabetes. Another area of research concerns the role of the skin and gut microbiome. The microbiome is affected by many of the factors mentioned above, including the mode of delivery, infant feeding, exposure to microbes, antibiotic use, and dietary habits. Research on the reasons why the incidence of type 1 diabetes is increasing not only sheds light on its pathogenesis but also offers insights into ways we can prevent type 1 diabetes.
Collapse
Affiliation(s)
- Alexia G Abela
- Department of Medicine, University of Malta & Mater Dei Hospital, Tal-Qroqq, Msida, Malta
| | - Stephen Fava
- Department of Medicine, University of Malta & Mater Dei Hospital, Tal-Qroqq, Msida, Malta
| |
Collapse
|
18
|
de Albuquerque NCP, Carrão DB, Habenschus MD, Fonseca FS, Moreira da Silva R, Lopes NP, Rocha BA, Barbosa Júnior F, de Oliveira ARM. Risk assessment of the chiral pesticide fenamiphos in a human model: Cytochrome P450 phenotyping and inhibition studies. Food Chem Toxicol 2020; 146:111826. [PMID: 33127494 DOI: 10.1016/j.fct.2020.111826] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/15/2020] [Accepted: 10/21/2020] [Indexed: 12/23/2022]
Abstract
Fenamiphos (FS) is a chiral organophosphate pesticide that is used to control nematodes in several crops. Enantioselective differences may be observed in FS activity, bioaccumulation, metabolism, and toxicity. Humans may be exposed to FS through occupational and chronic (food, water, and environmental) exposure. FS may cause undesirable CYP450 pesticide-drug interactions, which may impact human health. Here, the CYP450 isoforms involved in enantioselective FS metabolism were identified, and CYP450 inhibition by rac-FS, (+)-FS, and (-)-FS was evaluated to obtain reliable information on enantioselective FS risk assessment in humans. CYP3A4 and CYP2E1 metabolized FS enantiomers, and CYP2B6 may participate in rac-FS metabolism. In addition, rac-FS, (+)-FS, and (-)-FS were reversible competitive CYP1A2, CYP2C19, and CYP3A4/5 inhibitors. High stereoselective inhibition potential was verified; rac-FS and (-)-FS strongly inhibited and (+)-FS moderately inhibited CYP1A2. Stereoselective differences were also detected for CYP2C19 and CYP3A4/5, which were strongly inhibited by rac-FS, (+)-FS, and (-)-FS. Our results indicated a high potential for CYP450 drug-pesticide interactions, which may affect human health. The lack of stereoselective research on the effect of chiral pesticides on the activity of CYP450 isoforms highlights the importance of assessing the risks of such pesticides in humans.
Collapse
Affiliation(s)
- Nayara Cristina Perez de Albuquerque
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Ribeirão Preto, SP, Brazil
| | - Daniel Blascke Carrão
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Ribeirão Preto, SP, Brazil
| | - Maísa Daniela Habenschus
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Ribeirão Preto, SP, Brazil
| | - Franciele Saraiva Fonseca
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Ribeirão Preto, SP, Brazil
| | - Rodrigo Moreira da Silva
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14090-903, Ribeirão Preto, SP, Brazil
| | - Norberto Peporine Lopes
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14090-903, Ribeirão Preto, SP, Brazil
| | - Bruno Alves Rocha
- Departamento de Química, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, 09972-270, Campus Diadema, SP, Brazil
| | - Fernando Barbosa Júnior
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14040-903, Ribeirão Preto, SP, Brazil
| | - Anderson Rodrigo Moraes de Oliveira
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Ribeirão Preto, SP, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Unesp, Institute of Chemistry, P.O. Box 355, 14800-900, Araraquara, SP, Brazil.
| |
Collapse
|
19
|
Predieri B, Bruzzi P, Bigi E, Ciancia S, Madeo SF, Lucaccioni L, Iughetti L. Endocrine Disrupting Chemicals and Type 1 Diabetes. Int J Mol Sci 2020; 21:ijms21082937. [PMID: 32331412 PMCID: PMC7215452 DOI: 10.3390/ijms21082937] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 12/12/2022] Open
Abstract
Type 1 diabetes (T1D) is the most common chronic metabolic disease in children and adolescents. The etiology of T1D is not fully understood but it seems multifactorial. The genetic background determines the predisposition to develop T1D, while the autoimmune process against β-cells seems to be also determined by environmental triggers, such as endocrine disrupting chemicals (EDCs). Environmental EDCs may act throughout different temporal windows as single chemical agent or as chemical mixtures. They could affect the development and the function of the immune system or of the β-cells function, promoting autoimmunity and increasing the susceptibility to autoimmune attack. Human studies evaluating the potential role of exposure to EDCs on the pathogenesis of T1D are few and demonstrated contradictory results. The aim of this narrative review is to summarize experimental and epidemiological studies on the potential role of exposure to EDCs in the development of T1D. We highlight what we know by animals about EDCs’ effects on mechanisms leading to T1D development and progression. Studies evaluating the EDC levels in patients with T1D were also reported. Moreover, we discussed why further studies are needed and how they should be designed to better understand the causal mechanisms and the next prevention interventions.
Collapse
Affiliation(s)
- Barbara Predieri
- Pediatric Unit, Department of Medical and Surgical Sciences of the Mother, Children and Adults-University of Modena and Reggio Emilia, Largo del Pozzo, 71-41124 Modena, Italy; (E.B.); (L.I.)
- Post Graduate School of Pediatrics, Department of Medical and Surgical Sciences of the Mothers, Children and Adults—University of Modena and Reggio Emilia, Largo del Pozzo, 71-41124 Modena, Italy;
- Correspondence: ; Tel.: +39-059-422-5217
| | - Patrizia Bruzzi
- Pediatric Unit, Department of Pediatrics—AOU Policlinic of Modena, Largo del Pozzo, 71-41124 Modena, Italy; (P.B.); (S.F.M.)
| | - Elena Bigi
- Pediatric Unit, Department of Medical and Surgical Sciences of the Mother, Children and Adults-University of Modena and Reggio Emilia, Largo del Pozzo, 71-41124 Modena, Italy; (E.B.); (L.I.)
| | - Silvia Ciancia
- Post Graduate School of Pediatrics, Department of Medical and Surgical Sciences of the Mothers, Children and Adults—University of Modena and Reggio Emilia, Largo del Pozzo, 71-41124 Modena, Italy;
| | - Simona F. Madeo
- Pediatric Unit, Department of Pediatrics—AOU Policlinic of Modena, Largo del Pozzo, 71-41124 Modena, Italy; (P.B.); (S.F.M.)
| | - Laura Lucaccioni
- Neonatal Intensive Care Unit, Department of Medical and Surgical Sciences of the Mother, Children and Adults-University of Modena and Reggio Emilia, Largo del Pozzo, 71-41124 Modena, Italy;
| | - Lorenzo Iughetti
- Pediatric Unit, Department of Medical and Surgical Sciences of the Mother, Children and Adults-University of Modena and Reggio Emilia, Largo del Pozzo, 71-41124 Modena, Italy; (E.B.); (L.I.)
- Post Graduate School of Pediatrics, Department of Medical and Surgical Sciences of the Mothers, Children and Adults—University of Modena and Reggio Emilia, Largo del Pozzo, 71-41124 Modena, Italy;
| |
Collapse
|