1
|
Moro AM, Brucker N, Goethel G, Flesch I, Nascimento S, Charão M, Gauer B, Sauer E, Cestonaro LV, Viçozzi GP, Gioda A, Saint'Pierre TD, Arbo MD, Garcia I, Cattani SA, Petrecelli RR, Martins MO, Garcia SC. The Influence of Blood Titanium Levels on DNA Damage in Brazilian Workers Occupationally Exposed to Different Chemical Agents. Biol Trace Elem Res 2024:10.1007/s12011-024-04472-2. [PMID: 39695012 DOI: 10.1007/s12011-024-04472-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024]
Abstract
Occupational exposure to pollutants may cause health-damaging effects in humans. Genotoxicity assays can be used to detect the toxic effects of pollutants. In the present study, we evaluated genetic damage in three populations occupationally exposed to benzene, pyrenes, and agrochemicals and assessed the possible influence of titanium (Ti) co-exposure. A total of 275 subjects were enrolled in this study. The occupationally exposed population was composed of 201 male individuals, divided into three different groups: gas station attendants (GSA group) (n = 76), taxi drivers (TD group) (n = 97), farmers (farmers group) (n = 28), and control (n = 74). Biomarkers of exposure and effect were investigated such as AChe, BuChE, t,t-muconic acid (t,t-MA), and 1-hydroxypyrene (1-OHP). Ti levels in blood were higher in all the workers compared with the control group. DNA damage evaluated by comet assay was higher in the taxi drivers and farmers than in the controls, and the frequency of micronucleate buccal cells was higher in the gas station attendants and taxi drivers than in the controls. Correlations were found among occupational exposure time and biomarkers of exposure, genotoxicity biomarkers, and blood Ti levels. Our results demonstrated Ti co-exposure in the gas station attendants, taxi drivers, and farmers, and blood Ti levels were linked with the respective biomarkers of exposure. Additionally, tools through machine learning corroborated these findings, and Ti was the factor that contributed to DNA damage. Thus, the present study indicates the role of Ti in occupational settings and interactions with already known major xenobiotics present in the occupational environment contributing to genotoxicity.
Collapse
Affiliation(s)
- Angela M Moro
- Laboratory of Toxicology (LATOX), Department of Analysis, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Rua São Luis 150-Anexo II, Santa Cecília, Porto Alegre, RS, CEP: 90610-000, Brazil
| | - Natália Brucker
- Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Gabriela Goethel
- Laboratory of Toxicology (LATOX), Department of Analysis, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Rua São Luis 150-Anexo II, Santa Cecília, Porto Alegre, RS, CEP: 90610-000, Brazil
| | - Ingrid Flesch
- Laboratory of Toxicology (LATOX), Department of Analysis, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Rua São Luis 150-Anexo II, Santa Cecília, Porto Alegre, RS, CEP: 90610-000, Brazil
| | - Sabrina Nascimento
- Laboratory of Toxicology (LATOX), Department of Analysis, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Rua São Luis 150-Anexo II, Santa Cecília, Porto Alegre, RS, CEP: 90610-000, Brazil
| | - Mariele Charão
- Graduate Program in Toxicology and Analytical Toxicology, Feevale University, Novo Hamburgo, Brazil
| | - Bruna Gauer
- Laboratory of Toxicology (LATOX), Department of Analysis, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Rua São Luis 150-Anexo II, Santa Cecília, Porto Alegre, RS, CEP: 90610-000, Brazil
| | - Elisa Sauer
- Laboratory of Toxicology (LATOX), Department of Analysis, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Rua São Luis 150-Anexo II, Santa Cecília, Porto Alegre, RS, CEP: 90610-000, Brazil
| | - Larissa V Cestonaro
- Laboratory of Toxicology (LATOX), Department of Analysis, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Rua São Luis 150-Anexo II, Santa Cecília, Porto Alegre, RS, CEP: 90610-000, Brazil
| | - Gabriel Pedroso Viçozzi
- Laboratory of Toxicology (LATOX), Department of Analysis, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Rua São Luis 150-Anexo II, Santa Cecília, Porto Alegre, RS, CEP: 90610-000, Brazil
| | - Adriana Gioda
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, Brazil
| | - Tatiana D Saint'Pierre
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, Brazil
| | - Marcelo D Arbo
- Laboratory of Toxicology (LATOX), Department of Analysis, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Rua São Luis 150-Anexo II, Santa Cecília, Porto Alegre, RS, CEP: 90610-000, Brazil
| | - Ingrid Garcia
- Laboratory of Toxicology (LATOX), Department of Analysis, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Rua São Luis 150-Anexo II, Santa Cecília, Porto Alegre, RS, CEP: 90610-000, Brazil
| | - Shanda A Cattani
- Laboratory of Toxicology (LATOX), Department of Analysis, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Rua São Luis 150-Anexo II, Santa Cecília, Porto Alegre, RS, CEP: 90610-000, Brazil
| | - Rodrigo R Petrecelli
- Graduate Program in Pharmaceutical Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Mirkos Ortiz Martins
- Graduate Program in Nanosciences, Franciscan University, Santa Maria, RS, Brazil
| | - Solange Cristina Garcia
- Laboratory of Toxicology (LATOX), Department of Analysis, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Rua São Luis 150-Anexo II, Santa Cecília, Porto Alegre, RS, CEP: 90610-000, Brazil.
| |
Collapse
|
2
|
Amazonas JC, Poça KSD, da Silva PVB, Schilithz AOC, Siqueira JDDSB, de Aguiar GS, Alves SR, Otero UB, Sarpa M. Evaluation of genotoxic effects in workers and residents of rural areas exposed to pesticides in Brazil. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 898:503795. [PMID: 39147449 DOI: 10.1016/j.mrgentox.2024.503795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 08/17/2024]
Abstract
Brazil is one of the world's largest consumers of pesticides. This intense use impacts the environment and exposes a wide range of individuals to pesticides, including rural workers who are occupationally exposed and rural residents who are environmentally exposed. We aimed to evaluate the effects of occupational exposure to pesticides on the health of rural workers and rural residents. We conducted an epidemiological study with 104 farmers and 23 rural residents of Casimiro de Abreu (Rio de Janeiro, Brazil). A comparison group (urban residents) comprised 103 residents of the urban area of the same city. We determined the activity of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) using a modified version of Ellman's method to evaluate exposure. In addition, we performed genotoxic and mutagenic analyses with the comet assay and the cytokinesis-block micronucleus (CBMN) assay. There was a reduction in cholinesterase activity, mainly BChE, in rural workers and rural residents compared with urban residents (p = 0.002). There was an increase in genotoxic effects in rural workers compared with urban residents (comet assay, p < 0.001; CBMN assay, p < 0.001). In addition, there was a greater chance of genotoxic changes in rural workers exposed to pesticides based on the comet assay (odds ratio [OR] 7.6, 95 % confidence interval [CI] 6.6-15.9) and the CBMN assay (OR 22.7, 95 % CI 10.3-49.9). We found that individuals occupationally exposed to pesticides are more likely to have genotoxic effects. These findings are useful for the development of programs to monitor populations exposed to genotoxic substances and allow the development of strategies for the prevention, control, and surveillance of effects that result from occupational and environmental exposures to pesticides.
Collapse
Affiliation(s)
- Juliana Costa Amazonas
- Laboratório de Toxicologia Ocupacional, Ambiental e Vigilância do Câncer, Coordenação de Prevenção e Vigilância, Instituto Nacional de Câncer - INCA, Rua Marquês de Pombal, 125/Térreo - Centro, Rio de Janeiro, RJ CEP 20230-240, Brazil; Laboratório de Toxicologia, Centro de Estudos da Saúde do Trabalhador e Ecologia Humana, Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz (CESTEH/ENSP/FIOCRUZ), Rua Leopoldo Bulhões, 1480 - Manguinhos, Rio de Janeiro, RJ CEP 21041-210, Brazil
| | - Katia Soares da Poça
- Laboratório de Toxicologia Ocupacional, Ambiental e Vigilância do Câncer, Coordenação de Prevenção e Vigilância, Instituto Nacional de Câncer - INCA, Rua Marquês de Pombal, 125/Térreo - Centro, Rio de Janeiro, RJ CEP 20230-240, Brazil; Área Técnica Ambiente, Trabalho e Câncer, Coordenação de Prevenção e Vigilância, Instituto Nacional de Câncer - INCA, Rua Marquês do Pombal, 125/6º andar - Centro, Rio de Janeiro, RJ CEP 20230-240, Brazil
| | - Paula Vieira Baptista da Silva
- Laboratório de Toxicologia Ocupacional, Ambiental e Vigilância do Câncer, Coordenação de Prevenção e Vigilância, Instituto Nacional de Câncer - INCA, Rua Marquês de Pombal, 125/Térreo - Centro, Rio de Janeiro, RJ CEP 20230-240, Brazil
| | - Arthur Orlando Correa Schilithz
- Divisão de Vigilância e Análise de Situação, Coordenação de Prevenção e Vigilância, Instituto Nacional de Câncer - INCA, Rua Marquês do Pombal, 125/6ºandar - Centro, Rio de Janeiro, RJ CEP 20230-240, Brazil
| | | | - Gilberto Santos de Aguiar
- Programa de Saúde do Trabalhador, Secretaria Municipal de Saúde de Casimiro de Abreu, Rio de Janeiro, RJ, Brazil
| | - Sergio Rabello Alves
- Laboratório de Toxicologia, Centro de Estudos da Saúde do Trabalhador e Ecologia Humana, Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz (CESTEH/ENSP/FIOCRUZ), Rua Leopoldo Bulhões, 1480 - Manguinhos, Rio de Janeiro, RJ CEP 21041-210, Brazil
| | - Ubirani Barros Otero
- Área Técnica Ambiente, Trabalho e Câncer, Coordenação de Prevenção e Vigilância, Instituto Nacional de Câncer - INCA, Rua Marquês do Pombal, 125/6º andar - Centro, Rio de Janeiro, RJ CEP 20230-240, Brazil
| | - Marcia Sarpa
- Laboratório de Toxicologia Ocupacional, Ambiental e Vigilância do Câncer, Coordenação de Prevenção e Vigilância, Instituto Nacional de Câncer - INCA, Rua Marquês de Pombal, 125/Térreo - Centro, Rio de Janeiro, RJ CEP 20230-240, Brazil; Área Técnica Ambiente, Trabalho e Câncer, Coordenação de Prevenção e Vigilância, Instituto Nacional de Câncer - INCA, Rua Marquês do Pombal, 125/6º andar - Centro, Rio de Janeiro, RJ CEP 20230-240, Brazil.
| |
Collapse
|
3
|
Kumar D, Sinha SN. Chronic exposures to cholinesterase-inhibiting pesticides adversely affects the health of agricultural workers in India. ENVIRONMENTAL RESEARCH 2024; 252:118961. [PMID: 38642639 DOI: 10.1016/j.envres.2024.118961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/22/2024]
Abstract
Biomonitoring of pesticide exposure has become a public concern because of its potential health effects. The present study investigated the acetylcholinesterase (AChE) inhibitory levels and their associated health effects in agricultural areas in Telangana, India. This cross-sectional included 341 exposed participants and 152 control participants from agricultural areas. A structured questionnaire was completed and blood and urine samples were collected to measure pesticides, dialkyle phosphate (DAP) metabolites, and AChE activity using liquid chromatography-tandem mass spectrometry and reversed-phase high-performance liquid chromatography. twenty-eight pesticides were detected in blood samples at concentrations ranging 0.42-45.77 ng/mL. Six DAP metabolites were also measured in urine, and all DAP metabolites were significantly higher in the exposed group. AChE activity is significantly reduced in individuals exposed for >10 years, raising concerns regarding possible neurological disorders. These results emphasise the urgent need to investigate the health effects of pesticides exposure, especially in agriculture.
Collapse
Affiliation(s)
- Dileshwar Kumar
- Division of Food Safety, Indian Council of Medical Research - National Institute of Nutrition, Jamai-Osmania, Hyderabad, 500007, India; Department of Biochemistry Osmania University, Hyderabad, 500007, India.
| | - Sukesh Narayan Sinha
- Division of Food Safety, Indian Council of Medical Research - National Institute of Nutrition, Jamai-Osmania, Hyderabad, 500007, India.
| |
Collapse
|
4
|
Ma C, Li G, Xu W, Qu H, Zhang H, Bahojb Noruzi E, Li H. Recent Advances in Stimulus-Responsive Nanocarriers for Pesticide Delivery. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38602422 DOI: 10.1021/acs.jafc.4c00997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
In an effort to make pesticide use safer, more efficient, and sustainable, micro-/nanocarriers are increasingly being utilized in agriculture to deliver pesticide-active agents, thereby reducing quantities and improving effectiveness. In the use of nanopesticides, the choice to further design and prepare pesticide stimulus-responsive nanocarriers based on changes in the plant growth environment (light, temperature, pH, enzymes, etc.) has received more and more attention from researchers. Based on this, this paper examines recent advancements in nanomaterials for the design of stimulus-responsive micro-/nanocarriers. It delves into the intricacies of preparation methods, material enhancements, in vivo/ex vivo controlled release, and application techniques for controlled release formulations. The aim is to provide a crucial reference for harnessing nanotechnology to pursue reduced pesticide use and increased efficiency.
Collapse
Affiliation(s)
- Cuiguang Ma
- State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Guang Li
- State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Weiwei Xu
- State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Haonan Qu
- State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Haifan Zhang
- State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Ehsan Bahojb Noruzi
- State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Haibing Li
- State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| |
Collapse
|
5
|
Xiao J, Liu Y, Jiang S, Wang H, Liu Y, Lin F, Liu T, Fang K, Liao M, Shi Y, Cao H. Incorporating Bioaccessibility into Inhalation Exposure Assessment of Emamectin Benzoate from Field Spraying. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7978-7988. [PMID: 37162498 DOI: 10.1021/acs.est.3c02241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The inhalation exposure of pesticide applicators and residents who live close to pesticide-treated fields is a worldwide concern in public health. Quantitative assessment of exposure to pesticide inhalation health risk highlights the need to accurately assess the bioaccessibility rather than the total content in ambient air. Herein, we developed an in vitro method to estimate the inhalation bioaccessibility of emamectin benzoate and validated its applicability using a rat plasma pharmacokinetic bioassay. Emamectin benzoate was extracted using the Gamble solution, with an optimized solid-to-liquid ratio (1/250), extraction time (24 h), and agitation (200 rpm), which obtained in vitro inhalation bioaccessibility consistent with its inhalation bioavailability in vivo (32.33%). The margin of exposure (MOE) was used to assess inhalation exposure risk. The inhalation unit exposures to emamectin benzoate of applicators and residents were 11.05-28.04 and 0.02-0.04 ng/m3, respectively, varying markedly according to the methods of application, e.g., formulations and nozzles. The inhalation risk assessment using present application methods appeared to be acceptable; however, the MOE of emamectin benzoate might be overestimated by 32% without considering inhalation bioaccessibility. Collectively, our findings contribute insights into the assessment of pesticide inhalation exposure based on bioaccessibility and provide guidance for the safe application of pesticides.
Collapse
Affiliation(s)
- Jinjing Xiao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Yuanhui Liu
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Siyuan Jiang
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Han Wang
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Yuying Liu
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Fengxiang Lin
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Tianhe Liu
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Ke Fang
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Min Liao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Yanhong Shi
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Haiqun Cao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| |
Collapse
|
6
|
Passos JDC, Felisbino K, Laureano HA, Guiloski IC. Occupational exposure to pesticides and its association with telomere length - A systematic review and meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157715. [PMID: 35914599 DOI: 10.1016/j.scitotenv.2022.157715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/19/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Telomere length is a common biomarker for the cumulative effect of environmental factors on aging-related diseases, therefore an association has been hypothesized between occupational exposure to pesticides and shorter telomere length. OBJECTIVE This study is a systematic review and meta-analysis aiming to examine the association between telomere length and occupational exposure to pesticides. METHODS We systematically searched in SciELO, PubMed, Scopus, Embase, Cochrane, Lilacs, Science Direct, and Web of Science databases for all observational studies containing measurements of telomere length on groups occupationally exposed to pesticides. Data were synthesized through qualitative synthesis and meta-analysis. We estimated the associations between exposed and non-exposed groups by using the natural log of the response ratio (lnRR). Heterogeneity was quantified using the Cochran Q test and I2 statistics. RESULTS Six studies were included in the qualitative synthesis and meta-analysis, with a total of 480 participants exposed to pesticides. The time of exposure evaluated 391 participants that had a range of 5 to >30 years of occupational exposure. Most studies presented shorter telomere length in the occupationally exposed group. From the six studies included in the meta-analysis, three presented telomere length measurement as a single copy gene (T/S), and three presented telomere length measurement as base pairs (bp). The statistical analysis pooled estimates (log ratio of means) of the telomere length in both measurements (T/S and bp) showed a shortening of telomere length in the exposed group when compared with the non-exposed (control) group. Two of six studies reported longer telomere length in the group exposed to pesticides. DISCUSSION Our findings suggest an association between occupational exposure to pesticides and shorter telomere length. However, we found a small number of studies to include in our meta-analysis, being required more high-quality studies to strengthen our findings and conclusions.
Collapse
Affiliation(s)
- Jaqueline Dal Curtivo Passos
- Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Paraná, Brazil.
| | - Karoline Felisbino
- Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Paraná, Brazil
| | | | - Izonete Cristina Guiloski
- Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Paraná, Brazil
| |
Collapse
|
7
|
Bressiani PA, Alves GL, de Marco IG, Biffi MT, Ishikawa S, Manosso FC, Gomes EMV, Pokrywiecki TS, Schmitz APDO, Düsman E. Evaluation of genotoxicity and cytotoxicity of inhabitants of Vila Rural Água Viva, Brazil, exposed to agrochemicals using the micronucleus buccal cytome assay. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 96:104002. [PMID: 36273709 DOI: 10.1016/j.etap.2022.104002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
The aim of this study was to carry out a pilot investigation, using a buccal micronucleus cytome assay, with the population of Vila Rural Água Viva (Francisco Beltrão, Paraná, Brazil), environmentally exposed to agrochemicals. The data shows statistically differences between the control group (not exposed) and the population of Vila Rural regarding the cytotoxicity and mutagenicity. There was no significant change between the average relative frequencies of these data whether divided between smokers and non-smokers, or practitioners of physical activities or not. It was also observed that age or time of exposure to agrochemicals did not show a linear relationship with the average relative frequencies of cytotoxicity and mutagenicity data. The work shows the presence of 2,4-D herbicide in water sample of community, then it is hoped that the results will assist in guiding the dangers to health and the environment from exposure to agrochemicals.
Collapse
Affiliation(s)
- Patricia Aline Bressiani
- Academic of Chemical Engineering, Universidade Tecnológica Federal do Paraná (UTFPR), Campus Francisco Beltrão, Paraná, Brazil.
| | - Geiciane Locatelli Alves
- Academic of Chemical Engineering, Universidade Tecnológica Federal do Paraná (UTFPR), Campus Francisco Beltrão, Paraná, Brazil.
| | - Inara Giacobbo de Marco
- Academic of Chemical Engineering, Universidade Tecnológica Federal do Paraná (UTFPR), Campus Francisco Beltrão, Paraná, Brazil.
| | - Mariana Tonello Biffi
- Academic of Chemical Engineering, Universidade Tecnológica Federal do Paraná (UTFPR), Campus Francisco Beltrão, Paraná, Brazil.
| | - Sabrina Ishikawa
- Academic of Chemical Engineering, Universidade Tecnológica Federal do Paraná (UTFPR), Campus Francisco Beltrão, Paraná, Brazil.
| | - Fernando César Manosso
- Academic Department of Agricultural Sciences, Universidade Tecnológica Federal do Paraná (UTFPR), Campus Francisco Beltrão, Francisco Beltrão, Paraná, Brazil.
| | - Eduardo Michel Vieira Gomes
- Academic Department of Physics, Statistics and Mathematics, Universidade Tecnológica Federal do Paraná (UTFPR), Francisco Beltrão, Paraná, Brazil.
| | - Ticiane Sauer Pokrywiecki
- Academic Department of Engineering, Universidade Tecnológica Federal do Paraná (UTFPR), Campus Francisco Beltrão, Francisco Beltrão, Paraná, Brazil.
| | - Ana Paula de Oliveira Schmitz
- Academic Department of Engineering, Universidade Tecnológica Federal do Paraná (UTFPR), Campus Francisco Beltrão, Francisco Beltrão, Paraná, Brazil.
| | - Elisângela Düsman
- Academic Department of Chemistry and Biology, Universidade Tecnológica Federal do Paraná (UTFPR), Campus Francisco Beltrão, Paraná, Brazil.
| |
Collapse
|
8
|
The effect of low doses of chlorpyrifos on blood and bone marrow cells in Wistar rats. Arh Hig Rada Toksikol 2022; 73:223-232. [PMID: 36226822 PMCID: PMC9837532 DOI: 10.2478/aiht-2022-73-3665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/01/2022] [Indexed: 12/23/2022] Open
Abstract
The aim of this study was to investigate the genotoxic potential of low doses of chlorpyrifos (CPF) on blood and bone marrow cells in adult male Wistar rats. CPF was administered by oral gavage at daily doses of 0.010, 0.015, and 0.160 mg/kg of body weight (bw) for 28 consecutive days. Positive control (PC) was administered 300 mg/kg bw/day of ethyl methane sulphonate (EMS) for the final three days of the experiment. Toxic outcomes of exposure were determined with the in vivo micronucleus (MN) assay and alkaline comet assay. The 28-day exposure to the 0.015 mg/kg CPF dose, which was three times higher than the current value of acute reference dose (ARfD), reduced body weight gain in rats the most. The in vivo MN assay showed significant differences in number of reticulocytes per 1000 erythrocytes between PC and negative control (NC) and between all control groups and the groups exposed to 0.015 and 0.160 mg/kg bw/day of CPF. The number of micronucleated polychromatic erythrocytes per 2000 erythrocytes was significantly higher in the PC than the NC group or group exposed to 0.015 mg/kg bw/day of CPF. CPF treatment did not significantly increase primary DNA damage in bone marrow cells compared to the NC group. However, the damage in bone marrow cells of CPF-exposed rats was much higher than the one recorded in leukocytes, established in the previous research. Both assays proved to be successful for the assessment of CPFinduced genome instability in Wistar rats. However, the exact mechanisms of damage have to be further investigated and confirmed by other, more sensitive methods.
Collapse
|
9
|
Exposure to Airborne Pesticides and Its Residue in Blood Serum of Paddy Farmers in Malaysia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19116806. [PMID: 35682390 PMCID: PMC9180057 DOI: 10.3390/ijerph19116806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 12/04/2022]
Abstract
Background: Pesticides manage pests and diseases in agriculture, but they harm the health of agricultural workers. Concentrations of thirteen pesticides were determined in personal air and blood serum of 85 paddy farmers and 85 non-farmers, thereafter associated with health symptoms. Method: Samples were analyzed using ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Results: The median concentration of pesticides in personal air samples ranged from 10.69 to 188.49 ng/m3 for farmers and from 5.79 to 73.66 ng/m3 for non-farmers. The median concentration of pesticides in blood serum was from 58.27 to 210.12 ng/mL for farmers and 47.83 to 62.74 ng/mL for non-farmers. Concentration of eleven pesticides in personal air and twelve pesticides in blood serum were significantly higher in farmers than non-farmers (p < 0.05). All pesticides detected in personal air correlated significantly with concentration in the blood serum of farmers (p < 0.05). Health symptoms reported by farmers were dizziness (49.4%), nausea (47.1%), cough (35.3%), chest pain (30.6%), breathing difficulty (23.5%), sore throat (22.4%), vomiting (18.8%), phlegm (16.5%), and wheezing (15.3%). Concentration of pesticides in personal air, blood serum, and health symptoms were not significantly associated. Conclusion: Occupational exposure to pesticides significantly contaminates blood serum of farmers compared to non-farmers.
Collapse
|
10
|
Assessing the suitability of self-healing rubber glove for safe handling of pesticides. Sci Rep 2022; 12:4275. [PMID: 35277557 PMCID: PMC8917143 DOI: 10.1038/s41598-022-08129-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/14/2022] [Indexed: 11/09/2022] Open
Abstract
Rubber gloves used for protection against chemicals or hazards are generally prone to tearing or leaking after repeated use, exposing the worker to potentially hazardous agents. Self-healing technology promises increased product durability and shelf life appears to be a feasible solution to address these issues. Herein, we aimed to fabricate a novel epoxidized natural rubber-based self-healable glove (SH glove) and investigate its suitability for handling pesticides safely. In this study, breakthrough time analysis and surface morphological observation were performed to determine the SH glove's ability to withstand dangerous chemicals. The chemical resistance performance of the fabricated SH glove was compared against four different types of commercial gloves at different temperatures. Using malathion as a model pesticide, the results showed that the SH glove presented chemical resistance ability comparable to those gloves made with nitrile and NR latex at room temperature and 37 °C. The self-healing test revealed that the SH glove could be self-healed and retained its chemical resistance ability close to its pre-cut value. Our findings suggested that the developed SH glove with proven chemical resistance capability could be a new suitable safety glove for effectively handling pesticides and reducing glove waste generation.
Collapse
|
11
|
Chen YC, Lin CH, Wu SL. Neurological Sequela of Acute Pesticide Poisoning Among Adults in Central Taiwan. Front Neurol 2021; 12:745265. [PMID: 34956044 PMCID: PMC8708347 DOI: 10.3389/fneur.2021.745265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
Background and Purpose: Cases of acute pesticide poisoning account for significant morbidity and mortality in developing countries; however, its burden in Taiwan remains unknown. The study examined acute pesticide poisoning (APP) involving adults in the central region of Taiwan, which is a mainly agricultural sub-urban area. Methods: The retrospective study evaluated the outcome and neurological sequelae of patients with APP in a Taiwanese cohort between April 2002 and February 2019. The pesticides were classified according to the Insecticide Resistance Action Committee Mode of Action (MoA) classification. The clinical characteristics, duration of hospitalization (days), follow-up duration (years), in-hospital mortality, neurological sequela, and imaging findings were recorded. Furthermore, multivariate logistic regression analyses were performed. Results: We identified 299 patients with APP comprising 206 (68.9%) adult men with a mean exposure age of 56.4 ± 16.8 years. Paraquat, organophosphates, pyrethroids, carmabates, and phosphinic acid were the most commonly known reported poisoning agents. The mortality rate was highest in users with paraquat (77.1%), followed by phosphinic acid (22.2%), carbamates (16.7%), and organophosphates (15.8%). After a mean follows up of 3.69 ± 2.26 years, the most common neurological sequela was a cognitive decline (56 among 225 survivors, 24.89%), peripheral neuropathy (11 among 225 survivors, 4.89%), tremor (10 among 225 survivors, 4.44%), ataxia (3/225, 1.33%), and parkinsonism feature (2/225, 0.89%). Brain imaging studies revealed basal ganglion lesions on CT or hyperintensity on T2-weighted MRI images in 26 among 46 patients (56.5%). The basal ganglion lesions on brain imaging had a positive correlation with neurological sequelae. Conclusion: Acute pesticide poisoning (APP)-related mortality is high especially paraquat intoxication, and cognitive decline, as well as peripheral neuropathy, were the most common neurological sequelae among survivors, which is highly correlated with basal ganglia lesions on brain imaging.
Collapse
Affiliation(s)
- Yen-Chung Chen
- Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan
| | - Chin-Hsien Lin
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Shey-Lin Wu
- Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan
| |
Collapse
|
12
|
Li N, Sun C, Jiang J, Wang A, Wang C, Shen Y, Huang B, An C, Cui B, Zhao X, Wang C, Gao F, Zhan S, Guo L, Zeng Z, Zhang L, Cui H, Wang Y. Advances in Controlled-Release Pesticide Formulations with Improved Efficacy and Targetability. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12579-12597. [PMID: 34672558 DOI: 10.1021/acs.jafc.0c05431] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Pesticides are commonly used in modern agriculture and are important for global food security. However, postapplication losses due to degradation, photolysis, evaporation, leaching, surface runoff, and other processes may substantially reduce their efficacy. Controlled-release formulations can achieve the permeation-regulated transfer of an active ingredient from a reservoir to a target surface. Thus, they can maintain an active ingredient at a predetermined concentration for a specified period. This can reduce degradation and dissipation and other losses and has the potential to improve efficacy. Recent developments in controlled-release technology have adapted the concepts of intelligence and precision from the pharmaceutical industry. In this review, we present recent advances in the development of controlled-release formulations and discuss details of the preparation methods, material improvements, and application technologies.
Collapse
Affiliation(s)
- Ningjun Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Changjiao Sun
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiajun Jiang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Anqi Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chong Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yue Shen
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bingna Huang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Changcheng An
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bo Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiang Zhao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chunxin Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fei Gao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shenshan Zhan
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Liang Guo
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhanghua Zeng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Liang Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haixin Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yan Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
13
|
Valencia-Quintana R, López-Durán RM, Milić M, Bonassi S, Ochoa-Ocaña MA, Uriostegui-Acosta MO, Pérez-Flores GA, Gómez-Olivares JL, Sánchez-Alarcón J. Assessment of Cytogenetic Damage and Cholinesterases' Activity in Workers Occupationally Exposed to Pesticides in Zamora-Jacona, Michoacan, Mexico. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18126269. [PMID: 34200547 PMCID: PMC8296030 DOI: 10.3390/ijerph18126269] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 11/16/2022]
Abstract
Pesticides have been considered as potential chemical mutagens; however, little is known about toxic and genotoxic effects during pesticide application in Zamora-Jacona, Michoacan State in Mexico. This study sought to determine DNA damage and cholinesterase activities inhibitions in 54 agricultural workers exposed to complex mixtures of pesticides vs. control group (26 individuals) using Comet assay in peripheral whole blood, micronucleus (MN) test in oral mucosa cells, Cytokinesis-blocked MN assay in lymphocytes (L-CBMNcyt) and measuring AChE and BChE activities in whole blood and plasma samples, respectively. Exposed subjects demonstrated significantly elevated levels of primary (Comet assay: tail intensity, tail length, tail moment, Olive tail moment) and permanent DNA damage (MN assay: in blood/buccal cells; frequencies of nuclear buds, binucleated cells, cells with condensed chromatin, karyorrhexis, pyknosis, and karyolysis). However, inhibition of cholinesterase activities (AChE and BChE) was not observed in the workers. Confounding factors including sex, age, BMI, working exposure period, protection level, smoking habit (cigarettes per day units), alcohol consumption (weekly), medication, were considered in the analysis. These combined techniques demonstrated usefulness in the health hazards risks pesticide exposure assessment and suggested the need for periodic monitoring together with the education and the training of occupational workers for the safe application of potentially harmful pesticides.
Collapse
Affiliation(s)
- Rafael Valencia-Quintana
- Laboratorio “Rafael Villalobos-Pietrini” de Toxicología Genómica y Química Ambiental, Facultad de Agrobiología, Universidad Autónoma de Tlaxcala, CA Genética y Ambiente UATLX-CA 223, Red Temática de Toxicología de Plaguicidas, Tlaxcala 90120, Mexico; (R.V.-Q.); (G.A.P.-F.)
| | - Rosa María López-Durán
- Laboratorio de Biomembranas, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México 09340, Mexico;
- Correspondence: (R.M.L.-D.); (J.S.-A.)
| | - Mirta Milić
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Ksaverska Cesta 2, 10000 Zagreb, Croatia;
| | - Stefano Bonassi
- Department of Human Sciences and Quality of Life Promotion, San Rafaele University, 00166 Rome, Italy;
- Unit of Clinical and Molecular Epidemiology, IRCCS San Rafaele Pisana, 00166 Rome, Italy
| | - Ma. Antonieta Ochoa-Ocaña
- Unidad Académica de Estudios Regionales, Coordinación de Humanidades, UNAM, Jiquilpan 59510, Mexico;
| | | | - Guillermo Alejandro Pérez-Flores
- Laboratorio “Rafael Villalobos-Pietrini” de Toxicología Genómica y Química Ambiental, Facultad de Agrobiología, Universidad Autónoma de Tlaxcala, CA Genética y Ambiente UATLX-CA 223, Red Temática de Toxicología de Plaguicidas, Tlaxcala 90120, Mexico; (R.V.-Q.); (G.A.P.-F.)
| | - José Luis Gómez-Olivares
- Laboratorio de Biomembranas, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México 09340, Mexico;
| | - Juana Sánchez-Alarcón
- Laboratorio “Rafael Villalobos-Pietrini” de Toxicología Genómica y Química Ambiental, Facultad de Agrobiología, Universidad Autónoma de Tlaxcala, CA Genética y Ambiente UATLX-CA 223, Red Temática de Toxicología de Plaguicidas, Tlaxcala 90120, Mexico; (R.V.-Q.); (G.A.P.-F.)
- Correspondence: (R.M.L.-D.); (J.S.-A.)
| |
Collapse
|
14
|
Amaral Dias M, Dos Santos JM, Pignati WA, Felix EP. Quantification and risk assessment of pesticides in southern Brazilian air samples using low-volume sampling and rapid ultrasound-assisted extraction. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:467-479. [PMID: 33570059 DOI: 10.1039/d0em00467g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Brazil is one of the largest pesticide consumers in the world. In the last few years, the use of permissive environmental laws and newly authorized pesticide formulations has been enlarged. Thus, the intensive and inadequate use of pesticides may present a risk to human health since these compounds may move between environmental compartments. Outdoor air samples were collected using low-volume samplers at Arapongas city in the state of Paraná, Brazil, between February and November of 2017. Polyurethane foam (PUF) cartridges were presented as a good choice to collect pesticides from atmospheric gas phase samples when compared to styrene-divinylbenzene (XAD-2). Lower limits of quantitation were obtained with PUF cartridges, which allowed a greater number of samples to be quantified in PUF than in XAD-2. Atrazine and trifluralin were quantified for the first time in Brazilian air samples. The levels of concentration ranged between 192-1731 pg m-3 (chlorpyrifos), 136-1345 pg m-3 (atrazine) and 184-1189 pg m-3 (trifluralin). Alachlor has been out of market in Brazil since 2013, and thus it was not detected in any gas phase sample. The highest daily inhalation exposure was observed in infants, 1 × 10-6 mg kg-1 d-1 for atrazine, chlorpyrifos and trifluralin. None of the analyzed pesticides were associated with a hazardous quotient (HQ) > 1, considering the worst-case scenario for infants, indicating that there is no risk associated with the exposed population. Cancer risk assessment for trifluralin resulted in values below 1 × 10-6, therefore not indicating any significant risk to human health.
Collapse
Affiliation(s)
- Mariana Amaral Dias
- Laboratory of Studies in Environmental Matrices, Federal University of Technology - Paraná, Academic Department of Chemistry and Biology, 5000 Dep. Heitor Alencar Furtado, Curitiba, PR 81280-340, Brazil.
| | | | | | | |
Collapse
|