1
|
González DJ, Morello-Frosch R, Liu Z, Willis MD, Feng Y, McKenzie LM, Steiger BB, Wang J, Deziel NC, Casey JA. Wildfires increasingly threaten oil and gas wells in the western United States with disproportionate impacts on marginalized populations. ONE EARTH (CAMBRIDGE, MASS.) 2024; 7:1044-1055. [PMID: 39036466 PMCID: PMC11259100 DOI: 10.1016/j.oneear.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
The western United States is home to most of the nation's oil and gas production and, increasingly, wildfires. We examined historical threats of wildfires for oil and gas wells, the extent to which wildfires are projected to threaten wells as climate change progresses, and exposure of human populations to these wells. From 1984-2019, we found that cumulatively 102,882 wells were located in wildfire burn areas, and 348,853 people were exposed (resided ≤ 1 km). During this period, we observed a five-fold increase in the number of wells in wildfire burn areas and a doubling of the population within 1 km of these wells. These trends are projected to increase by late century, likely threatening human health. Approximately 2.9 million people reside within 1 km of wells in areas with high wildfire risk, and Asian, Black, Hispanic, and Native American people have disproportionately high exposure to wildfire-threatened wells.
Collapse
Affiliation(s)
- David J.X. González
- Department of Environmental Science, Policy, & Management and School of Public Health, University of California, Berkeley, Berkeley, CA, United States of America
- Lead contact
| | - Rachel Morello-Frosch
- Department of Environmental Science, Policy, & Management and School of Public Health, University of California, Berkeley, Berkeley, CA, United States of America
| | - Zehua Liu
- Department of Biostatistics, Columbia University, New York, NY, United States of America
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Mary D. Willis
- Department of Epidemiology, School of Public Health, Boston University, Boston, MA, United States of America
| | - Yan Feng
- Environmental Science Division, Argonne National Laboratory, Lemont, IL, United States of America
| | - Lisa M. McKenzie
- Department of Environmental & Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Campus, Aurora, CO, United States of America
| | - Benjamin B. Steiger
- Department of Environmental Health Sciences, Columbia University, New York, NY, United States of America
| | - Jiali Wang
- Environmental Science Division, Argonne National Laboratory, Lemont, IL, United States of America
| | - Nicole C. Deziel
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, United States of America
| | - Joan A. Casey
- Department of Environmental Health Sciences, Columbia University, New York, NY, United States of America
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Seattle, WA, United States of America
| |
Collapse
|
2
|
McKenzie LM, Allshouse WB, Abrahams B, Tompkins C. Oil and gas development exposure and atrial fibrillation exacerbation: a retrospective study of atrial fibrillation exacerbation using Colorado's all payer claims dataset. FRONTIERS IN EPIDEMIOLOGY 2024; 4:1379271. [PMID: 38962693 PMCID: PMC11220195 DOI: 10.3389/fepid.2024.1379271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/03/2024] [Indexed: 07/05/2024]
Abstract
Introduction Emerging risk factors for atrial fibrillation (AF) incidence and episodes (exacerbation), the most common and clinically significant cardiac arrhythmia, include air and noise pollution, both of which are emitted during oil and natural gas (O&G) well site development. Methods We evaluated AF exacerbation risk and proximity to O&G well site development by employing a novel data source and interrupted time-series design. We retrospectively followed 1,197 AF patients living within 1-mile of an O&G well site (at-risk of exposure) and 9,764 patients living >2 miles from any O&G well site (unexposed) for AF claims in Colorado's All Payer Claims Dataset before, during, and after O&G well site development. We calculated AF exacerbation risk with multi-failure survival analysis. Results The analysis of the total study population does not provide strong evidence of an association between AF exacerbation and proximity to O&G wells sites during (HR = 1.07, 95% CI: 0.94, 1.22) or after (HR = 1.01, 95% CI: 0.88, 1.16) development. However, AF exacerbation risk differed by patient age and sex. In patients >80 years living within 0.39 miles (2,059 feet) of O&G well site development, AF exacerbation risk increased by 83% (HR = 1.83, 95% CI: 1.25, 2.66) and emergency room visits for an AF event doubled (HR = 2.55, 95% CI: 1.50, 4.36) during development, with risk increasing with proximity. In female patients living within 0.39 miles of O&G well site development, AF exacerbation risk increased by 56% percent (95% CI: 1.13, 2.15) during development. AF exacerbation risk did not persist past the well development period. We did not observe increased AF exacerbation risk in younger or male patients. Discussion The prospect that proximity to O&G well site development, a significant noise and air pollution source, may increase AF exacerbation risk in older and female AF patients requires attention. These findings support appropriate patient education to help mitigate risk and development of mitigation strategies and regulations to protect the health of populations in O&G development regions.
Collapse
Affiliation(s)
- Lisa M. McKenzie
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Campus, Aurora, CO, United States
| | - William B. Allshouse
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Campus, Aurora, CO, United States
| | - Barbara Abrahams
- Department of Cardiology, University of Colorado School of Medicine, University of Colorado Anschutz Campus, Aurora, CO, United States
| | - Christine Tompkins
- Division of Electrophysiology, Emory University, Atlanta, GA, United States
| |
Collapse
|
3
|
Aker AM, Friesen M, Ronald LA, Doyle-Waters MM, Takaro TK, Thickson W, Levin K, Meyer U, Caron-Beaudoin E, McGregor MJ. The human health effects of unconventional oil and gas development (UOGD): A scoping review of epidemiologic studies. CANADIAN JOURNAL OF PUBLIC HEALTH = REVUE CANADIENNE DE SANTE PUBLIQUE 2024; 115:446-467. [PMID: 38457120 PMCID: PMC11133301 DOI: 10.17269/s41997-024-00860-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/23/2024] [Indexed: 03/09/2024]
Abstract
OBJECTIVE Unconventional oil and gas development (UOGD, sometimes termed "fracking" or "hydraulic fracturing") is an industrial process to extract methane gas and/or oil deposits. Many chemicals used in UOGD have known adverse human health effects. Canada is a major producer of UOGD-derived gas with wells frequently located in and around rural and Indigenous communities. Our objective was to conduct a scoping review to identify the extent of research evidence assessing UOGD exposure-related health impacts, with an additional focus on Canadian studies. METHODS We included English- or French-language peer-reviewed epidemiologic studies (January 2000-December 2022) which measured exposure to UOGD chemicals directly or by proxy, and where health outcomes were plausibly caused by UOGD-related chemical exposure. Results synthesis was descriptive with results ordered by outcome and hierarchy of methodological approach. SYNTHESIS We identified 52 studies from nine jurisdictions. Only two were set in Canada. A majority (n = 27) used retrospective cohort and case-control designs. Almost half (n = 24) focused on birth outcomes, with a majority (n = 22) reporting one or more significant adverse associations of UOGD exposure with: low birthweight; small for gestational age; preterm birth; and one or more birth defects. Other studies identified adverse impacts including asthma (n = 7), respiratory (n = 13), cardiovascular (n = 6), childhood acute lymphocytic leukemia (n = 2), and all-cause mortality (n = 4). CONCLUSION There is a growing body of research, across different jurisdictions, reporting associations of UOGD with adverse health outcomes. Despite the rapid growth of UOGD, which is often located in remote, rural, and Indigenous communities, Canadian research on its effects on human health is remarkably sparse. There is a pressing need for additional evidence.
Collapse
Affiliation(s)
- Amira M Aker
- Université Laval, CHU de Quebec - Université Laval, Québec, QC, Canada
| | - Michael Friesen
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Lisa A Ronald
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
- Centre for Clinical Epidemiology and Evaluation, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - Mary M Doyle-Waters
- Centre for Clinical Epidemiology and Evaluation, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - Tim K Takaro
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Willow Thickson
- Department of Family Practice, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Karen Levin
- Emerald Environmental Consulting, Kent, OH, USA
| | - Ulrike Meyer
- Department of Family Practice, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Elyse Caron-Beaudoin
- Department of Health and Society and Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Margaret J McGregor
- Centre for Clinical Epidemiology and Evaluation, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada.
- Department of Family Practice, Faculty of Medicine, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
4
|
Lieberman-Cribbin W, Fang X, Morello-Frosch R, Gonzalez DJ, Hill E, Deziel NC, Buonocore JJ, Casey JA. Multiple Dimensions of Environmental Justice and Oil and Gas Development in Pennsylvania. ENVIRONMENTAL JUSTICE (PRINT) 2024; 17:31-44. [PMID: 38389752 PMCID: PMC10880506 DOI: 10.1089/env.2022.0041] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Background Community socioeconomic deprivation (CSD) may be related to higher oil and natural gas development (OGD) exposure. We tested for distributive and benefit-sharing environmental injustice in Pennsylvania's Marcellus Shale by examining (1) whether OGD and waste disposal occurred disproportionately in more deprived communities and (2) discordance between the location of land leased for OGD and where oil and gas rights owners resided. Materials and Methods Analyses took place at the county subdivision level and considered OGD wells, waste disposal, and land lease agreement locations from 2005 to 2019. Using 2005-2009 American Community Survey data, we created a CSD index relevant to community vulnerability in suburban/rural areas. Results In adjusted regression models accounting for spatial dependence, we observed no association between the CSD index and conventional or unconventional drilled well presence. However, a higher CSD index was linearly associated with odds of a subdivision having an OGD waste disposal site and receiving a larger volume of waste. A higher percentage of oil and gas rights owners lived in the same county subdivision as leased land when the community was least versus most deprived (66% vs. 56% in same county subdivision), suggesting that individuals in more deprived communities were less likely to financially benefit from OGD exposure. Discussion and Conclusions We observed distributive environmental injustice with respect to well waste disposal and benefit-sharing environmental injustice related to oil and rights owner's residential locations across Pennsylvania's Marcellus Shale. These results add evidence of a disparity between exposure and benefits resulting from OGD.
Collapse
Affiliation(s)
- Wil Lieberman-Cribbin
- Mr. Wil Lieberman-Cribbin is a doctoral student at Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, USA
| | - Xin Fang
- Ms. Xin Fang is a Research Assistant at Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, USA
| | - Rachel Morello-Frosch
- Dr. Rachel Morello-Frosch is a Professor at Department of Environmental Science, Policy and Management & School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - David J.X. Gonzalez
- Dr. David J.X. Gonzalez is a postdoctoral fellow at Department of Environmental Science, Policy and Management & School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Elaine Hill
- Dr. Elaine Hill is an Associate Professor at Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Nicole C. Deziel
- Dr. Nicole C. Deziel is an Associate Professor at Department of Environmental Health Sciences, Yale University School of Public Health, New Haven, Connecticut, USA
| | - Jonathan J. Buonocore
- Dr. Jonathan J. Buonocore is a Research Associate at Center for Climate, Health, and the Global Environment, Harvard University T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Joan A. Casey
- Dr. Joan A. Casey is an Assistant Professor at Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, USA
| |
Collapse
|
5
|
Gaughan C, Sorrentino KM, Liew Z, Johnson NP, Clark CJ, Soriano M, Plano J, Plata DL, Saiers JE, Deziel NC. Residential proximity to unconventional oil and gas development and birth defects in Ohio. ENVIRONMENTAL RESEARCH 2023; 229:115937. [PMID: 37076028 PMCID: PMC10198955 DOI: 10.1016/j.envres.2023.115937] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/30/2023] [Accepted: 04/16/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Chemicals used or emitted by unconventional oil and gas development (UOGD) include reproductive/developmental toxicants. Associations between UOGD and certain birth defects were reported in a few studies, with none conducted in Ohio, which experienced a thirty-fold increase in natural gas production between 2010 and 2020. METHODS We conducted a registry-based cohort study of 965,236 live births in Ohio from 2010 to 2017. Birth defects were identified in 4653 individuals using state birth records and a state surveillance system. We assigned UOGD exposure based on maternal residential proximity at birth to active UOG wells and a metric specific to the drinking-water exposure pathway that identified UOG wells hydrologically connected to a residence ("upgradient UOG wells"). We estimated odds ratios (ORs) and 95% confidence intervals (CIs) for all structural birth defects combined and specific birth defect types using binary exposure metrics (presence/absence of any UOG well and presence/absence of an upgradient UOG well within 10 km), adjusting for confounders. Additionally, we conducted analyses stratified by urbanicity, infant sex, and social vulnerability. RESULTS The odds of any structural defect were 1.13 times higher in children born to mothers living within 10 km of UOGD than those born to unexposed mothers (95%CI: 0.98-1.30). Odds were elevated for neural tube defects (OR: 1.57, 95%CI: 1.12-2.19), limb reduction defects (OR: 1.99, 95%CI: 1.18-3.35), and spina bifida (OR 1.93; 95%CI 1.25-2.98). Hypospadias (males only) was inversely related to UOGD exposure (OR: 0.62, 95%CI: 0.43-0.91). Odds of any structural defect were greater in magnitude but less precise in analyses using the hydrological-specific metric (OR: 1.30; 95%CI: 0.85-1.90), in areas with high social vulnerability (OR: 1.27, 95%CI: 0.99-1.60), and among female offspring (OR: 1.28, 95%CI: 1.06-1.53). CONCLUSIONS Our results suggest a positive association between UOGD and certain birth defects, and findings for neural tube defects corroborate results from prior studies.
Collapse
Affiliation(s)
- Casey Gaughan
- Department of Ecology and Evolutionary Biology, Yale College, New Haven, CT, USA; Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Keli M Sorrentino
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Zeyan Liew
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Nicholaus P Johnson
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Cassandra J Clark
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Mario Soriano
- Yale School of the Environment, Yale University, New Haven, CT, USA; High Meadows Environmental Institute, Princeton University, Princeton, NJ, USA
| | - Julie Plano
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Desiree L Plata
- Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - James E Saiers
- Yale School of the Environment, Yale University, New Haven, CT, USA
| | - Nicole C Deziel
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA.
| |
Collapse
|
6
|
Han J, Zhang B, Zhang X, Huang K, Fang V, Xu X. Associations between occurrence of birth defects and hydraulic fracturing activities in Barnett shale region, Texas. Heliyon 2023; 9:e15213. [PMID: 37089285 PMCID: PMC10114229 DOI: 10.1016/j.heliyon.2023.e15213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/20/2023] [Accepted: 03/29/2023] [Indexed: 04/25/2023] Open
Abstract
The impacts of hydraulic fracturing (HF) on birth defects have been suggested by previous studies but remain largely inconclusive. In this study, we assessed whether pregnant women who lived in areas with high HF activities had increased risks of giving birth to offspring with overall or specific birth defects, including atrial septal defect (ASD), ventricular septal defect (VSD), patent ductus arteriosus (PDA), microcephaly (MIC), and hydrocephaly without spina bifida (HSB). All live births between 1999 and 2014 among the residents in the four core counties of Denton, Johnson, Tarrant, and Wise in the Barnett Shale region, Texas, were analyzed. Standardized Morbidity Ratio (SMR) and Poisson regressions were applied for statistical analysis. Compared to the statewide risk, the risks of ASD, VSD, and PDA in four selected counties with high HF activities were significantly higher. The Annual Natural Gas Production from HF was significantly correlated with risks of ASD, PDA, MIC, and total birth defect after adjusting for counties and years. No significant associations of HF activities were found with VSD and HSB. This ecological study suggested that hydraulic fracturing might be associated with the increased risk of some birth defects in the Barnett Shale Region, TX, which warrants further investigations due to the limitation of an ecological study design.
Collapse
Affiliation(s)
- JeongWon Han
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M University, College Station, TX 77843, USA
| | - Bangning Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M University, College Station, TX 77843, USA
| | - Xiao Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M University, College Station, TX 77843, USA
| | - Ke Huang
- Department of Statistics, College of Science, Texas A&M University, USA
| | - Vixey Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M University, College Station, TX 77843, USA
| | - Xiaohui Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M University, College Station, TX 77843, USA
- Corresponding author. Department of Epidemiology & Biostatistics¸ School of Public Health, Texas A&M University, 225 SPH Administration Building | MS 1266 212 Adriance Lab Road College Station, Texas 77843-1266, USA.
| |
Collapse
|
7
|
Willis MD, Cushing LJ, Buonocore JJ, Deziel NC, Casey JA. It's electric! An environmental equity perspective on the lifecycle of our energy sources. Environ Epidemiol 2023; 7:e246. [PMID: 37064423 PMCID: PMC10097546 DOI: 10.1097/ee9.0000000000000246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/23/2023] [Indexed: 04/05/2023] Open
Abstract
Energy policy decisions are driven primarily by economic and reliability considerations, with limited consideration given to public health, environmental justice, and climate change. Moreover, epidemiologic studies relevant for public policy typically focus on immediate public health implications of activities related to energy procurement and generation, considering less so health equity or the longer-term health consequences of climate change attributable to an energy source. A more integrated, collective consideration of these three domains can provide more robust guidance to policymakers, communities, and individuals. Here, we illustrate how these domains can be evaluated with respect to natural gas as an energy source. Our process began with a detailed overview of all relevant steps in the process of extracting, producing, and consuming natural gas. We synthesized existing epidemiologic and complementary evidence of how these processes impact public health, environmental justice, and climate change. We conclude that, in certain domains, natural gas looks beneficial (e.g., economically for some), but when considered more expansively, through the life cycle of natural gas and joint lenses of public health, environmental justice, and climate change, natural gas is rendered an undesirable energy source in the United States. A holistic climate health equity framework can inform how we value and deploy different energy sources in the service of public health.
Collapse
Affiliation(s)
- Mary D. Willis
- Department of Epidemiology, School of Public Health, Boston University, Boston, Massachusetts
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon
| | - Lara J. Cushing
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California
| | - Jonathan J. Buonocore
- Center for Climate, Health, and the Global Environment, T.H. Chan School of Public Health, Harvard University, Cambridge, Massachusetts
- Department of Environmental Health, School of Public Health, Boston University, Boston, Massachusetts
| | - Nicole C. Deziel
- Department of Environmental Health Sciences, School of Public Health, Yale University, New Haven, Connecticut
| | - Joan A. Casey
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington
| |
Collapse
|
8
|
Weisner ML, Allshouse WB, Erjavac BW, Valdez AP, Vahling JL, McKenzie LM. Health Symptoms and Proximity to Active Multi-Well Unconventional Oil and Gas Development Sites in the City and County of Broomfield, Colorado. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2634. [PMID: 36767999 PMCID: PMC9915243 DOI: 10.3390/ijerph20032634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
City and County of Broomfield (CCOB) residents reported over 500 health concerns between January 2020 and December 2021. Our objective was to determine if CCOB residents living within 1 mile of multi-well unconventional oil and gas development (UOGD) sites reported more frequent health symptoms than residents living > 2 miles away. We invited 3993 randomly selected households to participate in a health survey. We applied linear regression to test associations between distance to UOGD and summed Likert scores for health symptom categories. After covariate adjustment, respondents living within 1 mile of one of CCOB's UOGD sites tended to report higher frequencies of upper respiratory, lower respiratory, gastrointestinal and acute symptoms than respondents living more than 2 miles from the sites, with the largest differences for upper respiratory and acute symptoms. For upper respiratory and acute symptoms, scores differed by 0.81 (95% CI: 0.06, 2.58) and 0.75 (95% CI: 0.004, 1.99), respectively. Scores for adults most concerned about air pollution, noise and odors trended higher within 1 mile for all symptom categories, while scores among adults least concerned trended lower. Scores trended higher for lower respiratory, gastrointestinal and acute symptoms in children living within 2 miles of UOGD, after covariate adjustment. We did not observe any difference in the frequency of symptoms reported in unadjusted results. Additional study is necessary to understand relationships between proximity to UOGD and health symptoms.
Collapse
Affiliation(s)
- Meagan L. Weisner
- Department of Public Health and Environment, City and County of Broomfield, Broomfield, CO 80020, USA
| | - William B. Allshouse
- Department of Environmental & Occupational Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Benjamin W. Erjavac
- Department of Environmental & Occupational Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Andrew P. Valdez
- Department of Strategic Initiatives, City and County of Broomfield, Broomfield, CO 80020, USA
| | - Jason L. Vahling
- Department of Public Health and Environment, City and County of Broomfield, Broomfield, CO 80020, USA
| | - Lisa M. McKenzie
- Department of Environmental & Occupational Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
9
|
Willis MD, Carozza SE, Hystad P. Congenital anomalies associated with oil and gas development and resource extraction: a population-based retrospective cohort study in Texas. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:84-93. [PMID: 36460921 PMCID: PMC9852077 DOI: 10.1038/s41370-022-00505-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 05/02/2023]
Abstract
BACKGROUND Oil and gas extraction-related activities produce air and water pollution that contains known and suspected teratogens. To date, health impacts of in utero exposure to these activities is largely unknown. OBJECTIVE We investigated associations between in utero exposure to oil and gas extraction activity in Texas, one of the highest producers of oil and gas, and congenital anomalies. METHODS We created a population-based birth cohort between 1999 and 2009 with full maternal address at delivery and linked to the statewide congenital anomaly surveillance system (n = 2,234,138 births, 86,315 cases). We examined extraction-related exposures using tertiles of inverse distance-squared weighting within 5 km for drilling site count, gas production, oil production, and produced water. In adjusted logistic regression models, we calculated odds of any congenital anomaly and 10 specific organ sites using two comparison groups: 1) 5 km of future drilling sites that are not yet operating (a priori main models), and 2) 5-10 km of an active well. RESULTS Using the temporal comparison group, we find increased odds of any congenital anomaly in the highest tertile exposure group for site count (OR: 1.25; 95% CI: 1.21, 1.30), oil production (OR: 1.08; 95% CI: 1.04, 1.12), gas production (1.20; 95% CI: 1.17, 1.23), and produced water (OR: 1.17; 95% CI: 1.14, 1.20). However, associations did not follow a consistent exposure-response pattern across tertiles. Associations are highly attenuated, but still increased, with the spatial comparison group in the highest tertile exposure group. Cardiac and circulatory defects are strongly and consistently associated with all exposure metrics. SIGNIFICANCE Increased odds of congenital anomalies, particularly cardiac and circulatory defects, were associated with exposures related to oil and gas extraction in this large population-based study. Future research is needed to confirm findings, examine specific exposure pathways, and identify potential avenues to reduce exposures among local populations. IMPACT About 5% of the U.S. population (~17.6 million people) resides within 1.6 km of an active oil or gas extraction site, yet the influence of this industry on population health is not fully understood. In this analysis, we examined associations between oil and gas extraction-related exposures and congenital anomalies by organ site using birth certificate and congenital anomaly surveillance data in Texas (1999-2009). Increased odds of congenital anomalies, particularly cardiac and circulatory defects, were associated with exposures related to oil and gas extraction in this large population-based study. Future research is needed to confirm these findings.
Collapse
Affiliation(s)
- Mary D Willis
- Department of Epidemiology, School of Public Health, Boston University, Boston, MA, USA.
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA.
| | - Susan E Carozza
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| | - Perry Hystad
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
10
|
Gorski-Steiner I, Bandeen-Roche K, Volk HE, O'Dell S, Schwartz BS. The association of unconventional natural gas development with diagnosis and treatment of internalizing disorders among adolescents in Pennsylvania using electronic health records. ENVIRONMENTAL RESEARCH 2022; 212:113167. [PMID: 35341757 PMCID: PMC9233008 DOI: 10.1016/j.envres.2022.113167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/01/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Unconventional natural gas development (UNGD) introduces physical and psychosocial hazards into communities, which could contribute to psychosocial stress in adolescents and an increased risk of internalizing disorders, common and impactful health outcomes. OBJECTIVES To evaluate associations between a 180-day composite UNGD activity metric and new onset of internalizing disorders, overall and separately for anxiety and depressive disorders, and effect modification by sex. METHODS We used a nested case-control design from 2008 to 2016 in 38 Pennsylvania counties using electronic health records from adolescent Geisinger subjects. Cases were defined by at least two diagnoses or medication orders indicating new onset of an internalizing disorder, and controls frequency-matched 4:1 on age, sex, and year. To evaluate associations, we used generalized estimating equations, with logit link, robust standard errors, and an exchangeable correlation structure within community. RESULTS We identified 7,974 adolescents (65.9% female, mean age 15.0 years) with new onset internalizing disorders. There were no associations when we used data from the entire study period. When restricted to years with higher UNGD activity (2010-2016), comparing the highest to lowest quartile, UNGD activity was associated (odds ratio [95% confidence level]) with new onset internalizing disorders (1.15 [1.06, 1.25]). Associations were slightly stronger for depressive disorders. Associations were only present in females (p = 0.009). DISCUSSION This is the first epidemiologic study of UNGD in relation to adolescent mental health, an important health outcome in a potentially susceptible group to the environmental and community impacts of UNGD. UNGD activity was associated with new onset internalizing disorders in females in this large sample in an area of active UNGD.
Collapse
Affiliation(s)
- Irena Gorski-Steiner
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Karen Bandeen-Roche
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Heather E Volk
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Sean O'Dell
- Department of Psychiatry and Behavioral Health, Geisinger, Danville, PA, USA
| | - Brian S Schwartz
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Population Health Sciences, Geisinger, Danville, PA, USA; Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
11
|
Deziel NC, Clark CJ, Casey JA, Bell ML, Plata DL, Saiers JE. Assessing Exposure to Unconventional Oil and Gas Development: Strengths, Challenges, and Implications for Epidemiologic Research. Curr Environ Health Rep 2022; 9:436-450. [PMID: 35522388 PMCID: PMC9363472 DOI: 10.1007/s40572-022-00358-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2022] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW Epidemiologic studies have observed elevated health risks in populations living near unconventional oil and gas development (UOGD). In this narrative review, we discuss strengths and limitations of UOG exposure assessment approaches used in or available for epidemiologic studies, emphasizing studies of children's health outcomes. RECENT FINDINGS Exposure assessment challenges include (1) numerous potential stressors with distinct spatiotemporal patterns, (2) critical exposure windows that cover long periods and occur in the past, and (3) limited existing monitoring data coupled with the resource-intensiveness of collecting new exposure measurements to capture spatiotemporal variation. All epidemiologic studies used proximity-based models for exposure assessment as opposed to surveys, biomonitoring, or environmental measurements. Nearly all studies used aggregate (rather than pathway-specific) models, which are useful surrogates for the complex mix of potential hazards. Simple and less-specific exposure assessment approaches have benefits in terms of scalability, interpretability, and relevance to specific policy initiatives such as set-back distances. More detailed and specific models and metrics, including dispersion methods and stressor-specific models, could reduce exposure misclassification, illuminate underlying exposure pathways, and inform emission control and exposure mitigation strategies. While less practical in a large population, collection of multi-media environmental and biological exposure measurements would be feasible in cohort subsets. Such assessments are well-suited to provide insights into the presence and magnitude of exposures to UOG-related stressors in relation to spatial surrogates and to better elucidate the plausibility of observed effects in both children and adults.
Collapse
Affiliation(s)
- Nicole C. Deziel
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College St., New Haven, CT 06510 USA
| | - Cassandra J. Clark
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College St., New Haven, CT 06510 USA
| | - Joan A. Casey
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, 630 West 168th Street, Room 16-416, New York, NY 10032 USA
| | - Michelle L. Bell
- Yale School of the Environment, 195 Prospect St., New Haven, CT 06511 USA
| | - Desiree L. Plata
- Department of Civil and Environmental Engineering, Parsons Laboratory, Massachusetts Institute of Technology, 15 Vassar Street, Cambridge, MA 02139 USA
| | - James E. Saiers
- Yale School of the Environment, 195 Prospect St., New Haven, CT 06511 USA
| |
Collapse
|
12
|
Tang IW, Langlois PH, Vieira VM. A spatial analysis of birth defects in Texas, 1999-2011. Birth Defects Res 2021; 113:1229-1244. [PMID: 34240569 DOI: 10.1002/bdr2.1940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/25/2021] [Accepted: 06/29/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND The etiologies of major birth defects are still unclear and few spatial analyses have been conducted in the United States. Spatial analyses of individual-level data can help elucidate environmental and social risk factors. METHODS We used generalized additive models to analyze 52,955 cases of neural tube defects, congenital heart defects (CHDs), gastroschisis, and orofacial cleft defects, and sampled from 642,399 controls born between 1999 and 2011 in Texas. The effect of geographic location was measured using a bivariable smooth term of geocoded birth address within a logistic regression framework. We calculated and mapped odds ratios (ORs) and 95% confidence intervals (CIs) for birth defects subtypes across Texas, and adjusted for maternal characteristics, environmental indicators, and community-level covariates. We also performed time-stratified spatiotemporal analyses for more prevalent birth defects. RESULTS Location was significantly associated with crude odds of all birth defects except hypoplastic left heart syndrome. After adjusting for maternal characteristics, environmental indicators, and community-level factors, ORs in many geographic areas were no longer statistically significant for most defects, especially CHDs. However, areas of significant and insignificant elevated risk remained for defects in all groups in North and South Texas, with ORs for ventricular septal defects increasing over time. Low risk of birth defects was often present in the northern part of East Texas. CONCLUSION Significant spatial patterns of birth defects were identified and varied depending on adjustment of different categories of covariates. Further investigation of areas with increased risks may aid in our understanding of birth defects.
Collapse
Affiliation(s)
- Ian W Tang
- Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, California, USA
| | - Peter H Langlois
- Division of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas School of Public Health, Austin, Texas, USA
| | - Verónica M Vieira
- Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, California, USA
| |
Collapse
|