1
|
Tsiodra I, Grivas G, Bougiatioti A, Tavernaraki K, Parinos C, Paraskevopoulou D, Papoutsidaki K, Tsagkaraki M, Kozonaki FA, Oikonomou K, Nenes A, Mihalopoulos N. Source apportionment of particle-bound polycyclic aromatic hydrocarbons (PAHs), oxygenated PAHs (OPAHs), and their associated long-term health risks in a major European city. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175416. [PMID: 39142411 DOI: 10.1016/j.scitotenv.2024.175416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024]
Abstract
Many studies have drawn attention to the associations of oxygenated polycyclic aromatic hydrocarbons (OPAHs) with harmful health effects, advocating for their systematic monitoring alongside simple PAHs to better understand the aerosol carcinogenic potential in urban areas. To address this need, this study conducted an extensive PM2.5 sampling campaign in Athens, Greece, at the Thissio Supersite of the National Observatory of Athens, from December 2018 to July 2021, aiming to characterize the levels and variability of polycyclic aromatic compounds (PACs), perform source apportionment, and assess health risk. Cumulative OPAH concentrations (Σ-OPAHs) were in the same range as Σ-PAHs (annual average 4.2 and 5.6 ng m-3, respectively). They exhibited a common seasonal profile with enhanced levels during the heating seasons, primarily attributed to residential wood burning (RWB). The episodic impact of biomass burning was also observed during a peri-urban wildfire event in May 2021, when PAH and OPAH concentrations increased by a factor of three compared to the monthly average. The study period also included the winter 2020-2021 COVID-19 lockdown, during which PAH and OPAH levels decreased by >50 % compared to past winters. Positive matrix factorization (PMF) source apportionment, based on a carbonaceous aerosol speciation dataset, identified PAC sources related to RWB, local traffic (gasoline vehicles) and urban traffic (including diesel emissions), as well as an impact of regional organic aerosol. Despite its seasonal character, RWB accounted for nearly half of Σ-PAH and over two-thirds of Σ-OPAH concentrations. Using the estimated source profiles and contributions, the source-specific carcinogenic potency of the studied PACs was calculated, revealing that almost 50 % was related to RWB. These findings underscore the urgent need to regulate domestic biomass burning at a European level, which can provide concrete benefits for improving urban air quality, towards the new stricter EU standards, and reducing long-term health effects.
Collapse
Affiliation(s)
- Irini Tsiodra
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, Lofos Koufou, P. Penteli, Athens, 15236, Greece; Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Heraklion, 71003, Greece; Center for the Study of Air Quality and Climate Change, Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras, GR-26504, Greece
| | - Georgios Grivas
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, Lofos Koufou, P. Penteli, Athens, 15236, Greece
| | - Aikaterini Bougiatioti
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, Lofos Koufou, P. Penteli, Athens, 15236, Greece
| | - Kalliopi Tavernaraki
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, Lofos Koufou, P. Penteli, Athens, 15236, Greece; Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Heraklion, 71003, Greece
| | - Constantine Parinos
- Hellenic Centre for Marine Research, Institute of Oceanography, 190 13 Anavyssos, Attiki, Greece
| | - Despina Paraskevopoulou
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, Lofos Koufou, P. Penteli, Athens, 15236, Greece; Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Heraklion, 71003, Greece
| | - Kyriaki Papoutsidaki
- Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Heraklion, 71003, Greece
| | - Maria Tsagkaraki
- Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Heraklion, 71003, Greece
| | - Faidra-Aikaterini Kozonaki
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, Lofos Koufou, P. Penteli, Athens, 15236, Greece; Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Heraklion, 71003, Greece
| | | | - Athanasios Nenes
- Center for the Study of Air Quality and Climate Change, Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras, GR-26504, Greece; Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil & Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland.
| | - Nikolaos Mihalopoulos
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, Lofos Koufou, P. Penteli, Athens, 15236, Greece; Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Heraklion, 71003, Greece.
| |
Collapse
|
2
|
Ali L, Alam A, Ali AM, Teoh WY, Altarawneh M. A comprehensive Review into Emission Sources, Formation Mechanisms, Ecological Effects, and Biotransformation Routes of Halogenated Polycyclic Aromatic Hydrocarbons (HPAHs). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117196. [PMID: 39426109 DOI: 10.1016/j.ecoenv.2024.117196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Abstract
Halogenated polycyclic aromatic hydrocarbons (HPAHs, H = F, Cl, Br) are a new class of PAHs derivatives that mainly originate from the incomplete combustion of halogen-laden materials and via metallurgical operations. These compounds circulate extensively in various environmental matrices. This survey provides a comprehensive review on governing synthesis routes of HPAHs, their environmental occurrence, and their health and ecological effects. The review comprehensively enlists and presents emission sources of these emerging organic pollutants into the air that serves as their main reservoir. The formation of HPAHs ensues through successive addition reactions of related precursors accompanied by ring cyclization steps; in addition to direct unimolecular fragmentation of parents halogenated. Halogenation of parent PAHs rapidly occurs in saline ecosystems, thus multiplying the availability of these notorious compounds in the environment. Certain HPAHs appear to be more carcinogenic than dioxins. Transmission routes of HPAHs from their emission sources to water bodies, soil, aquatic life, plants, terrestrial animals, and humans are well-documented. Later, the direct and indirect diffusion of HPAHs from air to the biotic (plants, animals, humans) and abiotic components (soil, water, sediments) are described in detail. The study concludes that HPAHs are permeable to the carbon matrices resulting in the alleviation of the source-to-sink interface. As a potential future perspective, understanding the transmission interfaces lays a foundation to intervene in the introduction of these toxicants into the food chain.
Collapse
Affiliation(s)
- Labeeb Ali
- United Arab Emirates University, Department of Chemical and Petroleum Engineering, Sheikh Khalifa bin Zayed Street, Al-Ain 15551, United Arab Emirates
| | - Ayesha Alam
- United Arab Emirates University, Department of Integrative Agriculture, Sheikh Khalifa bin Zayed Street, Al-Ain 15551, United Arab Emirates
| | - Abdul Majeed Ali
- Medcare Hospital, Department of Pediatrics and Neonatology, King Faisal Street, Sharjah 15551, United Arab Emirates
| | - Wey Yang Teoh
- Department of Chemical Engineering, Sustainable Process Engineering Centre (SPEC), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Mohammednoor Altarawneh
- United Arab Emirates University, Department of Chemical and Petroleum Engineering, Sheikh Khalifa bin Zayed Street, Al-Ain 15551, United Arab Emirates.
| |
Collapse
|
3
|
Chen YW, Liu KT, Thi Phuong Thao H, Jian MY, Cheng YH. Insight into the diurnal variations and potential sources of ambient PM 2.5-bound polycyclic aromatic hydrocarbons during spring in Northern Taiwan. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134977. [PMID: 38905976 DOI: 10.1016/j.jhazmat.2024.134977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
In recent decades, polycyclic aromatic hydrocarbons (PAHs), the primary organic pollutants associated with particulate matter (PM), have attracted significant attention due to their carcinogenic and mutagenic potential. However, past studies have lacked exploration into the diurnal variation characteristics of PAHs, primarily due to limited analytical technical capabilities. This study utilized a thermal-desorption device coupled with gas chromatography/mass spectrometry (TD-GC/MS) to identify the levels of PAHs in PM2.5 during short periods (3-hr) and aimed to investigate the diurnal variations, possible sources, and potential health risks associated with PM2.5-bound PAHs in northern Taiwan. The mean concentration of total PAHs in PM2.5 was 1.22 ± 0.69 ng m-3 during the sampling period, with high molecular weight PAHs dominating. Source apportionment by the positive matrix factorization (PMF) model indicated that industrial emissions and traffic emissions (57.7 %) were the predominant sources of PAHs, with petroleum volatilization and coal/biomass combustion (42.3 %) making a lesser contribution. Diurnal variations of industrial and traffic emissions showed higher concentrations during traffic rush hours, while petroleum volatilization and coal/biomass combustion displayed higher concentrations at noon. Results from the potential source contribution function (PSCF) and the concentration weighted trajectory (CWT) model suggested that industrial emissions and traffic emissions mostly originated from local sources and were concentrated in the vicinity of the sampling site and the coastal area of western Taiwan. Source-attributed excess cancer risk (ECR) showed that industrial and traffic emissions had the highest cancer risks during morning traffic peak hours (1.69 ×10-5), while petroleum volatilization and coal/biomass combustion reached the maximum at noon (4.75 ×10-6). As a result, efforts to reduce PAH emissions from industrial and vehicle exhaust sources, especially during morning traffic hours, can help mitigate their adverse impact on human health.
Collapse
Affiliation(s)
- Yi-Wen Chen
- Center for Environmental Sustainability and Human Health, Ming Chi University of Technology, Taishan, New Taipei 243089, Taiwan
| | - Kuan-Ting Liu
- Center for Environmental Sustainability and Human Health, Ming Chi University of Technology, Taishan, New Taipei 243089, Taiwan
| | - Ho Thi Phuong Thao
- Center for Environmental Sustainability and Human Health, Ming Chi University of Technology, Taishan, New Taipei 243089, Taiwan
| | - Meng-Ying Jian
- Center for Environmental Sustainability and Human Health, Ming Chi University of Technology, Taishan, New Taipei 243089, Taiwan
| | - Yu-Hsiang Cheng
- Center for Environmental Sustainability and Human Health, Ming Chi University of Technology, Taishan, New Taipei 243089, Taiwan; Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, Taishan, New Taipei 243089, Taiwan; Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi, Chiayi 613016, Taiwan.
| |
Collapse
|
4
|
Zhang Z, Chen Q, Bai C, Zhu Y, She J, Ge X, Li M, Li L, Yu Y. Identification and seasonal variation of specific particulate bound (halogenated) polycyclic aromatic hydrocarbons in air from different metal industrial parks in Northwest China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:41914-41925. [PMID: 38853229 DOI: 10.1007/s11356-024-33883-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/29/2024] [Indexed: 06/11/2024]
Abstract
During the process of industrial heating, a large amount of polycyclic aromatic hydrocarbons (PAHs) and their halogenated compounds (Cl/Br-PAHs) can be formed. However, there is still limited understanding of the chemicals from different metal smelting industrial parks. This study evaluated the seasonal variations, composition profiles, and source allocations of the atmospheric particulate-bound PAHs and Cl/Br-PAHs in different metal industrial parks in a typical industrial city in northwest China. The results showed that the main PAHs produced by metal smelting were low molecular weight isomers, and the concentrations of Cl-PAHs were lower compared to Br-PAHs. The main Br-PAHs were 1-Br-Pyr and 4-Br-Pyr, while 9-Cl-Fle, 1-Cl-Pyr, and 6-Cl-BaP were the dominated Cl-PAH isomers. No significant difference was found in the concentrations among the sites, whereas the levels of the target chemicals were higher during cold months compared to warm months. The main source of PAHs was coal combustion and gasoline vehicle emission during metal smelting, and that of Cl/Br-PAHs was also industrial coal burning. In addition to the primary source, the secondary chlorination of parent PAHs was also a significant source of Cl-PAHs in the production of high purity aluminum. This study suggests that Cl-PAHs and Br-PAHs may behave differently in the atmosphere.
Collapse
Affiliation(s)
- Ziwei Zhang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, P.R. China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| | - Qiang Chen
- College of Atmospheric Sciences, Lanzhou University, Lanzhou, 730000, P.R. China
| | - Chifei Bai
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, P.R. China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| | - Yuhuan Zhu
- College of Atmospheric Sciences, Lanzhou University, Lanzhou, 730000, P.R. China
| | - Jing She
- College of Atmospheric Sciences, Lanzhou University, Lanzhou, 730000, P.R. China
| | - Xiang Ge
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, P.R. China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| | - Meibao Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, P.R. China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| | - Liangzhong Li
- CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Yingxin Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, P.R. China.
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, P.R. China.
| |
Collapse
|
5
|
Takikawa T, Wang Q, Omagari R, Noro K, Miyake Y, Amagai T. Development of an analytical method for indoor polycyclic aromatic hydrocarbons and their halogenated derivatives by using thermal separation probe coupled to gas chromatography-tandem mass spectrometry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166931. [PMID: 37689201 DOI: 10.1016/j.scitotenv.2023.166931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/27/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and their halogenated derivatives (XPAHs) have been a concern because of their high toxicity. Monitoring indoor PAHs and XPAHs concentrations is important for risk assessment because humans typically spend >90 % of their time indoors. However, the background levels of indoor PAHs and XPAHs concentrations are unknown because of the low sensitivity of conventional analytical methods. In this study, we developed a highly sensitive analytical method using a thermal separation probe (TSP) coupled to a gas chromatograph with a triple quadrupole mass spectrometer method for 26 PAHs and 40 XPAHs. The method quantification limit (MQL) values of the TSP method were 1.1 (3,8-dichlorofluoranthene)-906 (dibenzo[a,e]pyrene) times lower than those of the conventional method. The regression line comparing the TSP and conventional methods was y = (0.944 ± 0.0401)x, which was in good agreement. These results demonstrate that the TSP method can be applied to indoor air analysis. The total concentrations of PAHs and XPAHs were 944 and 73.5 pg m-3 for the house and 735 and 0.924 pg m-3 in the office, respectively. Among the detected compounds, 13 PAHs and XPAHs could not be detected using conventional methods because of their high MQL values. The composition of total toxicity equivalency values in the house was dominated by dibenzo[a,i]pyrene (DBaiP: 43.2 %) and dibenzo[a,h]pyrene (DBahP: 27.1 %), which could not be detected using the conventional method. Therefore, the TSP method can improve the risk assessment of indoor PAHs and XPAHs.
Collapse
Affiliation(s)
- Tetsuya Takikawa
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1, Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| | - Qi Wang
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1, Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan; Research Center for Chemical Information and Management, National Institute of Occupational Safety and Health (JNIOSH), 6-21-1, Nagao, Tama-ku, Kawasaki, Kanagawa 214-8585, Japan.
| | - Ryo Omagari
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1, Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| | - Kazushi Noro
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1, Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan.
| | - Yuichi Miyake
- Graduate School/Faculty of Environment and Information Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Takashi Amagai
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1, Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| |
Collapse
|
6
|
Lara S, Villanueva F, Cabañas B, Sagrario S, Aranda I, Soriano JA, Martin P. Determination of policyclic aromatic compounds, (PAH, nitro-PAH and oxy-PAH) in soot collected from a diesel engine operating with different fuels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165755. [PMID: 37499818 DOI: 10.1016/j.scitotenv.2023.165755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/29/2023] [Accepted: 07/22/2023] [Indexed: 07/29/2023]
Abstract
A qualitative and quantitative analysis of polycyclic aromatic compounds (PACs; polycyclic aromatic hydrocarbons (PAHs), oxygenated and nitrated polycyclic aromatic hydrocarbons (OPAHs and NPAHs)) present in the soluble organic fraction (SOF) of different soot samples has been carried out to determine the effect of soot-generation conditions on their composition and health effects. The soot samples were generated using a diesel engine bench powered by diesel (DS) and biodiesel (BS) fuels under different combustion conditions. To optimize the procedure, a surrogate soot (Printex-U) and a certified reference material (SRM1650b) were also tested. Different extraction methods were used to extract the PAHs, OPAHs and NPAHs, and the Soxhlet technique using pyridine:acetic acid 1 % was found to be the most suitable procedure to extract the highest concentration (ng mg-1) and more types of PAHs and OPAHs from the soot. The results show that the PACs identified, and their concentrations, depend on the formation and collection conditions. The predominant compounds in all soot samples studied were fluorene (Flo), phenanthrene (Phe), fluoranthene (Fla), pyrene (Pyr), 9-fluorenone (9Flo) and 9,10-anthraquinone (9,10Anq). As such, the presence of these PACs in the atmosphere of urban and rural areas can mainly be attributed to the emissions from diesel vehicles. The percentage of OPAHs with respect to total PACs was highest in the soot generated from a biofuel. These oxidized compounds favor regeneration of the diesel particulate filter (DPF). The results also indicate that the carcinogenicity of the soot depends on the combustion conditions and type of fuel.
Collapse
Affiliation(s)
- S Lara
- Universidad de Castilla-La Mancha, Instituto de Investigación en Combustión y Contaminación Atmosférica, Camino de Moledores s/n, 13071 Ciudad Real, Spain
| | - F Villanueva
- Universidad de Castilla-La Mancha, Instituto de Investigación en Combustión y Contaminación Atmosférica, Camino de Moledores s/n, 13071 Ciudad Real, Spain; Parque Científico y Tecnológico de Castilla-La Mancha, Paseo de la Innovación 1, 02006 Albacete, Spain
| | - B Cabañas
- Universidad de Castilla-La Mancha, Instituto de Investigación en Combustión y Contaminación Atmosférica, Camino de Moledores s/n, 13071 Ciudad Real, Spain; Universidad de Castilla-La Mancha, Departamento de Química Física, Facultad de Ciencias y Tecnologías Químicas, Avenida Camilo José Cela s/n, 13071 Ciudad Real, Spain
| | - S Sagrario
- Universidad de Castilla-La Mancha, Instituto de Investigación en Combustión y Contaminación Atmosférica, Camino de Moledores s/n, 13071 Ciudad Real, Spain; Universidad de Castilla-La Mancha, Departamento de Química Física, Facultad de Ciencias y Tecnologías Químicas, Avenida Camilo José Cela s/n, 13071 Ciudad Real, Spain
| | - I Aranda
- Universidad de Castilla-La Mancha, Instituto de Investigación en Combustión y Contaminación Atmosférica, Camino de Moledores s/n, 13071 Ciudad Real, Spain
| | - J A Soriano
- Universidad de Castilla-La Mancha, Campus de Excelencia Internacional en Energía y Medioambiente, Instituto de Investigación Aplicada a la Industria Aeronáutica INAIA, Escuela de Ingeniería Industrial y Aeroespacial de Toledo. Real Fábrica de Armas, Edif. Sabatini, Av. Carlos III s/n, 45071, Toledo, Spain
| | - P Martin
- Universidad de Castilla-La Mancha, Instituto de Investigación en Combustión y Contaminación Atmosférica, Camino de Moledores s/n, 13071 Ciudad Real, Spain.
| |
Collapse
|
7
|
Chen YW, Cheng YH, Hsu CY. Characterization of the sources and health risks of polycyclic aromatic hydrocarbons in PM 2.5 and their relationship with black carbon: A case study in northern Taiwan. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122427. [PMID: 37633441 DOI: 10.1016/j.envpol.2023.122427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 08/28/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and black carbon (BC) often coexist in PM2.5 because both form during the incomplete combustion of organic matter. These compounds are regarded as hazardous air pollutants with potential health effects, including respiratory and cardiovascular effects. In this study, to evaluate the health risks of PAHs and BC at an urban site in northern Taiwan, 16 priority PAHs and BC, identified by the United States Environmental Protection Agency, were analyzed and quantified in PM2.5 to determine their concentrations, their relationship with each other, and their likely sources. The results indicated that the mean concentrations of total PAHs and BC were 0.91 ng m-3 and 0.97 μg m-3, respectively, with a significant positive correlation between them, indicating the same emission sources. The results also indicated that fossil fuel combustion and traffic emissions were primary contributors to PAHs, with wood and biomass combustion playing a less prominent role. Among these 16 priority PAHs, benzo[a]pyrene, dibenz[a,h]anthracene, benzo[b]fluoranthene, and indeno[1,2,3-cd]pyrene served as major carcinogenic compounds, accounting for 89.0% of the total carcinogenic toxicity. Thus, the lifetime excess cancer risk resulting from PAH exposure was estimated as 8.03 × 10-6, indicating a potential carcinogenic risk to human health at the sampling site. Overall, this study highlights the need for future mitigation policies for traffic emissions and fossil fuel combustion for reducing the local emissions of BC and co-produced PAHs in northern Taiwan.
Collapse
Affiliation(s)
- Yi-Wen Chen
- Center for Environmental Sustainability and Human Health, Ming Chi University of Technology, Taishan, New Taipei, 243089, Taiwan
| | - Yu-Hsiang Cheng
- Center for Environmental Sustainability and Human Health, Ming Chi University of Technology, Taishan, New Taipei, 243089, Taiwan; Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, Taishan, New Taipei, 243089, Taiwan; Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi, Chiayi, 613016, Taiwan.
| | - Chin-Yu Hsu
- Center for Environmental Sustainability and Human Health, Ming Chi University of Technology, Taishan, New Taipei, 243089, Taiwan; Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, Taishan, New Taipei, 243089, Taiwan
| |
Collapse
|
8
|
Deng W, Wen M, Wang C, Huang J, Zhang S, Ma S, Xiong J, Wang W, Zhang X, An T. Atmospheric occurrences and health risk assessment of polycyclic aromatic hydrocarbons and their derivatives in a typical coking facility and surrounding areas. CHEMOSPHERE 2023; 341:139994. [PMID: 37652242 DOI: 10.1016/j.chemosphere.2023.139994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/02/2023]
Abstract
Coking facilities release large quantities of polycyclic aromatic hydrocarbons (PAHs) and their derivatives into the ambient air. Here we examined the profiles, spatial distributions, and potential sources of atmospheric PAHs and their derivatives in an industrial coking plant and its surrounding environment (gaseous and particulate). The mean concentrations of PAHs, nitrated PAHs (NPAHs), chlorinated PAHs (ClPAHs), and brominated PAHs (BrPAHs) in the air of the coking facility were 923, 23.8, 16.7 and 4.25 ng m-³, respectively, 1-2 orders of magnitude higher than those in the surrounding area and the control area. Linear regressions between contaminant concentrations and distance from the coking facility suggested that the concentrations of PAHs (r2 = 0.82, p < 0.05), NPAHs (r2 = 0.77, p < 0.01), and BrPAHs (r2 = 0.62, p < 0.01) were negatively correlated with distance. Additionally, the particle-bound fractions of PAHs and their derivatives were significantly correlated with their molecular weights (p < 0.01). Based on the calculation of the gas/particle partitioning coefficients (log KP) for PAHs and their derivatives and the corresponding subcooled liquid vapor pressures (log PL), the slope values for PAHs, NPAHs, ClPAHs, and BrPAHs ranged from -1 to -0.6, indicating that deposition of PAHs and their derivatives occurred through both adsorption and absorption. Five emissions sources were identified by positive matrix factorization (PMF), including coking emissions, oil pollution, industrial and combustion sources, secondary formation, and traffic emissions, with coking emissions accounting for more than 50% of total emissions. Furthermore, the results of the health risks assessment suggested that atmospheric PAHs and their derivatives in the coke plant and surrounding area negatively impacted human health.
Collapse
Affiliation(s)
- Weiqiang Deng
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Meicheng Wen
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Chao Wang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jin Huang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Shu Zhang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Shengtao Ma
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jukun Xiong
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Wanjun Wang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xin Zhang
- Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
9
|
Liu J, Deng S, Tong H, Yang Y, Tuheti A. Emission profiles, source identifications, and health risk of polycyclic aromatic hydrocarbons (PAHs) in a road tunnel located in Xi'an, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:85125-85138. [PMID: 37380852 DOI: 10.1007/s11356-023-27996-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 05/25/2023] [Indexed: 06/30/2023]
Abstract
Understanding the sources and characteristics of PM2.5-bound PAHs from traffic-related pollution can provide valuable data for mitigating air contamination from traffic in local urban regions. However, little information on PAHs is available regarding the typical arterial highway-Qinling Mountains No.1 tunnel in Xi'an. We estimated the profiles, sources, and emission factors of PM2.5-bound PAHs in this tunnel. The total PAH concentrations were 22.78 ng·m-3 and 52.80 ng·m-3 at the tunnel middle and exit, which were 1.09 and 3.84 times higher than that at the tunnel entrance. Pyr, Flt, Phe, Chr, BaP, and BbF were the dominant PAH species (representing approximately 78.01% of total PAHs). The four rings PAHs were dominant (58%) among the total PAH concentrations in PM2.5. The results demonstrated that diesel and gasoline vehicles exhaust emissions contributed 56.81% and 22.60% to the PAHs, respectively, while the corresponding value for together brakes, tyre wear, and road dust was 20.59%. The emission factors of total PAHs were 29.35 μg·veh-1·km-1, and emission factors of 4 rings PAHs were significantly higher than those of the other PAHs. The sum of ILCR was estimated to be 1.41×10-4, which accorded with acceptable level of cancer risk (10-6-10-4), PAHs should not ignored as they still affect the public health of inhabitants. This study shed light on PAH profiles and traffic-related sources in the tunnel, thereby facilitating the assessment of control measures targeting PAHs in local areas.
Collapse
Affiliation(s)
- Jiayao Liu
- School of Water and Environment, Chang'an University, Xi'an, 710064, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710064, China
| | - Shunxi Deng
- School of Water and Environment, Chang'an University, Xi'an, 710064, China.
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710064, China.
| | - Hui Tong
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300072, China
| | - Yan Yang
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Abula Tuheti
- School of Water and Environment, Chang'an University, Xi'an, 710064, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710064, China
| |
Collapse
|
10
|
Zhang Y, Pei C, Zhang J, Cheng C, Lian X, Chen M, Huang B, Fu Z, Zhou Z, Li M. Detection of polycyclic aromatic hydrocarbons using a high performance-single particle aerosol mass spectrometer. J Environ Sci (China) 2023; 124:806-822. [PMID: 36182185 DOI: 10.1016/j.jes.2022.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/14/2021] [Accepted: 02/03/2022] [Indexed: 06/16/2023]
Abstract
The real-time detection of the mixing states of polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs in ambient particles is of great significance for analyzing the source, aging process, and health effects of PAHs and nitro-PAHs; yet there is still few effective technology to achieve this type of detection. In this study, 11 types of PAH and nitro-PAH standard samples were analyzed using a high performance-single particle aerosol mass spectrometer (HP-SPAMS) in lab studies. The identification principles 'parent ions' and 'mass-to-charge (m/z) = 77' of each compound were obtained in this study. It was found that different laser energies did not affect the identification of the parent ions. The comparative experiments of ambient atmospheric particles, cooking and biomass burning emitted particles with and without the addition of PAHs were conducted and ruled out the interferences from primary and secondary organics on the identification of PAHs. Besides, the reliability of the characteristic ions extraction method was evaluated through the comparative study of similarity algorithm and deep learning algorithm. In addition, the real PAH-containing particles from vehicle exhaust emissions and ambient particles were also analyzed. This study improves the ability of single particle mass spectrometry technology to detect PAHs and nitro-PAHs, and HP-SPAMS was superior to SPAMS for detecting single particles containing PAHs and nitro-PAHs. This study provides support for subsequent ambient observations to identify the characteristic spectrum of single particles containing PAHs and nitro-PAHs.
Collapse
Affiliation(s)
- Yao Zhang
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air pollution, Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, China
| | - Chenglei Pei
- Guangzhou Environmental Monitoring Center, Guangzhou 510030, China
| | - Jinwen Zhang
- Guangzhou Hexin Analytical Instrument Company Limited, Guangzhou 510530, China
| | - Chunlei Cheng
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air pollution, Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, China.
| | - Xiufeng Lian
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air pollution, Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, China
| | - Mubai Chen
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air pollution, Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, China
| | - Bo Huang
- Guangzhou Hexin Analytical Instrument Company Limited, Guangzhou 510530, China
| | - Zhong Fu
- Guangzhou Hexin Analytical Instrument Company Limited, Guangzhou 510530, China
| | - Zhen Zhou
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air pollution, Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, China
| | - Mei Li
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air pollution, Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, China.
| |
Collapse
|
11
|
Rapid detection of four polycyclic aromatic hydrocarbons in drinking water by constant-wavelength synchronous fluorescence spectrometry. ANAL SCI 2023; 39:59-66. [PMID: 36223062 DOI: 10.1007/s44211-022-00200-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/02/2022] [Indexed: 01/06/2023]
Abstract
Based on the advantages of the good selectivity and high sensitivity of the synchronous fluorescence method, an efficient method using constant-wavelength synchronous fluorescence spectrometry (CWSFS) for simultaneous and rapid determination of four polycyclic aromatic hydrocarbons (PAHs) (acenaphthene, phenanthrene, benzo[a]anthracene and fluoranthene) in drinking water was established in this study. When the difference in wavelength (Δλ) at 100 nm was chosen for CWSFS scanning, the synchronous fluorescence spectra of the four PAHs could be well separated with only one single scan. Different from conventional fluorescence analysis, the established method can avoid the interference among the four PAHs each other and the interference of the drinking water sample matrix, so the four PAHs in drinking water could be well distinguished and determined. The concentrations of four PAHs in the range of 0.05-100 μg/L, 0.1-400 μg/L, 0.05-100 μg/L and 0.5-2000 μg/L showed a good linear relationship with fluorescence intensity. The limits of detection were 0.0058 μg/L, 0.021 μg/L, 0.0061 μg/L and 0.056 μg/L, respectively. The recoveries were in the range of 86.55-98.74%. Overall, the established CWSFS had the characteristics of simple, rapid, sensitive and accuracy, and had been applied to the determination of the four PAHs in various drinking water with satisfactory results.
Collapse
|
12
|
Ji L, Li W, Li Y, He Q, Bi Y, Zhang M, Zhang G, Wang X. Spatial Distribution, Potential Sources, and Health Risk of Polycyclic Aromatic Hydrocarbons (PAHs) in the Surface Soils under Different Land-Use Covers of Shanxi Province, North China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191911949. [PMID: 36231245 PMCID: PMC9565183 DOI: 10.3390/ijerph191911949] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 05/21/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widespread in the environment and pose a serious threat to the soil ecosystem. In order to better understand the health risks for residents exposed to PAH-contaminated soil, 173 surface soil samples were collected in Shanxi Province, China, to detect the levels of 16 priority PAHs. The spatial distribution patterns of PAHs were explored using interpolation and spatial clustering analysis, and the probable sources of soil PAHs were identified for different land-use covers. The results indicate that the soil Σ16 PAH concentration ranged from 22.12 to 1337.82 ng g-1, with a mean of 224.21 ng g-1. The soils were weakly to moderately contaminated by high molecular weight PAHs (3-5 ring) and the Taiyuan-Linfen Basin was the most polluted areas. In addition, the concentration of soil PAHs on construction land was higher than that on other land-use covers. Key sources of soil PAHs were related to industrial activities dominated by coal burning, coking, and heavy traffic. Based on the exposure risk assessment of PAHs, more than 10% of the area was revealed to be likely to suffer from high carcinogenic risks for children. The study maps the high-risk distribution of soil PAHs in Shanxi Province and provides PAH pollution reduction strategies for policy makers to prevent adverse health risks to residents.
Collapse
Affiliation(s)
- Li Ji
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Wenwen Li
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Yuan Li
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qiusheng He
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, China
- Correspondence: ; Tel.: +86-351-699-8256
| | - Yonghong Bi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Minghua Zhang
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Guixiang Zhang
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
13
|
Chen Z, Tian Z, Liu X, Sun W. The potential risks and exposure of Qinling giant pandas to polycyclic aromatic hydrocarbon (PAH) pollution. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118294. [PMID: 34626712 DOI: 10.1016/j.envpol.2021.118294] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/28/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
Rapid industrialization and urbanization have created a substantial urban-rural gradient for various pollutants. The Qinling Mountains are highly important in terms of biodiversity, providing habitat for giant pandas, which are endemic to China and are a widely recognized symbol for conservation. Whether polycyclic aromatic hydrocarbon (PAH) exposure risks regarding in situ animal conservation zones are affected by environmental pollution or even enhanced by the mountain-trapping effect requires further research. Our group carried out a large-scale investigation on the area ranging from Xi'an to Hanzhong across the giant panda habitat in the Qinling Mountains by collecting atmosphere, soil, bamboo, and fecal samples from different sites over a two-year period. The total toxicity of atmospheric PAHs and the frequencies of soil PAHs above effect range low (ERL) values showed a decreasing trend from urban areas to the central mountains, suggesting a distance effect from the city. The proportions of total 5- and 6-ring PAHs in the atmosphere were higher in the central mountainous areas than in the urban areas, while this difference was reversed in the soil. Health risk assessments showed that the incremental lifetime carcinogenic risks (ILCR) of PAH exposure by bamboo ingestion ranged from 2.16 × 10-4 to 3.11 × 10-4, above the critical level of 10-4. Bamboo ingestion was the main driver of the PAH exposure risks. The concentration difference between bamboo and fecal samples provided a reference for the level of PAHs absorbed by the panda digestive system. Since the Qinling Mountains possess the highest density of giant pandas and provide habitats to many other endangered animal and plant species, we should not ignore the probability of health risks posed by PAHs. Monitoring the pollution level and reducing the atmospheric emissions of toxic pollutants are recommended actions. Further detailed research should also be implemented on pandas' health effects of contaminant exposure.
Collapse
Affiliation(s)
- Zhigang Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, And School of Environment, Tsinghua University, Beijing, 100084, China
| | - Zhaoxue Tian
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, And School of Environment, Tsinghua University, Beijing, 100084, China
| | - Xuehua Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, And School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Wanlong Sun
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, And School of Environment, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
14
|
Ali-Taleshi MS, Squizzato S, Riyahi Bakhtiari A, Moeinaddini M, Masiol M. Using a hybrid approach to apportion potential source locations contributing to excess cancer risk of PM 2.5-bound PAHs during heating and non-heating periods in a megacity in the Middle East. ENVIRONMENTAL RESEARCH 2021; 201:111617. [PMID: 34228953 DOI: 10.1016/j.envres.2021.111617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 06/13/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) represent one of the major toxic pollutants associated with PM2.5 with significant human health and climate effects. Because of local and long-range transport of atmospheric PAHs to receptor sites, higher global attentions have been focused to improve PAHs pollution emission management. In this study, PM2.5 samples were collected at three urban sites located in the capital of Iran, Tehran, during the heating and non-heating periods (H-period and NH-period). The US EPA 16 priority PAHs were analyzed and the data were processed to the following detailed aims: (i) investigate the H-period and NH-period variations of PM2.5 and PM2.5-bound PAHs concentrations; (ii) identify the PAHs sources and the source locations during the two periods; (iii) carry out a source-specific excess cancer risk (ECR) assessment highlighting the potential source locations contributing to the ECR using a hybrid approach. Total PAHs (TPAHs) showed significantly higher concentrations (1.56-1.89 times) during the H-period. Among the identified PAHs compounds, statistically significant periodical differences (p-value < 0.05) were observed only between eight PAHs species (Nap, BaA, Chr, BbF, BkF, BaP, IcdP, and DahA) at all three sampling sites which can be due to the significant differences of PAHs emission sources during H and NH-periods. High molecular weight (HMW) PAHs accounted for 52.7% and 46.8% on average of TPAHs during the H-period and NH-period, respectively. Positive matrix factorization (PMF) led to identifying four main PAHs sources including industrial emissions, petrogenic emissions, biomass burning and natural gas emissions, and vehicle exhaust emissions. Industrial and petrogenic emissions exhibited the highest contribution (19.8%, 27.2%, respectively) during the NH-period, while vehicle exhaust and biomass burning-natural gas emissions showed the largest contribution (40.7%, 29.6%, respectively) during the H-period. Concentration weighted trajectory (CWT) on factor contributions was used for tracking the potential locations of the identified sources. In addition to local sources, long-range transport contributed to a significant fraction of TPHAs in Tehran both during the H- and NH-periods. Source-specific carcinogenic risks assessment apportioned vehicle exhaust (44.2%, 2.52 × 10-4) and biomass burning-natural gas emissions (33.9%, 8.31 × 10-5) as the main cancer risk contributors during the H-period and NH-period, respectively. CWT maps pointed out the different distribution patterns associated with the cancer risk from the identified sources. This will allow better risk management through the identification of priority PAHs sources.
Collapse
Affiliation(s)
| | - Stefania Squizzato
- Dipartimento di Scienze Ambientali Informatica e Statistica, Università Ca' Foscari Venezia, Venezia, Italy.
| | - Alireza Riyahi Bakhtiari
- Department of Environment, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran
| | - Mazaher Moeinaddini
- Department of Environment, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Mauro Masiol
- Dipartimento di Scienze Ambientali Informatica e Statistica, Università Ca' Foscari Venezia, Venezia, Italy
| |
Collapse
|