1
|
Torres-Herrera S, Palomares-Cortés J, González-Cortés JJ, Cubides-Páez DF, Gamisans X, Cantero D, Ramírez M. Biodesulfurization of landfill biogas by a pilot-scale bioscrubber: Operational limits and microbial analysis. ENVIRONMENTAL RESEARCH 2024; 246:118164. [PMID: 38211717 DOI: 10.1016/j.envres.2024.118164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/13/2024]
Abstract
Biogas serves as a crucial renewable energy vector to ensure a more sustainable energy future. However, the presence of hydrogen sulfide (H2S) limits its application in various sectors, emphasizing the importance of effective H2S removal techniques for maximizing its potential. In the present study, the limits of a pilot-scale bioscrubber for biogas desulfurization was study in a real scenario. An increase in the superficial liquid velocity resulted in significant improvements in the H2S removal efficiency, increasing from 76 ± 8% (elimination capacity of 6.2 ± 0.5 gS-H2S m-3 h-1) to 97.7 ± 0.5% (elimination capacity of 8 ± 1 gS-H2S m-3 h-1) as the superficial liquid velocity increased from 50 ± 3 m h-1 to 200 ± 8 m h-1. A USL of 161.4 ± 0.5 m h-1 was able to achieve outlet H2S concentrations as low as 3 ± 1 ppmv (H2S removal efficiency of 97 ± 1%) for 7 days. High superficial liquid velocity favoured the aerobic H2S oxidation reducing the nitrate demand. The maximum EC reached throughout the operation was 50.8 ± 0.6 gS-H2S m-3 h-1 (H2S removal efficiency of 96 ± 1%) and a sulfur production of 60%. Studies in batch flocculation experiments showed sulfur removal rates up to 97.6 ± 0.9% with a cationic flocculant dose of 75 mg L-1. Microbial analysis revealed that the predominant genus with sulfo-oxidant capacity during periods of low H2S inlet load was Thioalkalispira-sulfurivermis (61-69%), while in periods of higher H2S inlet load, family Arcobacteraceae was the most prevalent (11%).
Collapse
Affiliation(s)
- S Torres-Herrera
- Department of Chemical Engineering and Food Technologies, Wine and Agrifood Research Institute (IVAGRO). Faculty of Sciences, University of Cadiz, Puerto Real, Cadiz, 11510, Spain
| | - J Palomares-Cortés
- Department of Chemical Engineering and Food Technologies, Wine and Agrifood Research Institute (IVAGRO). Faculty of Sciences, University of Cadiz, Puerto Real, Cadiz, 11510, Spain
| | - J J González-Cortés
- Department of Chemical Engineering and Food Technologies, Wine and Agrifood Research Institute (IVAGRO). Faculty of Sciences, University of Cadiz, Puerto Real, Cadiz, 11510, Spain
| | - D F Cubides-Páez
- Eurecat, Centre Tecnològic de Catalunya, Sustainability Area, Plaça de la Ciencia 2, Manresa, Barcelona, 08242, Spain
| | - X Gamisans
- Department of Mining, Industrial and ICT Engineering, Manresa School of Engineering, Universitat Politècnica de Catalunya, Manresa, Barcelona, 08242, Spain
| | - D Cantero
- Department of Chemical Engineering and Food Technologies, Wine and Agrifood Research Institute (IVAGRO). Faculty of Sciences, University of Cadiz, Puerto Real, Cadiz, 11510, Spain
| | - M Ramírez
- Department of Chemical Engineering and Food Technologies, Wine and Agrifood Research Institute (IVAGRO). Faculty of Sciences, University of Cadiz, Puerto Real, Cadiz, 11510, Spain.
| |
Collapse
|
2
|
Zhu L, Zhao Y, Chen S, Miao X, Fang Z, Yao X, Dong C, Hu B. Alternating ventilation accelerates the mineralization and humification of food waste by optimizing the temperature-oxygen-moisture distribution in the static composting reactor. BIORESOURCE TECHNOLOGY 2024; 393:130050. [PMID: 37989420 DOI: 10.1016/j.biortech.2023.130050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/06/2023] [Accepted: 11/15/2023] [Indexed: 11/23/2023]
Abstract
Traditional unidirectional ventilation often leads to the loss of heat and moisture during composting, disrupting the favorable microenvironment required for aerobic microbes. This study developed a pulse alternating ventilation composting reactor and investigated the effects of alternating ventilation on composting efficiency compared with upward ventilation and downward ventilation. The results demonstrated that alternating ventilation stabilized the moisture content at approximately 60 % while reducing the temperature and oxygen concentration range within the reactor. Moreover, it extended the duration of high-temperature (>50 °C) by 31 % and 75 % compared to other two groups. It improved the microbial cooperation intensity and stimulated the core microbe (Tepidimicrobium). Seed germination index (GI) of the compost was improved (GI = 91.27 %), and the humic acid content was 1.23 times and 1.37 times higher than other two groups. These results showed that alternating ventilation can be used for efficient resource disposal of food waste.
Collapse
Affiliation(s)
- Lin Zhu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuxiang Zhao
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Siyin Chen
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinyin Miao
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhou Fang
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiangwu Yao
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chifei Dong
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Baolan Hu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, China; College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China.
| |
Collapse
|
3
|
Ding L, Chen J, Zhang Y, Xiao J, Xu X, Zhang H, Chen Q, Zhao Y, Chen W. Effects of Dietary Fish Meal Replacement with Composite Mixture of Chicken Meal, Krill Meal, and Plant Proteins on Growth, Physiological Metabolism, and Intestinal Microbiota of Chinese Perch ( Siniperca chuatsi). AQUACULTURE NUTRITION 2023; 2023:2915916. [PMID: 39553243 PMCID: PMC11221970 DOI: 10.1155/2023/2915916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/01/2023] [Accepted: 11/30/2023] [Indexed: 11/19/2024]
Abstract
This trial aimed to investigate the influence of graded replacing fish meal (D1: 0.00%, D2: 27.27%, and D3: 54.55%) with mixed protein ingredients (i.e., chicken meal, krill meal, fermented soybean meal, and soy protein concentrate) on the growth performance, muscle nutritional composition, blood biochemical indices, gut bacterial community, and transcriptome of Chinese perch. Two hundred seventy Chinese perch were divided into three groups (90 per group) and the diet lasted for 56 days. Results showed that the weight gain rate and specific growth rate were significantly lower, and the feed conversion ratio was significantly higher in the D3 group than in fish fed D1 (P < 0.05), with no significant differences between the D1 and D2 groups (P > 0.05). The muscle crude protein content was highest in the D2 group, and the crude fat content was significantly different in the order: D3 > D1 > D2 (P < 0.05). The levels of serum triglycerides (TG) and low-density lipoprotein cholesterol in the D2 group were significantly lower than those in the D1 group (P < 0.05), but there was no significant difference compared to the D3 group (P > 0.05). The microbial community structure changed significantly. Mycoplasma showed the highest abundance in the D1 and D2 groups (P < 0.05), and Cetobacterium peaked in D2 group, and significantly higher than that in D1 group (P < 0.05). Network analysis and cohesion index calculation showed that both network complexity and cohesion peaked in D2 group, and Cetobacterium was highly correlated with the cohesion index (P < 0.05). Further, muscle transcriptome analysis results showed that compared with the control group, differentially expressed genes were clustered (Q < 0.05) in the arginine and proline metabolism pathways in D2 group. Fish in D3 group significantly (Q < 0.05) affected genes involved in KEGG pathways of ribosome, circadian rhythm, thermogenesis, insulin signaling pathway, fatty acid degradation, oxidative phosphorylation, and apoptosis. In conclusion, under the experimental conditions, the replacement of 27.27% of fish meal by the compound protein did not have a negative impact on the growth performance of Chinese perch and could improve muscle quality, lipid metabolism, and the interaction of intestinal microbiota.
Collapse
Affiliation(s)
- Liyun Ding
- Poyang Lake Fisheries Research Centre of Jiangxi Province, Jiangxi Fisheries Research Institute, Nanchang 330039, China
- Fujian Tianma Science and Technology Group Co., Ltd., Fuqing 350300, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jiacheng Chen
- Fujian Tianma Science and Technology Group Co., Ltd., Fuqing 350300, China
| | - Yanping Zhang
- Poyang Lake Fisheries Research Centre of Jiangxi Province, Jiangxi Fisheries Research Institute, Nanchang 330039, China
| | - Jun Xiao
- Poyang Lake Fisheries Research Centre of Jiangxi Province, Jiangxi Fisheries Research Institute, Nanchang 330039, China
| | - Xiandong Xu
- Poyang Lake Fisheries Research Centre of Jiangxi Province, Jiangxi Fisheries Research Institute, Nanchang 330039, China
| | - Haixing Zhang
- Poyang Lake Fisheries Research Centre of Jiangxi Province, Jiangxi Fisheries Research Institute, Nanchang 330039, China
| | - Qingtang Chen
- Fujian Tianma Science and Technology Group Co., Ltd., Fuqing 350300, China
| | | | - Wenjing Chen
- Poyang Lake Fisheries Research Centre of Jiangxi Province, Jiangxi Fisheries Research Institute, Nanchang 330039, China
| |
Collapse
|
4
|
Shao Q, Feng D, Yu Z, Chen D, Ji Y, Ye Q, Cheng D. The role of microbial interactions in dental caries: Dental plaque microbiota analysis. Microb Pathog 2023; 185:106390. [PMID: 37858633 DOI: 10.1016/j.micpath.2023.106390] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/10/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023]
Abstract
OBJECTIVES Dental caries is a result of the ecological dysfunction of the polymicrobial community on the tooth surface, which evolves through microbial interactions. In this study, we conducted a thorough analysis of the dental plaque microbiome to comprehend its multi-microbial aetiology. MATERIALS AND METHOD In this study, plaque was collected from healthy tooth surfaces, shallow carious teeth and deep carious teeth, and bacterial composition and abundance were assessed using 16S rRNA high-throughput sequencing. Random forest and LEfSe were used to profile various microorganisms at each stage. Additionally, we developed a molecular ecological network (MEN) based on random matrix theory (RMT) to examine microbial interactions for the first time. RESULTS Our results reveal that Scardovia wiggsiae, Streptococcus mutans, and Propionibacterium acidifaciens may be associated with initial caries, and Propionibacterium acidifaciens differentiates between shallow and deep caries. As caries progressed, the alpha diversity index declined, indicating a decrease in microbial variety. The network topological indices such as centralization betweenness revealed that the caries network had become more complex, involving more microbial interactions. The shallow network revealed a high negative correlation ratio across nodes, indicating that microbes competed heavily. In contrast, the positive correlation ratio of deep network nodes was high, and microorganisms transitioned from a competitive to a synergistic state. CONCLUSIONS This study suggests that microbial diversity and interactions are critical to caries progression and that future caries research should give greater consideration to the role of microbial interaction factors in caries progression.
Collapse
Affiliation(s)
- Qingyi Shao
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Zhejiang, China
| | - Danfeng Feng
- Department of Stomatology, Tongde Hospital of Zhejiang Province, Zhejiang, China
| | - Zhendi Yu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Zhejiang, China
| | - Danlei Chen
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Zhejiang, China
| | - Youqi Ji
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Zhejiang, China
| | - Qing Ye
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Zhejiang, China.
| | - Dongqing Cheng
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Zhejiang, China.
| |
Collapse
|
5
|
Zhu L, Zhao Y, Yao X, Zhou M, Li W, Liu Z, Hu B. Inoculation enhances directional humification by increasing microbial interaction intensity in food waste composting. CHEMOSPHERE 2023; 322:138191. [PMID: 36812995 DOI: 10.1016/j.chemosphere.2023.138191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/04/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Inoculation can effectively improve the recycling level of organic waste in composting process. However, the role of inocula in the humification process has been rarely studied. Therefore, we constructed a simulated food waste composting system by adding commercial microbial agents to explore the function of inocula. The results showed that adding microbial agents extended the high temperature maintenance time by 33% and increased the humic acid content by 42%. Inoculation significantly improved the degree of directional humification (HA/TOC = 0.46, p < 0.001). The proportion of positive cohesion in the microbial community underwent an overall increase. The strength of bacterial/fungal community interaction increased by 1.27-fold after inoculation. Furthermore, the inoculum stimulated the potential functional microbes (Thermobifida and Acremonium) which were highly related to the formation of humic acid and the degradation of organic matter. This study showed that additional microbial agents could strengthen microbial interaction to raise the humic acid content, thus opening the door for the development of targeted biotransformation inocula in the future.
Collapse
Affiliation(s)
- Lin Zhu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuxiang Zhao
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiangwu Yao
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Meng Zhou
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wenji Li
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zishu Liu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Baolan Hu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Key Laboratory for Water Pollution Control and Environmental Safety, Zhejiang, 310058, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
6
|
Ai C, Sun P, Zhao D, Mu X. Optimization of experimental conditions of microbial desulfurization in coal mine using response surface methodology. Front Bioeng Biotechnol 2022; 10:1076814. [PMID: 36507277 PMCID: PMC9732434 DOI: 10.3389/fbioe.2022.1076814] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 11/03/2022] [Indexed: 11/27/2022] Open
Abstract
To reduce the risk of spontaneous combustion during coal storage and transportation, microbial desulfurization technology is used to reduce the content of inorganic sulfur in coal. A strain of Aciditithiobacillus ferrooxidans was purified from coal mine water in Datong, Shanxi Province, and its desulfurization test conditions were optimized. Taking the inorganic sulfur removal rate of coal as the response value. The Plackett-Burman design method was used to screen the main factors affecting the response value. And the response surface method was used to establish the continuous variable surface model to determine the interaction between the factors. The results show that the three main factors affecting the response value and their significance order are temperature > coal particle size > desulfurization time, and the interaction between temperature and coal particle size has the greatest effect. When the temperature is 29.50°C, the coal size is 100 mesh, and the desulfurization time is 11.67 days, the desulfurization effect is the best, and the removal rate of inorganic sulfur can reach 79.78%, which is close to the predicted value, and the regression effect is wonderful.
Collapse
Affiliation(s)
- Chun‐ming Ai
- College of Safety Science and Engineering, Liaoning Technical University, Huludao, China,Key Laboratory of Thermal Disaster and Prevention, Ministry of Education, Huludao, China
| | - Ping‐ping Sun
- College of Safety Science and Engineering, Liaoning Technical University, Huludao, China,Key Laboratory of Thermal Disaster and Prevention, Ministry of Education, Huludao, China,*Correspondence: Ping‐ping Sun,
| | - Dan Zhao
- College of Safety Science and Engineering, Liaoning Technical University, Huludao, China,Key Laboratory of Thermal Disaster and Prevention, Ministry of Education, Huludao, China
| | - Xiao‐zhi Mu
- Shanxi Jinshen Shaping Coal Industry Co, Ltd., Xinzhou Shanxi, China
| |
Collapse
|
7
|
Zhao Y, Chen W, Zhang P, Cai J, Lou Y, Hu B. Microbial cooperation promotes humification to reduce antibiotic resistance genes abundance in food waste composting. BIORESOURCE TECHNOLOGY 2022; 362:127824. [PMID: 36028052 DOI: 10.1016/j.biortech.2022.127824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Antibiotic resistance genes (ARGs) fate in a full-scale Food waste (FW) facility was investigated. Results showed that with the changes in ARGs, microbial networks could be naturally divided into two clusters, named as the ARGs increasing group (AI group) and the ARGs decreasing group (AD group). The significant difference between two groups (i.e. stronger microbial competition in the AI group and stronger microbial cooperation in the AD group) implied that the variation in ARGs over time were caused by a switch between competition and cooperation. These results indicated that microbial competition might increase ARGs abundance, while cooperation might reduce it. Meanwhile, structural-equation-model (SEM model) showed that humification indexes (e.g. GI value) was an indicator for characterizing microbial interactions and ARGs. The results of the linear model further confirmed that mature compost (GI values > 92.6 %) could reduce the risk of ARGs.
Collapse
Affiliation(s)
- Yuxiang Zhao
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Weizhen Chen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Pan Zhang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Jingjie Cai
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Yicheng Lou
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Baolan Hu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
8
|
Liu Z, Qiu K, Dong Y, Jin Z, Liu L, Wu J. Sb-Fe bimetallic non-aqueous phase desulfurizer for efficient absorption of hydrogen sulfide: A combined experimental and DFT study. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-022-1253-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
9
|
Zhao Y, Lou Y, Qin W, Cai J, Zhang P, Hu B. Interval aeration improves degradation and humification by enhancing microbial interactions in the composting process. BIORESOURCE TECHNOLOGY 2022; 358:127296. [PMID: 35562028 DOI: 10.1016/j.biortech.2022.127296] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Five full-scale food waste composts were conducted under different aeration frequencies (no aeration, aeration at different intervals, and continuous aeration) to reveal the optimal strategy and its microbial mechanisms. The highest degradation rate (77.2%) and humus content (29.3%) were observed in Treatment D with interval aeration (aeration 20 min, pause 10 min). Aeration influenced the degradation and humification rate by regulating microbial interactions. The microbial interactions peaked in Treatment D, with a 1.30-fold increase. In terms of the microbial community, Thermobifida was a key genus for improving positive cohesion, fulfilling three criteria (high abundance, high occurrence frequency, and significant differences between treatments). The aeration strategy employed in Treatment D not only increased relative abundance of Thermobifida (1.2 times higher) but also strengthened interaction between it and functional genera (34 nodes). Overall, interval aeration, featured by 20 min aeration and 10 min pause, could increase microbial interactions and improve composting efficiency.
Collapse
Affiliation(s)
- Yuxiang Zhao
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Yicheng Lou
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Weizhen Qin
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Jingjie Cai
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Pan Zhang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Baolan Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
10
|
Zhao Y, Weng Q, Hu B. Microbial interaction promote the degradation rate of organic matter in thermophilic period. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 144:11-18. [PMID: 35299060 DOI: 10.1016/j.wasman.2022.03.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/19/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Composting is an efficient, microbe-driven method for the biodegradation of solid organic substrates. In such a complex engineering ecosystem, microbial interaction is more important to function than relative abundance and alpha diversity. However, microbial interaction and its driving force in the composting process has been rarely reported. Thus, we combined network analysis and positive cohesion to analyze the relationship between cooperation among bacteria taxa and the degradation of organic matter in ten industrial-scale food waste composting piles. The results showed that although the complexity of network and microbial diversity were inhibited by high temperature, microbial cooperation was stimulated in the thermophilic period. The positive cohesion, which reflected the degree of microbial cooperation, tended to be positively correlated with the degradation rate of organic matter, functional genera, and genes associated with organic matter degradation. Thus, microbial cooperation was a key factor in the promotion of the degradation of organic matter. From the insight microbial community, Thermobifida was the genera with high abundance, high occurrence frequency, and high contributions to microbial structure. Additionally, it was not only highly associated with the degree of cooperation but was also highly linked with the functional genera in the composting, implying that it might play an important role in regulating cooperation to promote the functional genera. Our research provides a deep understanding of the interaction among bacteria taxa during the composting process. Focusing on the abundance of Thermobifida might be an efficient way to improve composting quality by enhancing the cooperation of microbes.
Collapse
Affiliation(s)
- Yuxiang Zhao
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Qin Weng
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Baolan Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
11
|
Zhao Y, Zhuge C, Weng Q, Hu B. Additional strains acting as key microbes promoted composting process. CHEMOSPHERE 2022; 287:132304. [PMID: 34563783 DOI: 10.1016/j.chemosphere.2021.132304] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/27/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
Microbial inoculums (MIs) were the widely used biofortification strategy in composting. However, lack of efficient MIs and unclear strengthening mechanisms might impaired the efficiency of MIs. Here, three experimental group (precise strains, commercial MI, Inoculum HJ) and one control group (untreated) were investigated to close these gaps. Adding MIs could significantly prolong the duration of thermophilic period (1.5-2.8 times), but the difference in GI, pH value, EC value and moisture content were marginal. Furthermore, it could be observed that adding Inoculum HJ could improve the degradation rate of lignocellulose and organic matters for 1.22-1.25 times. The high-throughput sequencing results showed that adding Inoculum HJ made additional genus dominant, with their relative abundance raised from 2.58 to 3.39 times. Results of network analysis showed that microbial interaction could be strengthened by adding MIs, and significantly improved composting quality. The most intensive interaction was observed in the pile with Inoculum HJ, which was 1.20 times higher than other piles. To explore how Inoculum HJ strengthened microbial interaction, module based connectivity analysis was used to distinguish key hubs. Results showed that twelve hkey OTUs in the thermophilic period were similar to additional strains' full-length 16S rRNA gene. These results showed that additional strains behaved like the key hubs to strengthen microbial interaction in the thermophilic period. This research indicated that additional strains from the most efficient inoculum could behave as key hubs to increase the network complexity and had the potential to strengthen microbial interaction.
Collapse
Affiliation(s)
- Yuxiang Zhao
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Chengxiang Zhuge
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Qin Weng
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Baolan Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|