1
|
Ao TJ, Wu J, Li K, Chandra R, Zhao XQ, Tang YQ, Liu CG, Bai FW. Cellulosic ethanol stillage for methane production by integrating single-chamber anaerobic digestion and microbial electrolysis cell system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175814. [PMID: 39197773 DOI: 10.1016/j.scitotenv.2024.175814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/22/2024] [Accepted: 08/24/2024] [Indexed: 09/01/2024]
Abstract
Anaerobic digestion provides a solution to the inefficient use of carbon resources caused by improper disposal of corn stover-based ethanol stillage (CES). In this regard, we developed a single-chamber anaerobic digestion integrated microbial electrolysis cells system (AD-MEC) to convert CES into biogas while simultaneously upgrading biogas in-situ by employing voltages ranging from 0 to 2.5 V. Our results demonstrated that applying 1.0 V increased the CH4 yield by 55 % and upgraded the CH4 content in-situ to 82 %. This voltage also promoted the well-formed biofilm on the electrodes, resulting in a 20-fold increase in current. However, inhibition was observed at high voltages (1.5-2.5 V), suppressing syntrophic organic acid-oxidizing bacteria (SOB). The dissociation between SOB and methanogens led to accumulation of propionic and butyric acid, which, in turn, inhibited methanogens. The degradation of CES was accelerated by unclassified_o_norank_c_Desulfuromonadia on the anode, likely leading to an increase in mixotrophic methanogenesis due to the synergistic interaction among Aminobacterium, Sedimentibacter, and Methanosarcina. Furthermore, the enrichment of electroactive bacteria (EB) such as Enterococcus and Desulfomicrobium likely facilitates direct interspecies electron transfer to Methanobacterium, thereby promoting the conversion of CO2 to CH4 through hydrogenotrophic methanogenesis. Rather than initially stimulating the EB in the bulk solution to accelerate the start-up process of AD, our study revealed that applying mild voltage up to 1.0 V tended to mitigate the negative impact on the original microorganisms, as it gradually enriched EB on the electrode, thereby enhancing biogas production.
Collapse
Affiliation(s)
- Tian-Jie Ao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Forest Product Biotechnology, Bioenergy Group, Department of Wood Science, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Jie Wu
- Forest Product Biotechnology, Bioenergy Group, Department of Wood Science, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada; Advanced Renewable Materials Lab, Department of Wood Science, University of British Columbia, 2424 main mall, Vancouver V6T 1N4, Canada
| | - Kai Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Richard Chandra
- Forest Product Biotechnology, Bioenergy Group, Department of Wood Science, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada; Trinity Western University, 22500 University Dr, Langley, BC V2Y 1Y1, Canada.
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yue-Qin Tang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Chen-Guang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Feng-Wu Bai
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
2
|
Sandhu ZA, Raza MA, Alqurashi A, Sajid S, Ashraf S, Imtiaz K, Aman F, Alessa AH, Shamsi MB, Latif M. Advances in the Optimization of Fe Nanoparticles: Unlocking Antifungal Properties for Biomedical Applications. Pharmaceutics 2024; 16:645. [PMID: 38794307 PMCID: PMC11124843 DOI: 10.3390/pharmaceutics16050645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/25/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
In recent years, nanotechnology has achieved a remarkable status in shaping the future of biological applications, especially in combating fungal diseases. Owing to excellence in nanotechnology, iron nanoparticles (Fe NPs) have gained enormous attention in recent years. In this review, we have provided a comprehensive overview of Fe NPs covering key synthesis approaches and underlying working principles, the factors that influence their properties, essential characterization techniques, and the optimization of their antifungal potential. In addition, the diverse kinds of Fe NP delivery platforms that command highly effective release, with fewer toxic effects on patients, are of great significance in the medical field. The issues of biocompatibility, toxicity profiles, and applications of optimized Fe NPs in the field of biomedicine have also been described because these are the most significant factors determining their inclusion in clinical use. Besides this, the difficulties and regulations that exist in the transition from laboratory to experimental clinical studies (toxicity, specific standards, and safety concerns) of Fe NPs-based antifungal agents have been also summarized.
Collapse
Affiliation(s)
- Zeshan Ali Sandhu
- Department of Chemistry, Faculty of Science, Hafiz Hayat Campus, University of Gujrat, Gujrat 50700, Pakistan; (Z.A.S.); (S.A.); (K.I.)
| | - Muhammad Asam Raza
- Department of Chemistry, Faculty of Science, Hafiz Hayat Campus, University of Gujrat, Gujrat 50700, Pakistan; (Z.A.S.); (S.A.); (K.I.)
| | - Abdulmajeed Alqurashi
- Department of Biology, College of Science, Taibah University, Madinah 42353, Saudi Arabia;
| | - Samavia Sajid
- Department of Chemistry, Faculty of Science, University of Engineering and Technology, Lahore 54890, Pakistan;
| | - Sufyan Ashraf
- Department of Chemistry, Faculty of Science, Hafiz Hayat Campus, University of Gujrat, Gujrat 50700, Pakistan; (Z.A.S.); (S.A.); (K.I.)
| | - Kainat Imtiaz
- Department of Chemistry, Faculty of Science, Hafiz Hayat Campus, University of Gujrat, Gujrat 50700, Pakistan; (Z.A.S.); (S.A.); (K.I.)
| | - Farhana Aman
- Department of Chemistry, The University of Lahore, Sargodha Campus, Sargodha 40100, Pakistan;
| | - Abdulrahman H. Alessa
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Monis Bilal Shamsi
- Centre for Genetics and Inherited Diseases (CGID), Taibah University, Madinah 42353, Saudi Arabia;
- Department Basic Medical Sciences, College of Medicine, Taibah University, Madinah 42353, Saudi Arabia
| | - Muhammad Latif
- Centre for Genetics and Inherited Diseases (CGID), Taibah University, Madinah 42353, Saudi Arabia;
- Department Basic Medical Sciences, College of Medicine, Taibah University, Madinah 42353, Saudi Arabia
| |
Collapse
|
3
|
Li Y, Zhang Z, Tang J, Ruan W, Shi W, Huang Z, Zhao M. In-situ methane enrichment in anaerobic digestion of food waste slurry by nano zero-valent iron: Long-term performance and microbial community succession. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120733. [PMID: 38531140 DOI: 10.1016/j.jenvman.2024.120733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/28/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024]
Abstract
In this work, nano zero-valent iron (nZVI) was added to a lab-scale continuous stirring tank reactor (CSTR) for food waste slurry treatment, and the effect of dosing rate and dosage of nZVI were attempted to be changed. The results showed that anaerobic digestion (AD) efficiency and biomethanation stability were optimum under the daily dosing and dosage of 0.48 g/gTCOD. The average daily methane (CH4) yield reached 495.38 mL/gTCOD, which was 43.65% higher than that at control stage, and the maximum CH4 content reached 95%. However, under single dosing rate conditions, high nZVI concentrations caused microbial cell rupture and loosely bound extracellular polymeric substances (LB-EPS) precipitation degradation. The daily dosing rate promoted the hydrogenotrophic methanogenesis pathway, and the activity of coenzyme F420 increased by 400.29%. The microbial analysis indicated that daily addition of nZVI could promote the growth of acid-producing bacteria (Firmicutes and Bacteroidetes) and methanogens (Methanothrix).
Collapse
Affiliation(s)
- Yong Li
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Zhou Zhang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Jieyu Tang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Wenquan Ruan
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology & Material, Suzhou 215009, China
| | - Wansheng Shi
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Zhenxing Huang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology & Material, Suzhou 215009, China
| | - Mingxing Zhao
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
4
|
Li K, Ji L, Gao M, Liang Q, Lan H, Lu W, Zhang W, Zhang Y. Mechanisms of anaerobic treatment of sulfate-containing organic wastewater mediated by Fe 0 under different initial pH values. Bioprocess Biosyst Eng 2024; 47:417-427. [PMID: 38424249 DOI: 10.1007/s00449-024-02974-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/19/2024] [Indexed: 03/02/2024]
Abstract
The anaerobic treatment of sulfide-containing organic wastewater (SCOW) is significantly affected by pH, causing dramatic decrease of treatment efficiency when pH deviates from its appropriate range. Fe0 has proved as an effective strategy on mitigating the impact of pH. However, systematic analysis of the influence mechanism is still lacking. To fill this gap, the impact of different initial pH values on anaerobic treatment efficiency of SCOW with Fe0 addition, the change of fermentation type and methanogens, and intra-extracellular electron transfer were explored in this study. The results showed that Fe0 addition enhanced the efficacy of anaerobic treatment of SCOW at adjusted initial pH values, especially at pH 6. Mechanism analysis showed that respiratory chain-related enzymes and electron shuttle secretion and resistance reduction were stimulated by soluble iron ions generated by Fe0 at pH 6, which accelerated intra-extracellular electron transfer of microorganisms, and ultimately alleviated the impact of acidic pH on the system. While at pH 8, Fe0 addition increased the acetogenic bacteria abundance, as well as optimized the fermentation type and improved the F420 coenzyme activity, resulting in the enhancement of treatment efficiency in the anaerobic system and remission of the effect of alkaline pH on the system. At the neutral pH, Fe0 addition had both advantages as stimulating the secretion of respiratory chain and electron transfer-related enzymes at pH 6 and optimizing the fermentation type pH 8, and thus enhanced the treatment efficacy. This study provides important insights and scientific basis for the application of new SCOW treatment technologies.
Collapse
Affiliation(s)
- Ke Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Linyu Ji
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Meng Gao
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Qiaochu Liang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Huixia Lan
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
- Yunnan Provincial Key Laboratory of Rural Energy Engineering, Kunming, 650500, China.
| | - Weiwei Lu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Wudi Zhang
- Yunnan Provincial Key Laboratory of Rural Energy Engineering, Kunming, 650500, China
| | - Yang Zhang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|
5
|
Zhang F, Chen Y, Zhao F, Yuan P, Lu M, Qin K, Qin F, Fu S, Guo R, Feng Q. Use of magnetic powder to effectively improve the denitrification employing the activated sludge fermentation liquid as carbon source. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119049. [PMID: 37837762 DOI: 10.1016/j.jenvman.2023.119049] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/29/2023] [Accepted: 09/18/2023] [Indexed: 10/16/2023]
Abstract
Nitrogen removal is often limited in municipal wastewater treatment due to the lack of sufficient carbon source. Utilizing volatile fatty acids (VFAs) from waste activated sludge (WAS) fermentation broth as a carbon source is an ideal alternative to reduce the cost for wastewater treatment plants (WWTPs) and improve denitrification efficiency simultaneously. In this study, an anaerobic system was applied for simultaneous denitrification and WAS fermentation and the addition of magnetic microparticles (MMP) were confirmed to enhance both denitrification and WAS fermentation. Firstly, the addition of MMP increased the nitrate reduction rate by over 25.36% and improve the production of N2. Additionally, the equivalent chemical oxygen demand (COD) of the detected VFAs increased by 7.06%-14.53%, suggesting that MMP promoted the WAS fermentation. The electron transfer efficiency of denitrifies was accelerated by MMP via electron-transporting system (ETS) activity and cyclic voltammetry (CV) experiments, which might result in the promotional denitrification and WAS fermentation performance. Furthermore, the high-throughput sequencing displayed that, MMP enriched key microbes capable of degrading the complex organics (Chloroflexi, Synergistota and Spirochaetota) as well as the typical denitrifies (Bacteroidetes_vadinHA17 and Denitratisoma). Therefore, this study provides a novel strategy to realize simultaneous WAS utilization and denitrification for WWTPs.
Collapse
Affiliation(s)
- Fengyuan Zhang
- Shandong Engineering Research Center for Biogas, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; Shandong Energy Institute, Qingdao, 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao, 266101, PR China
| | - Ying Chen
- Shandong Engineering Research Center for Biogas, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China; Shandong Energy Institute, Qingdao, 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao, 266101, PR China
| | - Feng Zhao
- Shandong Engineering Research Center for Biogas, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China; Shandong Energy Institute, Qingdao, 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao, 266101, PR China
| | - Peiyao Yuan
- Shandong Engineering Research Center for Biogas, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; Shandong Energy Institute, Qingdao, 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao, 266101, PR China
| | - Mingyi Lu
- Shandong Engineering Research Center for Biogas, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; Shandong Energy Institute, Qingdao, 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao, 266101, PR China
| | - Kang Qin
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, PR China
| | - Fan Qin
- Shandong Engineering Research Center for Biogas, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; Shandong Energy Institute, Qingdao, 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao, 266101, PR China
| | - Shanfei Fu
- Shandong Engineering Research Center for Biogas, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China; Shandong Energy Institute, Qingdao, 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao, 266101, PR China
| | - Rongbo Guo
- Shandong Engineering Research Center for Biogas, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China; Shandong Energy Institute, Qingdao, 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao, 266101, PR China.
| | - Quan Feng
- Shandong Engineering Research Center for Biogas, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China; Shandong Energy Institute, Qingdao, 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao, 266101, PR China.
| |
Collapse
|
6
|
Wang H, Zhou Q. Dominant factors analyses and challenges of anaerobic digestion under cold environments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119378. [PMID: 37883833 DOI: 10.1016/j.jenvman.2023.119378] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/14/2023] [Accepted: 10/14/2023] [Indexed: 10/28/2023]
Abstract
With the development of fermentation technology and the improvement of efficiency, anaerobic digestion (AD) has been playing an increasingly primary role in waste treatment and resource recovery. Temperature is undoubtedly the most important factor because it shapes microbial habitats, changes the composition of the microbial community structure, and even affects the expression of related functional genes. More than half of the biosphere is in a long-term or seasonal low-temperature environment (<20 °C), which makes psychrophilic AD have broad application prospects. Therefore, this review discusses the influencing factors and enhancement strategies of psychrophilic AD, which may provide a corresponding reference for future research on low-temperature fermentation. First, the occurrence of AD has been discussed. Then, the adaptation of microorganisms to the low-temperature environment was analyzed. Moreover, the challenges of psychrophilic AD have been reviewed. Meanwhile, the strategies for improving psychrophilic AD are presented. Further, from technology to application, the current situation of psychrophilic AD in pilot-scale tests is described. Finally, the economic and environmental feasibility of psychrophilic AD has been highlighted. In summary, psychrophilic AD is technically feasible, while economic analysis shows that the output benefits cannot fully cover the input costs, and the large-scale practical application of psychrophilic AD is still in its infancy. More research should focus on how to improve fermentation efficiency and reduce the investment cost of psychrophilic AD.
Collapse
Affiliation(s)
- Hui Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Center/College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Qixing Zhou
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Center/College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
7
|
Zhang F, Qin Y, Zhao C, Wu W. Soft magnetic ferrite for enhanced anaerobic digestion of food waste: Effects on methane production and magnetic recovery. BIORESOURCE TECHNOLOGY 2023; 387:129601. [PMID: 37541551 DOI: 10.1016/j.biortech.2023.129601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/20/2023] [Accepted: 07/30/2023] [Indexed: 08/06/2023]
Abstract
Soft magnetic ferrite (SMF) is a potentially efficient anaerobic digestion (AD) additive that can be recovered simultaneously along with the microorganisms it carries. In this study, two typical SMFs (Fe3O4 and γ-Fe2O3) were compared in batch experiments to investigate their effects on food waste AD and to examine the recovery characteristics of both the SMFs and the microorganisms they carried after AD. The results showed that Fe3O4 and γ-Fe2O3 addition increased methane production by 31% and 68% respectively, compared with the control treatment. Both SMF materials and enriched microorganisms were effectively adsorbed post-AD using a magnet. The observed enhancement in biomethanization after SMF addition was likely due to enhanced syntrophic acetate oxidation and hydrogenotrophic methanogenesis, and direct interspecific electron transfer. γ-Fe2O3 outperformed Fe3O4 due to its high recycling rate and ability to promote Methanosarcina growth. This study provides a potential economically efficient solution for developing AD enhancement technologies.
Collapse
Affiliation(s)
- Feixiang Zhang
- Institute of Environment Science and Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety Technology, Zhejiang 310058, PR China
| | - Yong Qin
- Institute of Environment Science and Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety Technology, Zhejiang 310058, PR China.
| | - Changxun Zhao
- Institute of Environment Science and Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety Technology, Zhejiang 310058, PR China
| | - Weixiang Wu
- Institute of Environment Science and Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety Technology, Zhejiang 310058, PR China
| |
Collapse
|
8
|
Feng L, Gao Z, Hu T, He S, Liu Y, Jiang J, Zhao Q, Wei L. A review of application of combined biochar and iron-based materials in anaerobic digestion for enhancing biogas productivity: Mechanisms, approaches and performance. ENVIRONMENTAL RESEARCH 2023; 234:116589. [PMID: 37423354 DOI: 10.1016/j.envres.2023.116589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Strengthening direct interspecies electron transfer (DIET), via adding conductive materials, is regarded as an effective way for improving methane productivity of anaerobic digestion (AD). Therein, the supplementation of combined materials (composition of biochar and iron-based materials) has attracted increasing attention in recent years, because of their advantages of promoting organics reduction and accelerating biomass activity. However, as far as we known, there is no study comprehensively summarizing the application of this kind combined materials. Here, the combined methods of biochar and iron-based materials in AD system were introduced, and then the overall performance, potential mechanisms, and microbial contribution were summarized. Furthermore, a comparation of the combinated materials and single material (biochar, zero valent iron, or magnetite) in methane production was also evaluated to highlight the functions of combined materials. Based on these, the challenges and perspectives were proposed to point the development direction of combined materials utilization in AD field, which was hoped to provide a deep insight in engineering application.
Collapse
Affiliation(s)
- Likui Feng
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Zhelu Gao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Tianyi Hu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Shufei He
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yu Liu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Junqiu Jiang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
9
|
He C, Song H, Hou T, Jiao Y, Li G, Litti YV, Zhang Q, Liu L. Simultaneous addition of CO 2-nanobubble water and iron nanoparticles to enhance methane production from anaerobic digestion of corn straw. BIORESOURCE TECHNOLOGY 2023; 377:128947. [PMID: 36958680 DOI: 10.1016/j.biortech.2023.128947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
In this research, CO2-nanobubble water (CO2-NBW) and iron nanoparticles (Fe0NPs) were added simultaneously to exploit individual advantages to enhance the methanogenesis process from both the stability of anaerobic digestion (AD) system and the activity of anaerobic microorganism aspects. Results showed that the AD performance was enhanced by supplementing with CO2-NBW or Fe0NPs individually, and could be further improved by simultaneous addition of the two additives. The maximum methane yield was achieved in the CO2-NBW + Fe0NPs reactor (141.99 mL/g-VSadded), which increased by 26.16% compared to the control group. Similarly, the activities of the electron transfer system (ETS) and enzyme were improved. The results of microbial community structure revealed that the addition of CO2-NBW and Fe0NPs could improve the abundance of dominant bacteria (Anaerolineaceae, Bacteroidales, and Prolixibacteraceae) and archaea (Methanotrichaceae and Methanospirillaceae). Additionally, the functional metabolic prediction heatmap indicated that metabolic functional genes favorable for AD of corn straw were enhanced.
Collapse
Affiliation(s)
- Chao He
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China; Henan Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China
| | - Hao Song
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China; Henan Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China
| | - Tingting Hou
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China; Henan Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China
| | - Youzhou Jiao
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan University of Engineering, Zhengzhou 451191, China
| | - Gang Li
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China; Henan Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China
| | - Yuri V Litti
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Quanguo Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China; Henan Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China
| | - Liang Liu
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China; Henan Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
10
|
Paletta R, Candamano S, Filippelli P, Lopresto CG. Influence of Fe2O3 Nanoparticles on the Anaerobic Digestion of Macroalgae Sargassum spp. Processes (Basel) 2023. [DOI: 10.3390/pr11041016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
The anaerobic digestion (AD) of biomass is a green technology with known environmental benefits for biogas generation. The biogas yield from existing substrates and the biodegradability of biomasses can be improved by conventional or novel enhancement techniques, such as the addition of iron-based nanoparticles (NPs). In this study, the effect of different concentrations of Fe2O3-based NPs on the AD of brown macroalga Sargassum spp. has been investigated by 30 days trials. The effect of NPs was evaluated at different concentrations. The control sample yielded a value of 80.25 ± 3.21 NmLCH4/gVS. When 5 mg/g substrate and 10 mg/g substrate of Fe2O3 NPs were added to the control sample, the yield increased by 24.07% and 26.97%, respectively. Instead, when 50 mg/g substrate of Fe2O3 NPs was added to the control sample, a negative effect was observed, and the biomethane yield decreased by 38.97%. Therefore, low concentrations of Fe2O3 NPs favor the AD process, whereas high concentrations have an inhibitory effect. Direct interspecies electron transfer (DIET) via Fe2O3 NPs and their insolubility play an important role in facilitating the methanogenesis process during AD.
Collapse
|
11
|
Zahmatkesh S, Hajiaghaei-Keshteli M, Bokhari A, Sundaramurthy S, Panneerselvam B, Rezakhani Y. Wastewater treatment with nanomaterials for the future: A state-of-the-art review. ENVIRONMENTAL RESEARCH 2023; 216:114652. [PMID: 36309214 DOI: 10.1016/j.envres.2022.114652] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Aquatic and terrestrial ecosystems are both threatened by toxic wastewater. The unique properties of nanomaterials are currently being studied thoroughly for treating sewage. Nanomaterials also have the advantage of being capable of removing organic matter, fungi, and viruses from wastewater. Advanced oxidation processes are used in nanomaterials to treat wastewater. Additionally, nanomaterials have a large effective area of contact due to their tiny dimensions. The adsorption and reactivity of nanomaterials are strong. Wastewater treatment would benefit from the development of nanomaterial technology. Second, the paper provides a comprehensive analysis of the unique characteristics of nanomaterials in wastewater treatment, their proper use, and their prospects. In addition to focusing on their economic feasibility, since limited forms of nanomaterials have been manufactured, it is also necessary to consider their feasibility in terms of their technical results. According to this study, the significant adsorption area, excellent chemical reaction, and electrical conductivity of nanoparticles (NPs) contribute to the successful treatment of wastewater.
Collapse
Affiliation(s)
- Sasan Zahmatkesh
- Tecnologico de Monterrey, Escuela de Ingenieríay Ciencias, Puebla, Mexico.
| | | | - Awais Bokhari
- Sustainable Process Integration Laboratory, SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology, VUT Brno Technická 2896/2, 616 00, Brno, Czech Republic
| | - Suresh Sundaramurthy
- Department of Chemical Engineering, Maulana Azad National Institute of Technology Bhopal, 462 003, Madhya Pradesh, India
| | | | - Yousof Rezakhani
- Department of Civil Engineering, Pardis Branch, Islamic Azad University, Pardis, Iran
| |
Collapse
|
12
|
Utilization of nanoparticles for biogas production focusing on process stability and effluent quality. SN APPLIED SCIENCES 2022. [DOI: 10.1007/s42452-022-05222-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Abstract
One of the most important techniques for converting complex organic waste into renewable energy in the form of biogas and effluent is anaerobic digestion. Several issues have been raised related to the effectiveness of the anaerobic digestion process in recent years. Hence nanoparticles (NPs) have been used widely in anaerobic digestion process for converting organic wastes into useful biogas and effluent in an effective way. This review addresses the knowledge gaps and summarizes recent researchers’ findings concentrating on the stability and effluent quality of the cattle manure anaerobic digestion process using single and combinations nanoparticle. In summary, the utilization of NPs have beneficial effects on CH4 production, process optimization, and effluent quality. Their function, as key nutrient providers, aid in the synthesis of key enzymes and co-enzymes, and thus stimulate anaerobic microorganism activities when present at an optimum concentration (e.g., Fe NPs 100 mg/L; Ni NPs 2 mg/L; Co NPs 1 mg/L). Furthermore, utilizing Fe NPs at concentrations higher than 100 mg/L is more effective at reducing H2S production than increasing CH4, whereas Ni NPs and Co NPs at concentrations greater than 2 mg/L and 1 mg/L, respectively, reduce CH4 production. Effluent with Fe and Ni NPs showed stronger fertilizer values more than Co NPs. Fe/Ni/Co NP combinations are more efficient in enhancing CH4 production than single NPs. Therefore, it is possible to utilize NPs combinations as additives to improve the effectiveness of anaerobic digestion.
Article highlights
Single NPs (e.g., Fe, Ni, and Co NPs) in low concentrations are more effective in increasing CH4 production than reducing H2S production.
Optimal Fe, Ni, and Co NP concentrations enhance anaerobic digestion process performance.
Addition of Fe, Ni, and Co NPs above tolerated concentration causes irreversible inhibition in anaerobic digestion.
Effluent with Fe, Ni, and Co NPs showed stronger fertilizer values.
Nanoparticle combinations are more effective for increasing the CH4 production than signal NPs.
Collapse
|
13
|
Parthipan P, Cheng L, Dhandapani P, Elumalai P, Huang M, Rajasekar A. Impact of biosurfactant and iron nanoparticles on biodegradation of polyaromatic hydrocarbons (PAHs). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119384. [PMID: 35504349 DOI: 10.1016/j.envpol.2022.119384] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/04/2022] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are hazardous toxic contaminants and considered as primary pollutants due to their persistent nature and most of them are carcinogenic and mutagenic. The key challenge in PAHs degradation is their hydrophobic nature, which makes them one of the most complex materials and inaccessible by a broad range of microorganisms. This bioavailability can be increased by using a biosurfactant. In the present study mixed PAHs were degraded using the biosurfactant producing bacterial strains. In addition, iron nanoparticles were synthesized and the impact of iron nanoparticles on the growth of the mixed bacterial strains (Pseudomonas stutzeri NA3 and Acinetobacter baumannii MN3) was optimized. The mixed PAHs (anthracene, pyrene, and benzo(a)pyrene) degradation was enhanced by addition of biosurfactant (produced by Bacillus subtilis A1) and iron nanoparticles, resulting in 85% of degradation efficiency. The addition of the biosurfactant increased the bioavailability of the PAHs in the aqueous environment, which might help bacterial cells for the initial settlement and development. The addition of iron nanoparticles increased both bacterial biomass and PAHs adsorption over their surface. These overall interactions assisted in the utilization of PAHs by the mixed bacterial consortia. This study illustrates that this integrated approach can be elaborated for the removal of the complex PAHs pollutants from soil and aqueous environments.
Collapse
Affiliation(s)
- Punniyakotti Parthipan
- School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Liang Cheng
- School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China; Institute of Materials Engineering Nanjing University, Nantong, 226000, China.
| | - Perumal Dhandapani
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu, 632 115, India
| | - Punniyakotti Elumalai
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China
| | - Mingzhi Huang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China
| | - Aruliah Rajasekar
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu, 632 115, India
| |
Collapse
|
14
|
Abstract
In recent years, the number of articles reporting the addition of nanomaterials to enhance the process of anaerobic digestion has exponentially increased. The benefits of this addition can be observed from different aspects: an increase in biogas production, enrichment of methane in biogas, elimination of foaming problems, a more stable and robust operation, absence of inhibition problems, etc. In the literature, one of the current focuses of research on this topic is the mechanism responsible for this enhancement. In this sense, several hypotheses have been formulated, with the effect on the redox potential caused by nanoparticles probably being the most accepted, although supplementation with trace materials coming from nanomaterials and the changes in microbial populations have been also highlighted. The types of nanomaterials tested for the improvement of anaerobic digestion is today very diverse, although metallic and, especially, iron-based nanoparticles, are the most frequently used. In this paper, the abovementioned aspects are systematically reviewed. Another challenge that is treated is the lack of works reported in the continuous mode of operation, which hampers the commercial use of nanoparticles in full-scale anaerobic digesters.
Collapse
|
15
|
Luo T, Xu Q, Wei W, Sun J, Dai X, Ni BJ. Performance and Mechanism of Fe 3O 4 Improving Biotransformation of Waste Activated Sludge into Liquid High-Value Products. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3658-3668. [PMID: 35254057 DOI: 10.1021/acs.est.1c05960] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This study demonstrated that Fe3O4 simultaneously improves the total production and formation rate of medium-chain fatty acids (MCFAs) and long-chain alcohols (LCAs) from waste activated sludge (WAS) in anaerobic fermentation. Results revealed that when Fe3O4 increased from 0 to 5 g/L, the maximal MCFA and LCA production increased significantly, and the optimal fermentation time was also remarkably shortened from 24 to 9 days. Moreover, Fe3O4 also enhanced WAS degradation, and the corresponding degradation rate in the fermentation system increased from 43.86 to 72.38% with an increase in Fe3O4 from 0 to 5 g/L. Further analysis showed that Fe3O4 promoted the microbe activities of all the bioprocesses (including hydrolysis, acidogenesis, and chain elongation processes) involved in the MCFA and LCA production from WAS. Microbial community analysis indicated that Fe3O4 increased the abundances of key microbes involved in abovementioned bioprocesses correspondingly. Mechanistic investigations showed that Fe3O4 increased the conductivity of the fermented sludge, providing a better conductive environment for the anaerobic microbes. The redox cycle of Fe(II) and Fe(III) existed in the fermentation system with Fe3O4, which was likely to act as electron shuttles to conduct electron transfer (ET) from the electron donor to the acceptor, thus increasing ET efficiency. This study provides an effective method for enhancing the biotransformation of WAS into high-value products, potentially bringing economic benefits to WAS treatment.
Collapse
Affiliation(s)
- Tianyi Luo
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Qiuxiang Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Jing Sun
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| |
Collapse
|
16
|
Mohamad Z, Razak AA, Krishnan S, Singh L, Zularisam A, Nasrullah M. Treatment of palm oil mill effluent using electrocoagulation powered by direct photovoltaic solar system. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2021.11.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|