1
|
Das S, M R S, Jeeva JB, Mukherjee A. Release kinetic study of microplastics from N95 face masks and consequent effects on freshwater alga Scenedesmus obliquus. CHEMOSPHERE 2024; 363:142851. [PMID: 39019171 DOI: 10.1016/j.chemosphere.2024.142851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/17/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
The uncontrolled disposal of N95 face masks, widely used during the recent COVID-19 pandemic can release significant amounts of microplastics and other additives into aquatic bodies. This study aimed to: (i) to quantify and analyze the released microplastics and heavy metals from N95 face masks weathered for various time periods (24, 48, 72, 96, 120, and 144 h) and (ii) to assess the cytotoxicity potential of the leachates on a model organism, freshwater alga Scenedesmus obliquus. The mask leachates contained microplastics, polypropylene in different shapes and sizes, and heavy metals like Cu, Cd, and Zn. The leachates significantly reduced cell viability and increased reactive oxygen species (ROS) generation, antioxidant enzyme activity, and membrane damage. The effects were also accompanied by a significant drop in the photosynthetic yield. All of the examined parameters indicated a dose-response relationship, with longer leaching periods resulting in higher microplastic concentrations. Mask leachates severely damaged the structural integrity of the algal cells, as seen in scanning electron microscopy images. The findings of our study confirm that the releases from disposable N95 face masks pose a severe threat to freshwater microalgae, and the cascading effects would harm the aquatic ecosystems.
Collapse
Affiliation(s)
- Soupam Das
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, India
| | - Sumaiya M R
- Sensor and Biomedical Technology, School of Electronics Engineering, Vellore Institute of Technology, Vellore, India
| | - J B Jeeva
- Sensor and Biomedical Technology, School of Electronics Engineering, Vellore Institute of Technology, Vellore, India
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, India.
| |
Collapse
|
2
|
Natarajan L, Jenifer MA, Mukherjee A. Influence of algal-extracellular polymeric substances (EPS) on the pristine and combined toxicity of TiO 2 NPs and PSNPs in Artemia salina: Eco-corona enhances the toxic effects. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116760. [PMID: 39029223 DOI: 10.1016/j.ecoenv.2024.116760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/13/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
The study on the influence of Natural Organic Matter (NOM) over the individual and combined effects of different nanomaterials on marine species is pertinent. The current study explores the role of Extracellular Polymeric Substances (EPS) in influencing the individual and combined toxic effects of polystyrene nanoplastics (PSNPs) viz. aminated (NH2-PSNPs), carboxylated (COOH-PSNPs), and plain PSNPs and TiO2 NPs in the marine crustacean, Artemia salina. A. salina was interacted with pristine PSNPs, pristine TiO2 NPs, EPS incubated PSNPs, EPS incubated TiO2 NPs, binary mixture of PSNPs and TiO2 NPs, and EPS adsorbed binary mixture of PSNPs and TiO2 NPs for 48 h. The present study proves that, when compared to the pristine toxicity of PSNPs and TiO2 NPs, the coexposure of TiO2 NPs with PSNPs resulted in increased toxicity. The adsorption of algal EPS on the NMs (both in their pristine and combined forms) significantly increased the toxic nature of the NMs against A. salina. It was observed that with an increase in the hydrodynamic diameter of the particles, the mortality, oxidative stress, and ingestion of the NMs by A. salina increased. The uptake of Ti by A. salina from 8 mg/L TiO2 NPs, EPS adsorbed 8 mg/L TiO2 NPs, 8 mg/L TiO2 NPs + NH2-PSNPs and the EPS adsorbed mixture of 8 mg/L TiO2 NPs, 8 mg/L TiO2 NPs + NH2-PSNPs was observed to be 0.043, 0.047, 0.186, and 0.307 mg/g of A. salina. The adsorption of algal EPS on the NMs (both in their pristine and combined forms) significantly increased the toxic nature of the NMs against A. salina. The major outcomes from the current study highlight the role of EPS in exacerbating the toxicity of NMs in marine crustaceans.
Collapse
Affiliation(s)
| | - M Annie Jenifer
- VIT School of Agricultural Innovations and Advanced Learning, VIT, Vellore, Tamil Nadu, India.
| | | |
Collapse
|
3
|
Rex M C, Debroy A, Mukherjee A. The impact of nTiO 2 and GO (graphene oxide), and their combinations, on freshwater Chlorella sp.: a comparative study in lake water and BG-11 media. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1281-1294. [PMID: 38780043 DOI: 10.1039/d4em00041b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Titanium dioxide nanoparticles (nTiO2) and graphene oxide (GO) are extensively used nanomaterials in various products and applications. Freshwater ecosystems are a crucial sink for these pollutants, posing severe threats to aquatic organisms. Although multiple studies have investigated the pristine toxicity of nTiO2 and GO in freshwater organisms, the combined toxicity of these materials remains unexplored. Interaction media is a crucial factor in evaluating toxicity nanomaterial toxicity towards algae. In this study, we have investigated the comparative effect of sterilized and filtered freshwater and BG-11 medium on the pristine and combined toxicity of nTiO2 and GO on freshwater algae Chlorella sp. Results indicated that the combination of nTiO2 and GO showed more toxicity when compared to their respective pristine forms. This could be due to the additive effect exhibited by nTiO2 and GO on Chlorella sp. The enhanced growth inhibition for the combined toxicity was in the order of 1 mg L-1 nTiO2 + 1 mg L-1 GO > 1 mg L-1 nTiO2 + 0.1 mg L-1 GO > 0.1 mg L-1 nTiO2 + 1 mg L-1 GO > 0.1 mg L-1 nTiO2 + 0.1 mg L-1 GO. All test groups that interacted in BG-11 media exhibited less toxicity when compared to corresponding groups in the lake water medium. This could be attributed to the cushioning effect of BG-11 medium, providing supplementary nutrition to the algal cells. This signifies that the environmentally relevant conditions could be more detrimental than the laboratory conditions. This study elucidates valuable insights into the potential detrimental effects associated with the combination of nTiO2 and GO on freshwater algae. Furthermore, we have evaluated the growth inhibition, oxidative stress, and photosynthetic activity of Chlorella sp. in both environmentally relevant interaction medium and well-defined culture medium.
Collapse
Affiliation(s)
- Camil Rex M
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| | - Abhrajit Debroy
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
4
|
Wang Z, Kong Y, Cao X, Liu N, Wang C, Li X, Xing B. Co-photoaging inhibited the heteroaggregation between polystyrene nanoplastics and different titanium dioxide nanoparticles. WATER RESEARCH 2024; 259:121831. [PMID: 38810346 DOI: 10.1016/j.watres.2024.121831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/09/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
Heteroaggregation between nanoplastics (NPs) and titanium dioxide nanoparticles (TiO2NPs) determines their environmental fates and ecological risks in aquatic environments. However, the co-photoaging scenario of NPs and TiO2NPs, interaction mechanisms of TiO2NPs with (aged) NPs, as well as the dependence of their heteroaggregation on TiO2NPs facets remain elusive. We found the critical coagulation concentration (CCC) of polystyrene nanoplastics (PSNPs) with coexisting RTiO2NPs was 1.9 - 2.2 times larger than that with coexisting ATiO2NPs, suggesting a better suspension stability of PSNPs+RTiO2NPs. In addition, CCC of TiO2NPs with coexisting photoaged PSNPs (APSNPs) was larger 1.7 - 2.2 times than that with PSNPs coexisting, indicating photoaging inhibited their heteroaggregation due to increasing electrostatic repulsion derived from increased negative charges on APSNPs and the polymer-derived dissolved organic carbon. Coexisted TiO2NPs promoted oxidation of PSNPs with the action of HO· and O2·- under UV light, leading to inhibited heteroaggregation. Moreover, Van der Waals and Lewis-acid interaction dominated the formation of primary heteroaggregates of PSNPs-TiO2NPs (ESE = ‒2.20 ∼ ‒2.78 eV) and APSNPs-TiO2NPs (ESE = ‒3.29 ∼ ‒3.67 eV), respectively. The findings provide a mechanistic insight into the environmental process of NPs and TiO2NPs, and are significant for better understanding their environmental risks in aquatic environments.
Collapse
Affiliation(s)
- Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yu Kong
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Xuesong Cao
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Ning Liu
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Xiaona Li
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
5
|
Yang W, Gao P, Ye Z, Chen F, Zhu L. Micro/nano-plastics and microalgae in aquatic environment: Influence factor, interaction, and molecular mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173218. [PMID: 38761949 DOI: 10.1016/j.scitotenv.2024.173218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/25/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
Micro/nano-plastics, as emerging persistent pollutant, are frequently detected in aquatic environments together with other environmental pollutants. Microalgae are the major primary producers and bear an important responsibility for maintaining the balance of aquatic ecosystems. Numerous studies have been conducted on the influence of micro/nano-plastics on the growth, photosynthesis, oxidative stress, gene expression and metabolites of microalgae in laboratory studies. However, it is difficult to comprehensively evaluate the toxic effects of micro/nano-plastics on microalgae due to different experimental designs. Moreover, there is a lack of effective analysis of the aforementioned multi-omics data and reports on shared biological patterns. Therefore, the purpose of this review is to compare the acute, chronic, pulsed, and combined effect of micro/nano-plastics on microalgae and explore hidden rules in the molecular mechanisms of the interaction between them. Results showed that the effect of micro/nano-plastics on microalgae was related to exposure mode, exposure duration, exposure size, concentration, and type of micro/nano-plastics. Meanwhile, the phenomenon of poisoning and detoxification between micro/nano-plastics and microalgae was found. The inhibitory mechanism of micro/nano-plastics on algal growth was due to the micro/nano-plastics affected the photosynthesis, oxidative phosphorylation, and ribosome pathways of algal cells. This brought the disruption of the functions of chloroplasts, mitochondria, and ribosome, as well as impacted on energy metabolism and translation pathways, eventually leading to impairment of cell function. Besides, algae resisted this inhibitory effect by regulating the alanine, aspartate, and glutamate metabolism and purine metabolism pathways, thereby increasing the chlorophyll synthesis, inhibiting the increase of reactive oxygen species, delaying the process of lipid peroxidation, balancing the osmotic pressure of cell membrane.
Collapse
Affiliation(s)
- Wenfeng Yang
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, Hubei 430079, PR China
| | - Pan Gao
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Zongda Ye
- Technical Innovation Center of Mine Geological Environmental Restoration Engineering in Southern Karst Area, Ministry of Natural Resources, Nanning, Guangxi 530028, PR China; Natural Resources Ecological Restoration Center of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530029, PR China
| | - Funing Chen
- Technical Innovation Center of Mine Geological Environmental Restoration Engineering in Southern Karst Area, Ministry of Natural Resources, Nanning, Guangxi 530028, PR China; Natural Resources Ecological Restoration Center of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530029, PR China
| | - Liandong Zhu
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, Hubei 430079, PR China.
| |
Collapse
|
6
|
Spanò C, Giorgetti L, Bottega S, Muccifora S, Ruffini Castiglione M. Titanium dioxide nanoparticles enhance the detrimental effect of polystyrene nanoplastics on cell and plant physiology of Vicia lens (L.) Coss. & Germ. seedlings. FRONTIERS IN PLANT SCIENCE 2024; 15:1391751. [PMID: 38863538 PMCID: PMC11165040 DOI: 10.3389/fpls.2024.1391751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/09/2024] [Indexed: 06/13/2024]
Abstract
Polystyrene nanoplastics and titanium dioxide nanoparticles are widely spread in all environments, often coexisting within identical frameworks. Both these contaminants can induce negative effects on cell and plant physiology, giving concerns on their possible interaction which could increase each other's harmful effects on plants. Despite the urgency of this issue, there is very little literature addressing it. To evaluate the potential risk of this co-contamination, lentil seeds were treated for five days with polystyrene nanoplastics and titanium dioxide nanoparticles (anatase crystalline form), alone and in co-presence. Cytological analyses, and histochemical and biochemical evaluation of oxidative stress were carried out on isolated shoots and roots. TEM analysis seemed to indicate the absence of physical/chemical interactions between the two nanomaterials. Seedlings under cotreatment showed the greatest cytotoxic and genotoxic effects and high levels of oxidative stress markers associated with growth inhibition. Even if biochemical data did not evidence significant differences between materials treated with polystyrene nanoplastics alone or in co-presence with titanium dioxide nanoparticles, histochemical analysis highlighted a different pattern of oxidative markers, suggesting a synergistic effect by the two nanomaterials. In accordance, the fluorescence signal linked to nanoplastics in root and shoot was higher under cotreatment, perhaps due to the well-known ability of titanium dioxide nanoparticles to induce root tissue damage, in this way facilitating the uptake and translocation of polystyrene nanoplastics into the plant body. In the antioxidant machinery, peroxidase activity showed a significant increase in treated roots, in particular under cotreatment, probably more associated with stress-induced lignin synthesis than with hydrogen peroxide detoxification. Present results clearly indicate the worsening by metal nanoparticles of the negative effects of nanoplastics on plants, underlining the importance of research considering the impact of cotreatments with different nanomaterials, which may better reflect the complex environmental conditions.
Collapse
Affiliation(s)
- Carmelina Spanò
- Department of Biology, University of Pisa, Pisa, Italy
- Centre for Climate Change Impact, University of Pisa, Pisa, Italy
| | - Lucia Giorgetti
- Institute of Agricultural Biology and Biotechnology, National Research Council, Pisa, Italy
| | | | | | - Monica Ruffini Castiglione
- Department of Biology, University of Pisa, Pisa, Italy
- Centre for Climate Change Impact, University of Pisa, Pisa, Italy
| |
Collapse
|
7
|
Yang W, Gao P, Liu D, Wang W, Wang H, Zhu L. Integrating transcriptomics and biochemical analysis to understand the interactive mechanisms of the coexisting exposure of nanoplastics and erythromycin on Chlorella pyrenoidosa. CHEMOSPHERE 2024; 349:140869. [PMID: 38061561 DOI: 10.1016/j.chemosphere.2023.140869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
Nanoplastics and antibiotics frequently co-exist in water polluted by algal blooms, but little information is available about interaction between substances. Erythromycin, as a representative of antibiotics, has been frequently detected in aquatic environments. This investigation attempted to reveal the interaction mechanism of nanoplastics and erythromycin on Chlorella pyrenoidosa. Results demonstrated that the joint toxicity of erythromycin and nanoplastics was dynamic and depended on nanoplastics concentration. Antagonistic effects of 1/2 or 1 EC50 erythromycin and nanoplastic concentration (10 mg/L) on the growth of C. pyrenoidosa was observed. The joint toxicity of 1/2 or 1 EC50 erythromycin and nanoplastic concentration (50 mg/L) was initially synergistic during 24-48 h and then turned to antagonistic during 72-96 h. Consequently, antagonistic effect was the endpoint for joint toxicity. Integration of transcriptomics and physiological biochemical analysis indicated that the co-existence of nanoplastics and erythromycin affected the signal transduction and molecular transport of algal cell membrane, induced intracellular oxidative stress, and hindered photosynthetic efficiency. Overall, this study provided a theoretical basis for evaluating the interactive mechanisms of nanoplastics and antibiotics.
Collapse
Affiliation(s)
- Wenfeng Yang
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, 430079, PR China
| | - Pan Gao
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China
| | - Dongyang Liu
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, 430079, PR China
| | - Wei Wang
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, 430079, PR China
| | - Hanzhi Wang
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, 430079, PR China
| | - Liandong Zhu
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, 430079, PR China; State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei, 430072, PR China.
| |
Collapse
|
8
|
Xia W, Meng W, Peng Y, Qin Y, Zhang L, Zhu N. Effects of Exogenous Isosteviol on the Physiological Characteristics of Brassica napus Seedlings under Salt Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:217. [PMID: 38256770 PMCID: PMC10819195 DOI: 10.3390/plants13020217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/06/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024]
Abstract
In this paper, the effect of isosteviol on the physiological metabolism of Brassica napus seedlings under salt stress is explored. Brassica napus seeds (Qinyou 2) were used as materials, and the seeds were soaked in different concentrations of isosteviol under salt stress. The fresh weight, dry weight, osmotic substance, absorption and distribution of Na+, K+, Cl-, and the content of reactive oxygen species (ROS) were measured, and these results were combined with the changes shown by Fourier transform infrared spectroscopy (FTIR). The results showed that isosteviol at an appropriate concentration could effectively increase the biomass and soluble protein content of Brassica napus seedlings and reduce the contents of proline, glycine betaine, and ROS in the seedlings. Isosteviol reduces the oxidative damage to Brassica napus seedlings caused by salt stress by regulating the production of osmotic substances and ROS. In addition, after seed soaking in isosteviol, the Na+ content in the shoots of the Brassica napus seedlings was always lower than that in the roots, while the opposite was true for the K+ content. This indicated that under salt stress the Na+ absorbed by the Brassica napus seedlings was mainly accumulated in the roots and that less Na+ was transported to the shoots, while more of the K+ absorbed by the Brassica napus seedlings was retained in the leaves. It is speculated that this may be an important mechanism for Brassica napus seedlings to relieve Na+ toxicity. The spectroscopy analysis showed that, compared with the control group (T1), salt stress increased the absorbance values of carbohydrates, proteins, lipids, nucleic acids, etc., indicating structural damage to the plasma membrane and cell wall. The spectra of the isosteviol seed soaking treatment group were nearly the same as those of the control group (T1). The correlation analysis shows that under salt stress the Brassica napus seedling tissues could absorb large amounts of Na+ and Cl- to induce oxidative stress and inhibit the growth of the plants. After the seed soaking treatment, isosteviol could significantly reduce the absorption of Na+ by the seedling tissues, increase the K+ content, and reduce the salt stress damage to the plant seedlings. Therefore, under salt stress, seed soaking with isosteviol at an appropriate concentration (10-9~10-8 M) can increase the salt resistance of Brassica napus seedlings by regulating their physiological and metabolic functions.
Collapse
Affiliation(s)
- Wenjing Xia
- School of Chemistry and Bioengineering, Taizhou College, Nanjing Normal University, Taizhou 225300, China; (W.X.); (W.M.)
| | - Wangang Meng
- School of Chemistry and Bioengineering, Taizhou College, Nanjing Normal University, Taizhou 225300, China; (W.X.); (W.M.)
| | - Yueqin Peng
- School of Chemistry and Bioengineering, Taizhou College, Nanjing Normal University, Taizhou 225300, China; (W.X.); (W.M.)
| | - Yutian Qin
- School of Chemistry and Bioengineering, Taizhou College, Nanjing Normal University, Taizhou 225300, China; (W.X.); (W.M.)
| | - Liang Zhang
- School of Chemistry and Bioengineering, Taizhou College, Nanjing Normal University, Taizhou 225300, China; (W.X.); (W.M.)
| | - Nianqing Zhu
- Jiangsu Key Laboratory of Chiral Pharmaceuticals Biosynthesis, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China
| |
Collapse
|
9
|
Rex M C, Mukherjee A. The comparative effects of visible light and UV-A radiation on the combined toxicity of P25 TiO 2 nanoparticles and polystyrene microplastics on Chlorella sp. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:122700-122716. [PMID: 37975986 DOI: 10.1007/s11356-023-30910-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023]
Abstract
The ubiquitous presence of TiO2 nanoparticles (nTiO2) and microplastics (MPs) in marine ecosystems has raised serious concerns about their combined impact on marine biota. This study investigated the combined toxic effect of nTiO2 (1 mg/L) and NH2 and COOH surface functionalized polystyrene MPs (PSMPs) (2.5 and 10 mg/L) on Chlorella sp. All the experiments were carried out under both visible light and UV-A radiation conditions to elucidate the impact of light on the combined toxicity of these pollutants. Growth inhibition results indicated that pristine nTiO2 exhibited a more toxic effect (38%) under UV-A radiation when compared to visible light conditions (27%). However, no significant change in the growth inhibitory effects of pristine PSMPs was observed between visible light and UVA radiation conditions. The combined pollutants (nTiO2 + 10 mg/L PSMPs) under UV-A radiation exhibited more growth inhibition (nTiO2 + NH2 PSMPs 66%; nTiO2 + COOH PSMPs 50%) than under visible light conditions (nTiO2 + NH2 PSMPs 55%; TiO2 + COOH PSMPs 44%). Independent action modeling indicated that the mixture of nTiO2 with PSMPs (10 mg/L) exhibited an additive effect on the algal growth inhibition under both the light conditions. The photoactive nTiO2 promoted increased production of reactive oxygen species under UV-A exposure, resulting in cellular damage, lipid peroxidation, and impaired photosynthesis. The effects were more pronounced in case of the mixtures where PSMPs added to the oxidative stress. The toxic effects of the binary mixtures of nTiO2 and PSMPs were further confirmed through the field emission electron microscopy, revealing specific morphological abnormalities. This study provides valuable insights into the potential risks associated with the combination of nTiO2 and MPs in marine environments, considering the influence of environmentally relevant light conditions and the test medium.
Collapse
Affiliation(s)
- Camil Rex M
- Centre for Nanobiotechnology, VIT, Vellore, Tamil Nadu, India
| | | |
Collapse
|
10
|
Wang R, Yue S, Huang C, Jia L, Tibihenda C, Li Z, Yu J. Visual mapping of global nanoplastics research progresses and hotspots: a scientometric assessment analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:114739-114755. [PMID: 37906331 DOI: 10.1007/s11356-023-30597-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/18/2023] [Indexed: 11/02/2023]
Abstract
Environmental plastic wastes are continuously degraded into microplastics (MPs) and nanoplastics (NPs); the latter are more potentially harmful to organisms and human health as their smaller size and higher surface-to-volume ratio. Previous reviews on NPs mainly concentrate on specific aspects, such as sources, environmental behavior, and toxicological effects, but few focused on NPs-related scientific publications from a global point of view. Therefore, this bibliometric study aims to summarize the research themes and trends on NPs and also propose potential directions for future inquiry. Related papers were downloaded from the Web of Science Core Collection database on NPs published from 2008 to 2021, and then retrieved information was analyzed using CiteSpace 6.1 R2 and VOSviewer (version 1.6.). Research on NPs mainly involved environmental behaviors, toxicological effects, identification and extraction of NPs, whereas aquatic environments, especially marine systems, attracted more attentions from these scientists compare to terrestrial environments. Furthermore, the adsorption behavior of pollutants by NPs and the toxicological effects of organisms exposed to NPs are the present hotspots, while the regulation of humic acid (HA) on NPs behaviors and the environmental behavior of NPs in freshwater, like rivers and lakes, are the frontier areas of research. This study also explored the possible opportunities and challenges that may be faced in NPs research, which provide a valuable summary and outlook for ongoing NPs-related research, which may be of intrigue and noteworthiness for relevant researchers.
Collapse
Affiliation(s)
- Ruiping Wang
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, People's Republic of China
| | - Shizhong Yue
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, People's Republic of China
| | - Caide Huang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
- Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxon, OX10 8BB, UK
| | - Li Jia
- ISTO UMR7327, CNRS-Université d'Orleans-Brgm, 45071, Orléans, France
| | - Cevin Tibihenda
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Zhenghua Li
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, People's Republic of China
| | - Jiafeng Yu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, People's Republic of China.
| |
Collapse
|
11
|
Zhao Y, Tao S, Liu S, Hu T, Zheng K, Shen M, Meng G. Research advances on impacts micro/nanoplastics and their carried pollutants on algae in aquatic ecosystems: A review. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 264:106725. [PMID: 37806023 DOI: 10.1016/j.aquatox.2023.106725] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/12/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
The widespread presence of micro/nanoplastics in aquatic ecosystems has certainly affected ecosystem functions and food chains/webs. The impact is worsened by the accumulation of different pollutants and microorganisms on the surface of microplastics. At the tissue, cellular, and molecular levels, micro/nanoplastics and the contaminants they carry can cause damage to aquatic organisms. Problematically, the toxic mechanism of micro/nanoplastics and contaminants on aquatic organisms is still not fully understood. Algae are key organisms in the aquatic ecosystem, serving as primary producers. The investigation of the toxic effects and mechanisms of micro/nanoparticles and pollutants on algae can contribute to understanding the impact on the aquatic ecosystem. Micro/nanoplastics inhibit algal growth, reduce chlorophyll and photosynthesis, induce ultrastructural changes, and affect gene expression in algae. The effects of energy flow can alter the productivity of aquatic organisms. The type, particle size, and concentration of micro/nanoparticles can influence their toxic effects on algae. Although there has been some research on the toxic effects of algae, the limited information has led to a significant lack of understanding of the underlying mechanisms. This paper provides a comprehensive review of the interactions between micro/nanoplastics, pollutants, and algae. The effects of various factors on algal toxicity are also analyzed. In addition, this article discusses the combined effects of microplastics, global warming, and oil pollution on algae and aquatic ecosystems in the context of global change. This research is of great importance for predicting future environmental changes. This review offers a more comprehensive understanding of the interactions between microplastics/nanoplastics and algae, as well as their impact on the carbon cycle.
Collapse
Affiliation(s)
- Yifei Zhao
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Shiyu Tao
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Shiwei Liu
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Tong Hu
- Department of Environment Science, Zhejiang University, Hangzhou 310058, PR China
| | - Kaixuan Zheng
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Maocai Shen
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China.
| | - Guanhua Meng
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| |
Collapse
|
12
|
Das S, Mukherjee A. Combined effects of P25 TiO 2 nanoparticles and disposable face mask leachate on microalgae Scenedesmus obliquus: analysing the effects of heavy metals. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:1428-1437. [PMID: 37534914 DOI: 10.1039/d3em00120b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Disposable surgical face masks extensively used during the COVID-19 outbreak would release microplastics into the aquatic environment. The increasing usage of titanium dioxide nanoparticles (nTiO2) in various consumer items has led to its ubiquitous presence in freshwater systems. This study determined the quantity and kind of microplastics discharged from disposable surgical face masks. The mask-leached microplastics were identified to be polypropylene of varying shapes and sizes, spanning from 1 μm to 15 μm. In addition, heavy metals like Cd, Cr, and Hg leached from the face masks were quantified. Four concentrations of nTiO2, 0.5, 1, 2, and 4 mg L-1, were mixed with leached solution from the face masks to perform the combined toxicity test on freshwater algae, Scenedesmus obliquus. A dose-dependent decrease in algal cell viability was observed upon treatment with various concentrations of nTiO2 individually. The mixtures of nTiO2 and the leached solution from the face masks exhibited significantly more toxicity in the algal cells than in their pristine forms. nTiO2 promoted increased production of oxidative stress and antioxidant enzyme activities resulting in cellular damage and decreased photosynthesis. These impacts were elevated when the algal cells were treated with the binary mixture. Furthermore, the heavy metal ions leached from face masks also contributed to the toxic effects. Our study shows that the leachates from disposable surgical face masks, combined with nTiO2, may pose a severe environmental threat.
Collapse
Affiliation(s)
- Soupam Das
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore 632014, India.
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore 632014, India.
| |
Collapse
|
13
|
Costa E, Gambardella C, Miroglio R, Di Giannantonio M, Lavorano S, Minetti R, Sbrana F, Piazza V, Faimali M, Garaventa F. Nanoplastic uptake temporarily affects the pulsing behavior in ephyrae of the moon jellyfish Aurelia sp. ECOTOXICOLOGY (LONDON, ENGLAND) 2023:10.1007/s10646-023-02669-0. [PMID: 37269410 DOI: 10.1007/s10646-023-02669-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 06/05/2023]
Abstract
The aim of this study is to investigate for the first time the uptake and ecotoxicological effects of nanoplastics (NPs) in a marine cnidarian. Ephyrae of the moon jellyfish Aurelia sp. of different ages (0 and 7 days old) were exposed to negatively charged polystyrene NPs for 24 h; then, the uptake was assessed through traditional and novel techniques, namely microscopy and three-dimensional (3D) holotomography. Immobility and behavioral responses (frequency of pulsations) of ephyrae were also investigated to clarify if NP toxicity differed along the first life stages. NP uptake was observed in ephyrae thanks to the 3D technique. Such internalization did not affect survival, but it temporarily impaired the pulsation mode only in 0 day old ephyrae. This may be ascribed to the negative charged NPs, contributing to jellyfish behavioral alteration. These findings promote 3D holotomography as a suitable tool to detect NPs in marine organisms. Moreover, this study recommends the use of cnidarians of different ages to better assess NP ecotoxicological effects in these organisms, key components of the marine food web.
Collapse
Affiliation(s)
- Elisa Costa
- National Research Council (CNR) - Institute for the Study of Anthropic Impacts and Sustainability in Marine Environment (IAS), Via De Marini 16, 16149, Genova, Italy
| | - Chiara Gambardella
- National Research Council (CNR) - Institute for the Study of Anthropic Impacts and Sustainability in Marine Environment (IAS), Via De Marini 16, 16149, Genova, Italy.
- National Biodiversity Future Center (NBFC) S.c.a.r.l., Piazza Marina 61 (c/o palazzo Steri), Palermo, Italy.
| | - Roberta Miroglio
- National Research Council (CNR) - Institute for the Study of Anthropic Impacts and Sustainability in Marine Environment (IAS), Via De Marini 16, 16149, Genova, Italy
| | - Michela Di Giannantonio
- National Research Council (CNR) - Institute for the Study of Anthropic Impacts and Sustainability in Marine Environment (IAS), Via De Marini 16, 16149, Genova, Italy
- Early PostDoc Mobility Grant - Swiss National Science Foundation, Bern, Switzerland
| | - Silvia Lavorano
- Costa Edutainment SpA - Acquario di Genova, Area Porto Antico, Ponte Spinola, 16128, Genova, Italy
| | - Roberta Minetti
- National Research Council (CNR) - Institute for the Study of Anthropic Impacts and Sustainability in Marine Environment (IAS), Via De Marini 16, 16149, Genova, Italy
| | - Francesca Sbrana
- National Research Council (CNR) - Institute of Biophysics (IBF), Via De Marini 16, 16149, Genova, Italy
- Schaefer SEE srl, Via delle Genziane 96, 16148, Genova, Italy
| | - Veronica Piazza
- National Research Council (CNR) - Institute for the Study of Anthropic Impacts and Sustainability in Marine Environment (IAS), Via De Marini 16, 16149, Genova, Italy
| | - Marco Faimali
- National Research Council (CNR) - Institute for the Study of Anthropic Impacts and Sustainability in Marine Environment (IAS), Via De Marini 16, 16149, Genova, Italy
- National Biodiversity Future Center (NBFC) S.c.a.r.l., Piazza Marina 61 (c/o palazzo Steri), Palermo, Italy
| | - Francesca Garaventa
- National Research Council (CNR) - Institute for the Study of Anthropic Impacts and Sustainability in Marine Environment (IAS), Via De Marini 16, 16149, Genova, Italy
- National Biodiversity Future Center (NBFC) S.c.a.r.l., Piazza Marina 61 (c/o palazzo Steri), Palermo, Italy
| |
Collapse
|
14
|
Das S, Chandrasekaran N, Mukherjee A. Unmasking effects of masks: Microplastics released from disposable surgical face masks induce toxic effects in microalgae Scenedesmus obliquus and Chlorella sp. Comp Biochem Physiol C Toxicol Pharmacol 2023; 267:109587. [PMID: 36858140 DOI: 10.1016/j.cbpc.2023.109587] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 02/04/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023]
Abstract
During the COVID-19 pandemic billions of face masks were used since they became a necessity in everyone's lives. But these were not disposed properly and serve as one of the most significant sources of micro and nano plastics in the environment. The effects of mask leached plastics in aquatic biota remains largely unexplored. In this work, we quantified and characterized the released microplastics from the three layers of the mask. The outer layer of the face mask released more microplastics i.e., polypropylene than middle and inner layers. We investigated and compared the acute toxic effects of the released microplastics between Scenedesmus obliquus and Chlorella sp. The results showed a decrease in cell viability, photosynthetic yield, and electron transport rate in both the algal species. This was accompanied by an increase in oxidative stress markers such reactive oxygen species (ROS) and malondialdehyde (MDA) content. There was also a significant rise of antioxidant enzymes such as superoxide dismutase (SOD) and catalase (CAT) in both the algal cells. Furthermore, morphological changes like cell aggregation and surface chemical changes in the algae were ascertained by optical microscopy and FTIR spectroscopy techniques, respectively. The tests confirmed that Scenedesmus obliquus was more sensitive than Chlorella sp. to the mask leachates. Our study clearly revealed serious environmental risk posed by the released microplastics from surgical face masks. Further work with other freshwater species is required to assess the environmental impacts of the mask leachates.
Collapse
Affiliation(s)
- Soupam Das
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore 632014, India
| | - N Chandrasekaran
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore 632014, India
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore 632014, India.
| |
Collapse
|
15
|
Tang X, Chen M, Li M, Liu H, Tang H, Yang Y. Do differentially charged nanoplastics affect imidacloprid uptake, translocation, and metabolism in Chinese flowering cabbage? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:161918. [PMID: 36736408 DOI: 10.1016/j.scitotenv.2023.161918] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/10/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Micro(nano)plastics are ubiquitous in the environment. Among the microplastics, imidacloprid (IMI) concentration has been increasing in some intensive agricultural regions, thus receiving increased attention. However, only a few studies have investigated the interaction of nanoplastics (polystyrene (PS)) and IMI in vegetable crops. We studied the effects of positively (PS-NH2) and negatively (PS-COOH) charged nanoplastics on the uptake, translocation, and degradation of IMI in Chinese flowering cabbage grown in Hoagland solution for 28 days. PS-NH2 co-exposure with IMI inhibited plant growth, resulting in decreased plant weight, height, and root length. Translocation of IMI from the roots to the shoots was significantly lower in the presence of PS-NH2, whereas PS-COOH accelerated the accumulation and translocation of IMI in plants, thus potentially affecting IMI metabolism in plants. Notably, IMI-NTG and 5-OH-IMI were the two dominant metabolites. PS-NH2 co-exposure with IMI induced significant oxidation stress and considerably affected the activities of superoxide dismutase (SOD) and peroxidase (POD), indicating that the antioxidant defense system was the main mechanism for reducing oxidative damage. Notably, both positively and negatively charged nanoplastics can accumulate in Chinese flowering cabbage. Plants in the PS-COOH alone treatment group had the highest concentration of nanoplastics in both roots and shoots. The accumulation of nanoplastics, IMI, and its metabolites in plants raises concerns about their combined potential toxicity because it compromises food safety.
Collapse
Affiliation(s)
- Xiaoyan Tang
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610068, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Institute of Hydrobiology, Jinan university, Guangzhou 510632, China; College of Geography and Resources, Sichuan Normal University, Chengdu 610101, China.
| | - Manjia Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Muzi Li
- College of Geography and Resources, Sichuan Normal University, Chengdu 610101, China
| | - Huanping Liu
- Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Institute of Hydrobiology, Jinan university, Guangzhou 510632, China
| | - Hao Tang
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610068, China; College of Geography and Resources, Sichuan Normal University, Chengdu 610101, China
| | - Yang Yang
- Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Institute of Hydrobiology, Jinan university, Guangzhou 510632, China.
| |
Collapse
|
16
|
Zhang J, Xie X, Li Q, Zhang S, Wang J. Assessment of combined algal toxicity of TiO 2 nanoparticles and organochlorines in karst surface waters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:66625-66637. [PMID: 37099115 DOI: 10.1007/s11356-023-27139-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/17/2023] [Indexed: 05/25/2023]
Abstract
The widespread use of nanoparticles (NPs) and organic pollutants increases the risk of their coexistence in the aquatic environments. It is uncertain how the combined toxicities of NPs and OCs affect aquatic organisms in surface waters. In this study, the binary combined toxicities of TiO2 NPs with three different organochlorines (OCs)-pentachlorobenzene (PeCB), 3,3,4,4-tetrachlorobiphenyl (PCB-77), and atrazine on Chlorella pyrenoidosa in three karst surface water bodies were investigated. The correlation analysis results indicated that the toxicities of TiO2 NPs and OCs to algae were mainly related to the total organic carbon (TOC) and ionic strength of surface water. Surface water relieved the growth inhibition of the pollutants on algae as compared with ultrapure water (UW). The combined toxic effect caused by the co-exposure of TiO2 NPs-atrazine was synergistic and had an antagonistic effect for TiO2 NPs-PCB-77 in four types of water bodies. However, the co-exposure of TiO2 NPs-PeCB had an additive effect in the Huaxi Reservoir (HX) and synergistic effects in Baihua Lake (BH), Hongfeng Lake (HF), and UW. TiO2 NPs increased the bioaccumulation of OCs by algae. Both PeCB and atrazine significantly increased the bioaccumulation of TiO2 NPs by algae, except for PeCB in HX; however, PCB-77 reduced the bioaccumulation of TiO2 NPs by algae. The toxic effects of TiO2 NPs and OCs on algae in different water bodies were the result of the nature of the pollutants, bioaccumulation, hydrochemical properties, and other factors.
Collapse
Affiliation(s)
- Jun Zhang
- College of Geography and Environmental Science, Guizhou Normal University, Guiyang, 550025, China
- Cultivation Base of Guizhou State Key Laboratory of Karst Mountain Ecological Environment, Guiyang, 550025, China
| | - Xujiao Xie
- College of Geography and Environmental Science, Guizhou Normal University, Guiyang, 550025, China
- Cultivation Base of Guizhou State Key Laboratory of Karst Mountain Ecological Environment, Guiyang, 550025, China
| | - Qing Li
- College of Geography and Environmental Science, Guizhou Normal University, Guiyang, 550025, China
- Cultivation Base of Guizhou State Key Laboratory of Karst Mountain Ecological Environment, Guiyang, 550025, China
| | - Shuai Zhang
- College of Geography and Environmental Science, Guizhou Normal University, Guiyang, 550025, China.
- Cultivation Base of Guizhou State Key Laboratory of Karst Mountain Ecological Environment, Guiyang, 550025, China.
| | - Ji Wang
- College of Geography and Environmental Science, Guizhou Normal University, Guiyang, 550025, China
- Cultivation Base of Guizhou State Key Laboratory of Karst Mountain Ecological Environment, Guiyang, 550025, China
| |
Collapse
|
17
|
Zhang J, Xie X, Li Q, Wang J, Zhang S. Combined toxic effects of TiO 2 nanoparticles and organochlorines on Chlorella pyrenoidosa in karst area natural waters. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 257:106442. [PMID: 36863153 DOI: 10.1016/j.aquatox.2023.106442] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/12/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
With the discharge of nanoparticles (NPs) into the environment, NPs can interact with coexisting organic pollutants, resulting in combined toxic effects. In order to more realistically evaluate the potential toxic effects of NPs and coexisting pollutants on aquatic organisms. We evaluated the combined toxicities of TiO2 nanoparticles (TiO2 NPs) and three different organochlorines(OCs)-pentachlorobenzene (PeCB), 3,3',4,4'-tetrachlorobiphenyl (PCB-77) and atrazine to algae (Chlorella pyrenoidosa) in three karst natural waters. The results indicate that the individual toxicities of TiO2 NPs and OCs in natural waters were less than those of OECD medium, and the combined toxicities were different from but generally similar to those of OECD medium. The individual and combined toxicities were the largest in UW. The correlation analysis showed that the toxicities of TiO2 NPs and OCs were mainly related to TOC, ionic strength, Ca2+ and Mg2+ in natural water. The binary combined toxicities of PeCB and atrazine with TiO2 NPs to algae were synergistic. The binary combined toxicity of TiO2 NPs and PCB-77 to algae was antagonistic. The presence of TiO2 NPs increased the algae-accumulations of OCs. PeCB and atrazine all increased the algae-accumulations of TiO2 NPs, while PCB-77 showed the opposite result. The above results indicated that due to the influence of different hydrochemical properties in karst natural waters, there were differences between TiO2 NPs and OCs in their toxic effects, structural and functional damage, and bioaccumulation.
Collapse
Affiliation(s)
- Jun Zhang
- College of Geography and Environmental Science, Guizhou Normal University, Guiyang 550025, China; Cultivation Base of Guizhou State Key Laboratory of Karst Mountain Ecological Environment, Guiyang 550025, China
| | - Xujiao Xie
- College of Geography and Environmental Science, Guizhou Normal University, Guiyang 550025, China; Cultivation Base of Guizhou State Key Laboratory of Karst Mountain Ecological Environment, Guiyang 550025, China
| | - Qing Li
- College of Geography and Environmental Science, Guizhou Normal University, Guiyang 550025, China; Cultivation Base of Guizhou State Key Laboratory of Karst Mountain Ecological Environment, Guiyang 550025, China
| | - Ji Wang
- College of Geography and Environmental Science, Guizhou Normal University, Guiyang 550025, China; Cultivation Base of Guizhou State Key Laboratory of Karst Mountain Ecological Environment, Guiyang 550025, China
| | - Shuai Zhang
- College of Geography and Environmental Science, Guizhou Normal University, Guiyang 550025, China; Cultivation Base of Guizhou State Key Laboratory of Karst Mountain Ecological Environment, Guiyang 550025, China.
| |
Collapse
|
18
|
Chen Y, Wang X, Sui Q, Chang G, Sun X, Zhu L, Chen B, Qu K, Xia B. Charge-dependent negative effects of polystyrene nanoplastics on Oryzias melastigma under ocean acidification conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161248. [PMID: 36587669 DOI: 10.1016/j.scitotenv.2022.161248] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Marine nanoplastics (NPs) have attracted increasing global attentions because of their detrimental effects on marine environments. A co-existing major environmental concern is ocean acidification (OA). However, the effects of differentially charged NPs on marine organisms under OA conditions are poorly understood. We therefore investigated the effects of OA on the embryotoxicity of both positively and negatively charged polystyrene (PS) NPs to marine medaka (Oryzias melastigma). Positively charged PS-NH2 exhibited slighter aggregation under normal conditions and more aggregation under OA conditions than negatively charged PS-COOH. According to the integrated biomarker approach, OA reversed the toxicity of positively and negatively charged NPs towards embryos. Importantly, at environmental relevant concentrations, both types of PS-NPs could enter the embryos through chorionic pores and then transfer to the larvae. OA reversed the internalization of PS-NH2 and PS-COOH in O. melastigma. Overall, the reversed toxicity of PS-NH2 and PS-COOH associated with OA could be caused by the reversed bioavailability of NPs to O. melastigma, which was attributed to altered aggregation of the NPs in acidified seawater. This finding demonstrates the charge-dependent toxicity of NPs to marine fish and provides new insights into the potential hazard of NPs to marine environments under OA conditions that could be encountered in the near future.
Collapse
Affiliation(s)
- Yufei Chen
- Qingdao University of Science and Technology, Qingdao 266042, China; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xia Wang
- Qingdao University of Science and Technology, Qingdao 266042, China
| | - Qi Sui
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Guozhu Chang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xuemei Sun
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Lin Zhu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Bijuan Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Keming Qu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Bin Xia
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
19
|
Gong H, Li R, Li F, Guo X, Xu L, Gan L, Yan M, Wang J. Toxicity of nanoplastics to aquatic organisms: Genotoxicity, cytotoxicity, individual level and beyond individual level. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130266. [PMID: 36327848 DOI: 10.1016/j.jhazmat.2022.130266] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/09/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Due to the small size, high mobility and large surface area, nanoplastics (NPs) showed high potential risks to aquatic organisms. This paper reviews the toxicity of NPs to aquatic organism at various trophic levels including bacteria, plankton (algae), zooplankton, benthos, and nekton (fish). The effects at individual level caused by NPs were explained and proved by cytotoxicity and genotoxicity, and the toxicity of NPs beyond individual level was also illustrated. The toxicity of NPs is determined by the size, dosage, and surface property of NPs, as well as environmental factors, the presence of co-contaminants and the sensitivity of tested organisms. Furthermore, the joint effects of NPs with other commonly detected pollutants such as organic pollutants, metals, and nanoparticles etc. were summarized. In order to reflect the toxicity of NPs in the real natural environment, studies on toxicity assessment of NPs with the coexistence of various environmental factors and contaminants, particularly under the concentrations in natural environment are suggested.
Collapse
Affiliation(s)
- Han Gong
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Ruixue Li
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Feng Li
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Xiaowen Guo
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Lijie Xu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Lu Gan
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Muting Yan
- College of Marine Sciences, South China Agricultural University, Guangzhou, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
20
|
Li X, Huang G, Li Y, Chen X, Yao Y, Liang Y, Huang J, Zhao K, Yin J. Low-Cost ceramic disk filters coated with Graphitic carbon nitride (g-C3N4) for drinking water disinfection and purification. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|