1
|
Madsen AM, Thomassen MR, Frederiksen MW, Hollund BE, Nordhammer ABO, Smedbold HT, Bang B. Airborne bacterial and fungal species in workstations of salmon processing plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175471. [PMID: 39137839 DOI: 10.1016/j.scitotenv.2024.175471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 08/15/2024]
Abstract
Significant quantities of salmon are processed daily in the industry's indoor facilities. Occupational exposure contributes to an individual's exposome. The aim of this study is to obtain knowledge about potential exposure to viable airborne species of bacteria and fungi as related to workstations in the salmon processing industry. The study was conducted in nine salmon plants along the Norwegian coast over one or two days with a one-year interval. The MAS100 was used for sampling and MALDI-TOF MS for species identification. The geometric mean concentrations of bacteria and fungi were 200 CFU/m3 and 50 CFU/m3, respectively, with the highest concentrations of bacteria found in slaughtering areas and fungi in trimming of fillets. In total 125 gram-negative and 90 gram-positive bacterial and 32 different fungal species were identified. Some genera were represented by several species e.g. Chryseobacterium (15 species), Flavobacterium (13 species), Microbacterium (12 species), Pseudomonas (37 species), and Psychrobacter (13 species). Risk class 2 (RC2, human pathogens) were found in all types of workstations and plants. Seventeen bacterial species belong to RC2, some were fish pathogens, food spoilage bacteria, or species causing foodborne disease. Among fungi, Aspergillus nidulans was frequently detected across different workstations and plants. In conclusion, bacterial and fungal concentrations were low. Fish and sea-related bacteria were found along the salmon processing line. Bacterial concentrations and species compositions differ between workstations. No particular bacterial or fungal species constituted a large fraction of all airborne species. Based on the presence of human pathogens, using protective gloves is important for the workers. The presence of human and fish pathogens and food spoilage bacteria reveals air as a transmission route for bacteria, potentially affecting workers, consumers, fish, and hygiene of processing equipment. To limit the spread of these bacteria an interdisciplinary cooperation with a One Health perspective may be relevant.
Collapse
Affiliation(s)
- Anne Mette Madsen
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark.
| | - Marte Renate Thomassen
- Department of Occupational and Environmental Medicine, University Hospital of North Norway, Tromsø, Norway; Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Margit W Frederiksen
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark
| | - Bjørg Eli Hollund
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway; Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway
| | - Anna B O Nordhammer
- Department of Occupational Medicine, St. Olavs Hospital - Trondheim University Hospital, Trondheim, Norway
| | - Hans T Smedbold
- Department of Occupational Medicine, St. Olavs Hospital - Trondheim University Hospital, Trondheim, Norway
| | - Berit Bang
- Department of Occupational and Environmental Medicine, University Hospital of North Norway, Tromsø, Norway; Department of Medical Biology, Faculty of Health Sciences, UiT, The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
2
|
Iversen IB, Vestergaard JM, Basinas I, Ohlander J, Peters S, Bendstrup E, Bonde JPE, Schlünssen V, Rasmussen F, Stokholm ZA, Andersen MB, Kromhout H, Kolstad HA. Risk of hypersensitivity pneumonitis and other interstitial lung diseases following organic dust exposure. Thorax 2024; 79:853-860. [PMID: 38777581 PMCID: PMC11347241 DOI: 10.1136/thorax-2023-221275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/22/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Organic dust is associated with hypersensitivity pneumonitis, and associations with other types of interstitial lung disease (ILD) have been suggested. We examined the association between occupational organic dust exposure and hypersensitivity pneumonitis and other ILDs in a cohort study. METHODS The study population included all residents of Denmark born in 1956 or later with at least 1 year of gainful employment since 1976. Incident cases of hypersensitivity pneumonitis and other ILDs were identified in the Danish National Patient Register 1994-2015. Job exposure matrices were used to assign individual annual levels of exposure to organic dust, endotoxin and wood dust from 1976 to 2015. We analysed exposure-response relations by different exposure metrics using a discrete-time hazard model. RESULTS For organic dust, we observed increasing risk with increasing cumulative exposure with incidence rate ratios (IRR) per 10 unit-years of 1.19 (95% CI 1.12 to 1.27) for hypersensitivity pneumonitis and 1.04 (95% CI 1.02 to 1.06) for other ILDs. We found increasing risk with increasing cumulative endotoxin exposure for hypersensitivity pneumonitis and other ILDs with IRRs per 5000 endotoxin units/m3-years of 1.55 (95% CI 1.38 to 1.73) and 1.09 (95% CI 1.00 to 1.19), respectively. For both exposures, risk also increased with increasing duration of exposure and recent exposure. No increased risks were observed for wood dust exposure. CONCLUSION Exposure-response relations were observed between organic dust and endotoxin exposure and hypersensitivity pneumonitis and other ILDs, with lower risk estimates for the latter. The findings indicate that organic dust should be considered a possible cause of any ILD. TRIAL REGISTRATION NUMBER j.no.: 1-16-02-196-17.
Collapse
Affiliation(s)
- Inge Brosbøl Iversen
- Department of Occupational Medicine, Danish Ramazzini Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Jesper Medom Vestergaard
- Department of Occupational Medicine, Danish Ramazzini Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Ioannis Basinas
- Centre for Occupational and Environmental Health, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Johan Ohlander
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Susan Peters
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Elisabeth Bendstrup
- Center for Rare Lung Diseases, Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | - Jens Peter Ellekilde Bonde
- Department of Occupational and Environmental Medicine, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Vivi Schlünssen
- Department of Public Health, Research Unit for Environment, Occupation and Health, Danish Ramazzini Centre, Aarhus University, Aarhus, Denmark
| | - Finn Rasmussen
- Department of Radiology, Aarhus University Hospital, Aarhus, Denmark
| | - Zara Ann Stokholm
- Department of Occupational Medicine, Danish Ramazzini Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Michael Brun Andersen
- Department of Radiology, Copenhagen University Hospital Herlev and Gentofte, Copenhagen, Denmark
- Department of Clinical Medicine, Copenhagen University, Copenhagen, Denmark
| | - Hans Kromhout
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Henrik Albert Kolstad
- Department of Occupational Medicine, Danish Ramazzini Centre, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
3
|
Madsen AM, Rasmussen PU, Frederiksen MW. Fungal and bacterial species on biowaste workers' hands and inhalation zone, and potential airway deposition. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 183:290-301. [PMID: 38788497 DOI: 10.1016/j.wasman.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/01/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
This study aims to investigate the microbiological working environment of biowaste workers, focusing on airborne fungal and bacterial species exposure, size distribution, and species on workers' hands. The research, conducted across six plants with 45 personal exposure assessments, revealed a total of 150 bacterial species and 47 fungal species on workers' hands, including 19 and 9 species classified in risk class 2 (RC2), respectively. Workers' exposure analysis identified 172 bacterial and 32 fungal species, with several in RC2. In work areas, 55 anaerobic bacterial species belonging to RC2 were found. Different species compositions were observed in various particle size fractions, with the highest species richness for anaerobic bacteria in the fraction potentially depositing in the secondary bronchi and for fungi in the pharynx fraction. The geometric mean aerodynamic diameter (DG) of RC2 anaerobic bacteria was 3.9 µm, <1.6 µm for Streptomyces, 3.4 µm for Aspergillus, and 2.0 µm for Penicillium. Overlapping species were identified on workers' hands, in their exposure, and in work areas, with Bacillus amyloliquefaciens, Leuconostoc mesenteroides, Bacillus cereus, Enterococcus casseliflavus, and Aspergillus niger consistently present. While the majority of RC2 bacterial species lacked documented associations with occupational health problems, certain bacteria and fungi, including Bacillus cereus, Escherichia coli, Enterobacter, Klebsiella pneumonia, Aspergillus fumigatus, Aspergillus niger, Aspergillus flavus, Lichtheimia corymbifera, Lichtheimia ramosa, and Paecilomyces variotii, have previously been linked to occupational health issues. In conclusion, biowaste workers were exposed to a wide range of microorganisms including RC2 species which would deposit in different parts of the airways.
Collapse
Affiliation(s)
- Anne Mette Madsen
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark.
| | - Pil Uthaug Rasmussen
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark
| | - Margit W Frederiksen
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark
| |
Collapse
|
4
|
Wilson TK, Zishiri OT, El Zowalaty ME. Molecular detection of multidrug and methicillin resistance in Staphylococcus aureus isolated from wild pigeons ( Columba livia) in South Africa. One Health 2024; 18:100671. [PMID: 38737528 PMCID: PMC11082500 DOI: 10.1016/j.onehlt.2023.100671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 05/14/2024] Open
Abstract
Staphylococcus aureus is an important human and veterinary pathogen. The present study aimed to determine the prevalence of antibiotic resistance among S. aureus isolated from samples obtained from free-flying wild pigeons and houseflies from different locations surrounding a local hospital in the Greater Durban area in KwaZulu-Natal Province, South Africa. Environmental fecal samples were obtained from wild pigeons that inhabits the grounds of a local public hospital located on the South Beach area, Durban, South Africa. Housefly samples were collected from three different locations (Kenneth Stainbank Nature Reserve, Montclair/Clairwood, and Glenwood/Berea) in the greater Durban area, all within a close proximity to the hospital. Following enrichment, identification, and antimicrobial resistance profiling, S. aureus isolates were subjected to DNA extraction using the boiling method. It was found that 57 out of 252 samples (22.62%) were positive for S. aureus. The Kirby-Bauer disk diffusion method of antibiotic susceptibility testing was performed and revealed that antibiotic resistance rates to penicillin and rifampicin were the most common, with both returning 48 (84.2%) out of the 57 S. aureus isolates being resistant to penicillin and rifampicin. Antibiotic resistance rates to clindamycin, linezolid, erythromycin, tetracycline, cefoxitin, and ciprofloxacin were 82.5%, 78.9%, 73.7%, 63.2%, 33.3%, and 15.8% respectively. Antibiotic resistance genes were detected using primer-specific PCR and it was found that the prevalence rates of tetM, aac(6')-aph(2″), mecA, tetK, ermc, and blaZ genes were 66.7%, 40.4%, 40.4%, 38.6%, 24.6%, and 3.51% respectively. Statistical analysis revealed significant (p < 0.05) relationships between the tetM, aac(6')-aph(2″), and ermC genes and all parameters tested. A significant correlation between the aac(6')-aph(2″) gene and the tetM (0.506) and ermC (-0.386) genes was identified. It was found that 23 (40.3%) S. aureus isolates were mecA positive, of which 10 (52.6%) out of 19 cefoxitin-resistant isolates were mecA positive and 13 (35.1%) out of 37 cefoxitin-sensitive isolates were mecA positive. The results of the present study demonstrated the detection of methicillin and multidrug resistant S. aureus isolated from samples obtained from wild pigeons and houseflies in the surroundings of a local public hospital in the Greater Durban area in South Africa. The findings of the study may account for the emergence of multidrug-resistant staphylococcal infections. The findings highlight the significant role of wild pigeons and houseflies in the spread of drug-resistant pathogenic S. aureus including MRSA. The conclusions of the present study highlight the improtant role of wildlife and the environment as interconnected contributors of One Health.
Collapse
Affiliation(s)
- Trevor K. Wilson
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Oliver T. Zishiri
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Mohamed E. El Zowalaty
- Veterinary Medicine and Food Security Research Group, Medical Laboratory Sciences, Faculty of Health Sciences, Abu Dhabi Women's Campus, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates
| |
Collapse
|
5
|
An T, Liang Z, Chen Z, Li G. Recent progress in online detection methods of bioaerosols. FUNDAMENTAL RESEARCH 2024; 4:442-454. [PMID: 38933213 PMCID: PMC10239662 DOI: 10.1016/j.fmre.2023.05.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/03/2023] [Accepted: 05/03/2023] [Indexed: 10/29/2023] Open
Abstract
The aerosol transmission of coronavirus disease in 2019, along with the spread of other respiratory diseases, caused significant loss of life and property; it impressed upon us the importance of real-time bioaerosol detection. The complexity, diversity, and large spatiotemporal variability of bioaerosols and their external/internal mixing with abiotic components pose challenges for effective online bioaerosol monitoring. Traditional methods focus on directly capturing bioaerosols before subsequent time-consuming laboratory analysis such as culture-based methods, preventing the high-resolution time-based characteristics necessary for an online approach. Through a comprehensive literature assessment, this review highlights and discusses the most commonly used real-time bioaerosol monitoring techniques and the associated commercially available monitors. Methods applied in online bioaerosol monitoring, including adenosine triphosphate bioluminescence, laser/light-induced fluorescence spectroscopy, Raman spectroscopy, and bioaerosol mass spectrometry are summarized. The working principles, characteristics, sensitivities, and efficiencies of these real-time detection methods are compared to understand their responses to known particle types and to contrast their differences. Approaches developed to analyze the substantial data sets obtained by these instruments and to overcome the limitations of current real-time bioaerosol monitoring technologies are also introduced. Finally, an outlook is proposed for future instrumentation indicating a need for highly revolutionized bioaerosol detection technologies.
Collapse
Affiliation(s)
- Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhishu Liang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhen Chen
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
6
|
Kofoed VC, Campion C, Rasmussen PU, Møller SA, Eskildsen M, Nielsen JL, Madsen AM. Exposure to resistant fungi across working environments and time. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171189. [PMID: 38447726 DOI: 10.1016/j.scitotenv.2024.171189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/08/2024]
Abstract
Antifungal resistance has emerged as a significant health concern with increasing reports of resistant variants in previously susceptible species. At present, little is known about occupational exposure to antifungal-resistant fungi. This study aimed to investigate Danish workers' occupational exposure to airborne fungi resistant to first-line treatment drugs. A retrospective study was performed on a unique collection of personal exposure samples gathered over a twenty-year period from Danish working environments, in sectors including agriculture, animal handling, waste management, and healthcare. A total of 669 samples were cultivated at 37 °C and fungal colonies were identified using MALDI-TOF MS. Subsequently, identification was confirmed by amplicon sequencing the genes of calmodulin and beta-tubulin to unveil potential cryptic species. Infectious fungi (495 isolates from 23 species) were tested for resistance against Itraconazole, Voriconazole, Posaconazole, and Amphotericin B. Working environments were highly variable in the overall fungal exposure, and showed vastly different species compositions. Resistance was found in 30 isolates of the species Aspergillus fumigatus (4 of 251 isolates), A. nidulans (2 of 13), A. niger complex (19 of 131), A. versicolor (3 of 18), and A. lentulus (2 of 2). Sequence analysis revealed several cryptic species within the A. niger complex including A. tubingensis, A. luchuensis, and A. phoenicis. Among the resistant A. fumigatus isolates, two contained the well-described TR34/L98H mutation in the cyp51A gene and promoter region, while the remainder harbored silent mutations. The results indicate that the working environment significantly contributes to exposure to resistant fungi, with particularly biofuel plant workers experiencing high exposure. Differences in the prevalence of resistance across working environments may be linked to the underlying species composition.
Collapse
Affiliation(s)
- Victor Carp Kofoed
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark
| | - Christopher Campion
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark
| | - Pil Uthaug Rasmussen
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark
| | - Signe Agnete Møller
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark; Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg Ø, Denmark
| | - Mathias Eskildsen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg Ø, Denmark
| | - Jeppe Lund Nielsen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg Ø, Denmark
| | - Anne Mette Madsen
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark.
| |
Collapse
|
7
|
Rokkedrejer SI, Schlünssen V, Kinnerup MB, Vestergaard JM, Kolstad HA, Cramer C. Risk of myocardial infarction among pigeon breeders: A follow-up study. ARCHIVES OF ENVIRONMENTAL & OCCUPATIONAL HEALTH 2024; 78:507-511. [PMID: 38240700 DOI: 10.1080/19338244.2024.2302113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 01/01/2024] [Indexed: 02/08/2024]
Abstract
Pigeon breeders are exposed to high levels of fine particulate organic matter in the pigeon lofts. A total of 6,704 pigeon breeders and their 1:30 sex and age-matched referents from the general Danish population were followed from 1980 or first year of membership in the Danish Racing Pigeon Association, until first event of myocardial infarction, emigration, death, or end of study, on December 31, 2013. Information on outcomes and covariates was obtained by record linkage with national registers. Stratified Cox regression models estimated the hazard ratio of myocardial infarction, adjusted for occupation and residence at the start of follow-up. Compared with referents, pigeon breeders had an adjusted hazard ratio of 1.14 (95% CI: 1.05-1.22) for myocardial infarction. Exposure to pigeon-derived organic dust may increase the risk of myocardial infarction, but this finding needs to be corroborated.
Collapse
Affiliation(s)
- Sandra Ileby Rokkedrejer
- Department of Occupational Medicine, Danish Ramazzini Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Vivi Schlünssen
- Department of Public Health, Unit for Work, Environment and Health, Danish Ramazzini Centre, Aarhus University, Aarhus, Denmark
| | - Martin Byskov Kinnerup
- Department of Occupational Medicine, Danish Ramazzini Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Jesper Medom Vestergaard
- Department of Occupational Medicine, Danish Ramazzini Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Henrik Albert Kolstad
- Department of Occupational Medicine, Danish Ramazzini Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Christine Cramer
- Department of Occupational Medicine, Danish Ramazzini Centre, Aarhus University Hospital, Aarhus, Denmark
- Department of Public Health, Unit for Work, Environment and Health, Danish Ramazzini Centre, Aarhus University, Aarhus, Denmark
| |
Collapse
|
8
|
Madsen AM, Moslehi-Jenabian S, Frankel M, White JK, Frederiksen MW. Airborne bacterial species in indoor air and association with physical factors. UCL OPEN ENVIRONMENT 2023; 5:e056. [PMID: 37229345 PMCID: PMC10208329 DOI: 10.14324/111.444/ucloe.000056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/25/2023] [Indexed: 05/27/2023]
Abstract
The aim of this study is to obtain knowledge about which cultivable bacterial species are present in indoor air in homes, and whether the concentration and diversity of airborne bacteria are associated with different factors. Measurements have been performed for one whole year inside different rooms in five homes and once in 52 homes. Within homes, a room-to-room variation for concentrations of airborne bacteria was found, but an overlap in bacterial species was found across rooms. Eleven species were found very commonly and included: Acinetobacter lowffii, Bacillus megaterium, B. pumilus, Kocuria carniphila, K. palustris, K. rhizophila, Micrococcus flavus, M. luteus, Moraxella osloensis and Paracoccus yeei. The concentrations of Gram-negative bacteria in general and the species P. yeei were significantly associated with the season with the highest concentrations in spring. The concentrations of P. yeei, K. rhizophila and B. pumilus were associated positively with relative humidity (RH), and concentrations of K. rhizophila were associated negatively with temperature and air change rate (ACR). Micrococcus flavus concentrations were associated negatively with ACR. Overall, this study identified species which are commonly present in indoor air in homes, and that the concentrations of some species were associated with the factors: season, ACR and RH.
Collapse
Affiliation(s)
- Anne Mette Madsen
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark
| | - Saloomeh Moslehi-Jenabian
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark
| | - Mika Frankel
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark
| | - John Kerr White
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark
- Division of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Margit W. Frederiksen
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark
| |
Collapse
|