1
|
Aliahmad A, Lima PDM, Kjerstadius H, Simha P, Vinnerås B, McConville J. Consequential life cycle assessment of urban source-separating sanitation systems complementing centralized wastewater treatment in Lund, Sweden. WATER RESEARCH 2024; 268:122741. [PMID: 39527905 DOI: 10.1016/j.watres.2024.122741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
This study examined various source-separating sanitation systems to evaluate their environmental performance, providing decision-makers with insights for selecting an appropriate system for a newly developed neighborhood in Sweden. A full consequential LCA was conducted to account for resource recovery and substitution. The local wastewater treatment plant WWTP was modeled as a reference. Secondly, a urine recycling system was introduced to treat 75 % of the collected urine, with the remainder piped to the WWTP. Thirdly, a black and greywater (BW&GW) treatment system handling all generated wastewater was examined. Finally, a hybrid source-separating system combining urine, black, and greywater was investigated. The results indicated that the four scenarios exhibited global warming potentials (GWP) of 78, 62, 32, and 24 kg CO2-eq per PE/ y. Recycling urine as fertilizer led to a 20 % reduction in the GWP of the reference. It also reduced other impact categories, with a 55 %, 65 %, and 45 % reduction in eutrophication, ozone depletion, and acidification, respectively. The BW&GW system achieved a 60 % reduction over the reference GWP, mainly due to fertilizer, biogas, and cleanwater recovery. Integrating urine, black, and greywater recycling in the final scenario achieved a 25 % reduction compared to the BW&GW scenario, primarily due to lowering of the ammonia stripping GWP and the additional fertilizer recovery. Based on sensitivity analyses, switching citric acid for sulfuric acid reduced the GWP of the urine stabilization unit process by 101 %, from 15.47 to -0.14 kg CO2-eq per PE/ y. Ultimately, the findings suggest that the fully decentralized source-separating sanitation system incorporating urine, blackwater, and greywater recycling, particularly when combined with 70 % energy recovery at the urine concentrator, is most favorable.
Collapse
Affiliation(s)
- Abdulhamid Aliahmad
- Department of Energy and Technology, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | | | - Hamse Kjerstadius
- Nordvästra Skånes Vatten och Avlopp AB, Box 2022, 250 02 Helsingborg, Sweden
| | - Prithvi Simha
- Department of Energy and Technology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Björn Vinnerås
- Department of Energy and Technology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jennifer McConville
- Department of Energy and Technology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
2
|
Besson M, Tiruta-Barna L, Paul E, Spérandio M. Impact of urbanism on source separation systems: A life cycle assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171050. [PMID: 38369139 DOI: 10.1016/j.scitotenv.2024.171050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/10/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
This study aims to assess the effect of different urban configuration regarding the choice of wastewater management of the district with source separation systems. Understanding this link can guide researchers, and also urban actors, in order to choose the best source separation solution to implement in a specific urban configuration. For this purpose, an integrated modelling approach was used to model the district with different types of urban planning, the water resources recovery facility (WRRF) and create a life cycle inventory to carry out a life cycle assessment (LCA). Six different urban configurations were tested with three different source separation scenarios and compared with an advanced WRRF with high level of nutrients and organic matter recovery. This study concludes that urine source separation is beneficial compared to advanced WWRF for all the urban configurations. Sewer construction was identified as the main contributor to environmental impact for the low-density configuration (pavilions), limiting the benefits of source separation in this urban settlement. Blackwater separation with a decentralised treatment is only beneficial for high densely populated area. Treatment of blackwater and greywater for reuse, has greater impact than reference scenario, in all urban configurations, due to high energy consumption for greywater treatment. Future research should therefore explore technical solutions for limiting the energy consumption.
Collapse
Affiliation(s)
- Mathilde Besson
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 135 avenue de Rangueil, 31077 Toulouse CEDEX 04, France.
| | - Ligia Tiruta-Barna
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 135 avenue de Rangueil, 31077 Toulouse CEDEX 04, France
| | - Etienne Paul
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 135 avenue de Rangueil, 31077 Toulouse CEDEX 04, France
| | - Mathieu Spérandio
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 135 avenue de Rangueil, 31077 Toulouse CEDEX 04, France
| |
Collapse
|
3
|
Carter LJ, Dennis S, Allen K, McKenna P, Chen X, Daniell TJ, Evans B, Guest JS, Guo H, Kirk S, Zhu YG, Anik AR, Zuhra N, Banwart SA. Mitigating Contaminant-Driven Risks for the Safe Expansion of the Agricultural-Sanitation Circular Economy in an Urbanizing World. ACS ES&T WATER 2024; 4:1166-1176. [PMID: 38633372 PMCID: PMC11019536 DOI: 10.1021/acsestwater.3c00803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 04/19/2024]
Abstract
The widespread adoption of an agricultural circular economy requires the recovery of resources such as water, organic matter, and nutrients from livestock manure and sanitation. While this approach offers many benefits, we argue this is not without potential risks to human and environmental health that largely stem from the presence of contaminants in the recycled resources (e.g., pharmaceuticals, pathogens). We discuss context specific challenges and solutions across the three themes: (1) contaminant monitoring; (2) collection transport and treatment; and (3) regulation and policy. We advocate for the redesign of sanitary and agricultural management practices to enable safe resource reuse in a proportionate and effective way. In populous urban regions with access to sanitation provision, processes can be optimized using emergent technologies to maximize removal of contaminant from excreta prior to reuse. Comparatively, in regions with limited existing capacity for conveyance of excreta to centralized treatment facilities, we suggest efforts should focus on creation of collection facilities (e.g., pit latrines) and decentralized treatment options such as composting systems. Overall, circular economy approaches to sanitation and resource management offer a potential solution to a pressing challenge; however, to ensure this is done in a safe manner, contaminant risks must be mitigated.
Collapse
Affiliation(s)
- Laura J. Carter
- School of
Geography, University of Leeds, Leeds, LS2 9JT, U.K.
- Global Food
and Environment Institute, University of
Leeds, Leeds LS2 9JT, U.K.
| | - Sarah Dennis
- Global Food
and Environment Institute, University of
Leeds, Leeds LS2 9JT, U.K.
- School of
Earth and Environment, University of Leeds, Leeds LS2 9JT, U.K.
| | - Katie Allen
- Global Food
and Environment Institute, University of
Leeds, Leeds LS2 9JT, U.K.
- School of
Civil Engineering, University of Leeds, Leeds LS2 9JT, U.K.
| | - Patrick McKenna
- Global Food
and Environment Institute, University of
Leeds, Leeds LS2 9JT, U.K.
- School of
Earth and Environment, University of Leeds, Leeds LS2 9JT, U.K.
| | - Xiaohui Chen
- School of
Civil Engineering, University of Leeds, Leeds LS2 9JT, U.K.
| | - Tim J. Daniell
- Molecular
Microbiology: Biochemistry to Disease, School of Biosciences, The University of Sheffield, Sheffield S10 2TN, U.K.
| | - Barbara Evans
- School of
Civil Engineering, University of Leeds, Leeds LS2 9JT, U.K.
| | - Jeremy S. Guest
- Department
of Civil & Environmental Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Hongyan Guo
- State
Key
Laboratory of Pollution Control and Resource Reuse, School of the
Environment, Nanjing University, Nanjing 210023, China
| | - Stuart Kirk
- The Schumacher
Institute, The Create Centre, Bristol BS1 6XN, U.K.
| | - Yong-Guan Zhu
- Research
Center for Eco-environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China
| | - Asif Reza Anik
- Department
of Agricultural Economics, Bangabandhu Sheikh
Mujibur Rahman Agricultural University, Salna, Gazipur 1706, Bangladesh
| | - Naqshe Zuhra
- Institute
of Soil and Environmental Sciences, University
of Agriculture, Faisalabad 38000, Pakistan
| | - Steven A. Banwart
- Global Food
and Environment Institute, University of
Leeds, Leeds LS2 9JT, U.K.
- School of
Earth and Environment, University of Leeds, Leeds LS2 9JT, U.K.
| |
Collapse
|
4
|
Almansa X, Starostka R, Raskin L, Zeeman G, De Los Reyes F, Waechter J, Yeh D, Radu T. Anaerobic Digestion as a Core Technology in Addressing the Global Sanitation Crisis: Challenges and Opportunities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19078-19087. [PMID: 37956995 PMCID: PMC10702437 DOI: 10.1021/acs.est.3c05291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/21/2023]
Abstract
Successfully addressing the complex global sanitation problem is a massive undertaking. Anaerobic digestion (AD), coupled with post-treatment, has been identified as a promising technology to contribute to meeting this goal. It offers multiple benefits to the end users, such as the potential inactivation of pathogenic microorganisms in waste and the recovery of resources, including renewable energy and nutrients. This feature article provides an overview of the most frequently applied AD systems for decentralized communities and low- and lower-middle-income countries with an emphasis on sanitation, including technologies for which pathogen inactivation was considered during the design. Challenges to AD use are then identified, such as experience, economics, knowledge/training of personnel and users, and stakeholder analysis. Finally, accelerators for AD implementation are noted, such as the inclusion of field studies in academic journals, analysis of emerging contaminants, the use of sanitation toolboxes and life cycle assessment in design, incorporation of artificial intelligence in monitoring, and expansion of undergraduate and graduate curricula focused on Water, Sanitation, and Hygiene (WASH).
Collapse
Affiliation(s)
| | - Renata Starostka
- Department
of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Lutgarde Raskin
- Department
of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Grietje Zeeman
- Wageningen
University & Research, Wageningen, 6708PB, The Netherlands
| | - Francis De Los Reyes
- Department
of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, North Carolina 27695-7908, United
States
| | | | - Daniel Yeh
- Department
of Civil and Environmental Engineering, University of South Florida, Florida 33620, United States
| | - Tanja Radu
- School
of Architecture, Building and Civil Engineering, Loughborough University, Loughborough LE11 3TU, United
Kingdom
| |
Collapse
|
5
|
Tsangas M, Papamichael I, Banti D, Samaras P, Zorpas AA. LCA of municipal wastewater treatment. CHEMOSPHERE 2023; 341:139952. [PMID: 37625488 DOI: 10.1016/j.chemosphere.2023.139952] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/06/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
Wastewater treatment plants play a significant role in minimizing environmental pollution by treating wastewater and reducing the release of contaminants into the environment. However, their operation can still have an environmental footprint. Therefore, Life Cycle Assessment (LCA) of wastewater treatment provides a comprehensive framework to quantify the environmental impact of plants across various categories. By conducting LCA assessments, the environmental impacts of different scenarios or treatment technologies can be compared, enabling decision-makers to identify the most environmentally friendly options. This information helps in optimizing the plant's design, operation, and resource allocation to minimize their environmental burden. The current research hypothesis was to conduct an LCA of a typical activated sludge plant in Greece, considering three different scenarios in order to provide an innovative take on wastewater treatment plant foam waste and utilize them for the production of biogas through anaerobic digestion. The assessment was carried out using OpenLCA software as well as EcoInvent v3.3. database. The study focused on the impact assessment of five categories (eutrophication potential, acidification potential, global warming potential, ozone depletion, and photochemical ozone creation). The results indicated that the baseline scenario had the highest impact on these categories, followed by Scenario I, while Scenario II had the least impact. Additionally, the cumulative energy demand assessment showed that the baseline scenario required significantly more energy compared to Scenarios I and II. However, Scenario II, which involved fine screens and utilization of biogas, exhibited the highest energy production, thereby reducing the overall energy demands for the system. Based on these findings, it is crucial for wastewater treatment facilities to actively pursue energy demand mitigation strategies by implementing energy-efficient technologies and utilizing biogas. These measures not only contribute to environmental protection but also promote a greener and more sustainable future for WWTP operations.
Collapse
Affiliation(s)
- Michael Tsangas
- Laboratory of Chemical Engineering and Engineering Sustainability, Faculty of Pure and Applied Sciences, Open University of Cyprus, Giannou Kranidioti 89, 2231, Latsia, Nicosia, Cyprus.
| | - Iliana Papamichael
- Laboratory of Chemical Engineering and Engineering Sustainability, Faculty of Pure and Applied Sciences, Open University of Cyprus, Giannou Kranidioti 89, 2231, Latsia, Nicosia, Cyprus.
| | - Dimitra Banti
- International Hellenic University, Department of Food Science and Technology, Laboratory of Technologies of Environmental Protection and Utilization of Food By-Products, 57400, Sindos, Thessaloniki, Greece.
| | - Petros Samaras
- International Hellenic University, Department of Food Science and Technology, Laboratory of Technologies of Environmental Protection and Utilization of Food By-Products, 57400, Sindos, Thessaloniki, Greece.
| | - Antonis A Zorpas
- Laboratory of Chemical Engineering and Engineering Sustainability, Faculty of Pure and Applied Sciences, Open University of Cyprus, Giannou Kranidioti 89, 2231, Latsia, Nicosia, Cyprus.
| |
Collapse
|
6
|
de Simone Souza HH, de Morais Lima P, Medeiros DL, Vieira J, Filho FJCM, Paulo PL, Fullana-I-Palmer P, Boncz MÁ. Environmental assessment of on-site source-separated wastewater treatment and reuse systems for resource recovery in a sustainable sanitation view. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165122. [PMID: 37364844 DOI: 10.1016/j.scitotenv.2023.165122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 06/01/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
Sustainable sanitation solutions are necessary for promoting public health and environmental security. In this study, on-site domestic wastewater treatment (WWT) systems used for households in rural and peri-urban areas of Brazil were compared in different scenarios from a life cycle assessment (LCA) perspective. The evaluated scenarios represented different practices in wastewater management, such as direct discharge into the soil, rudimentary treatment, septic tank, public sewerage system, and source separation of wastewater streams for water, nutrient, and organic matter recovery. The WWT technologies considered in the proposed scenarios of source-separated wastewater streams were as follows: an evapotranspiration tank (TEvap) and composting toilet for blackwater, a modified constructed wetland (EvaTAC) for greywater, and a storage tank for urine. LCA was performed in this study according to the ISO standards to assess the environmental impacts at both midpoint and endpoint levels. The results show that on-site source-separated wastewater treatment systems with resource recovery result in significant reductions in environmental impacts compared to scenarios with precarious conditions or 'end-of-pipe' solutions. For example, regarding the human health damage category, the scenarios involving resource recovery, including systems such as EvaTAC, TEvap, composting toilet, and urine storage tank, demonstrate significantly lower values (-0.0117 to -0.0115 DALY) compared to scenarios with rudimentary cesspits and septic tanks (0.0003 to 0.001 DALY). We conclude that the focus should be beyond mere pollution aspects and instead concentrate on the benefits of the co-products, which are: avoiding the extraction and consumption of valuable and increasingly scarce raw materials, such as potable water, and production of synthetic fertilizer. Furthermore, it is highly recommended that an LCA of sanitation systems synergistically integrates the WWT process, the constructive aspects, and the resource recovery potential.
Collapse
Affiliation(s)
- Hugo Henrique de Simone Souza
- Faculty of Engineering, Architecture and Urbanism, and Geography (FAENG), Federal University of Mato Grosso do Sul (UFMS), Cidade Universitária, 79070-900 Campo Grande, Brazil.
| | - Priscila de Morais Lima
- Department of Energy and Technology, Swedish University of Agricultural Sciences, Undervisningsplan 7H, 756 51 Uppsala, Sweden
| | - Diego Lima Medeiros
- Clean Technologies Network (TECLIM), Federal University of Maranhão (UFMA), MA-140 Highway, km 4, 65800-000 Balsas, Brazil
| | - Jéssica Vieira
- Faculty of Engineering, Architecture and Urbanism, and Geography (FAENG), Federal University of Mato Grosso do Sul (UFMS), Cidade Universitária, 79070-900 Campo Grande, Brazil
| | | | - Paula Loureiro Paulo
- Faculty of Engineering, Architecture and Urbanism, and Geography (FAENG), Federal University of Mato Grosso do Sul (UFMS), Cidade Universitária, 79070-900 Campo Grande, Brazil
| | - Pere Fullana-I-Palmer
- UNESCO Chair in Life Cycle and Climate Change, Universitat Pompeu Fabra (ESCI-UPF), Passeig Pujades n° 1, 08003 Barcelona, Spain
| | - Marc Árpad Boncz
- Faculty of Engineering, Architecture and Urbanism, and Geography (FAENG), Federal University of Mato Grosso do Sul (UFMS), Cidade Universitária, 79070-900 Campo Grande, Brazil
| |
Collapse
|
7
|
Tunay D, Altinbas M, Ozkaya B. Usage of Source Separated Urine for the Biodiesel Production from Algal Biomass. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
8
|
Study on an Integrated LCA-LCC Model for Assessment of Highway Engineering Technical Schemes. BUILDINGS 2022. [DOI: 10.3390/buildings12071050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This paper proposes an integrated life cycle assessment-life cycle cost (LCA-LCC) model of environmental and economic factors for highway engineering technical schemes to problems such as the limitations of single-dimensional assessment, their narrow scope, the difficulty in tracing sources, and the conflicts of various dimensions in existing integrated assessment methods. The latest documents issued by the Ministry of Ecology and Environment and the Ministry of Transport of China used as an integrated assessment database. Air pollution, water pollution, solid waste pollution, noise pollution, energy consumption, pre-project cost, project construction cost, project operation cost, and post-project cost were used to construct the integrated assessment index system of environmental and economic factors. An improved entropy method was adopted in the LCA-LCC model to overcome the problems of ambiguous results of the previous entropy due to too few assessment schemes, the inoperability of the method when it encounters a negative value or zero value, and unbalanced multi-angle assessments. This model was applied to the assessment of two asphalt pavement maintenance schemes of Highway US280 in Alabama and two improvement schemes of high liquid limit soil subgrade of Highway G360 in Hainan. The results show that the LCA-LCC model overcomes the limitations and imbalances of a single LCA or LCC. The gravel improved scheme and the cold recycling scheme were identified through quantitative assessment as more sustainable. This paper can provide a reference for the comprehensive quantitative assessment of environmental and economic benefits of highway engineering technical schemes.
Collapse
|
9
|
Abstract
In recent years, anaerobic membrane bioreactor (AnMBRs) technology, a combination of a biological reactor and a selective membrane process, has received increasing attention from both industrialists and researchers. Undoubtedly, this is due to the fact that AnMBRs demonstrate several unique advantages. Firstly, this paper addresses fundamentals of the AnMBRs technology and subsequently provides an overview of the current state-of-the art in the municipal and domestic wastewaters treatment by AnMBRs. Since the operating conditions play a key role in further AnMBRs development, the impact of temperature and hydraulic retention time (HRT) on the AnMBRs performance in terms of organic matters removal is presented in detail. Although membrane technologies for wastewaters treatment are known as costly in operation, it was clearly demonstrated that the energy demand of AnMBRs may be lower than that of typical wastewater treatment plants (WWTPs). Moreover, it was indicated that AnMBRs have the potential to be a net energy producer. Consequently, this work builds on a growing body of evidence linking wastewaters treatment with the energy-efficient AnMBRs technology. Finally, the challenges and perspectives related to the full-scale implementation of AnMBRs are highlighted.
Collapse
|