1
|
Pan J, Li X, Ding P, Luo H, Cai S, Ge Q, Zhang L, Hu G. Levels, sources, and health risk assessment of phthalate acid esters in indoor dust of various microenvironments in university. CHEMOSPHERE 2024; 364:143182. [PMID: 39182730 DOI: 10.1016/j.chemosphere.2024.143182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/29/2024] [Accepted: 08/23/2024] [Indexed: 08/27/2024]
Abstract
Phthalate acid esters (PAEs), as a common group of plasticizers, are widely present in indoor environments and pose a risk to human health. Indoor dust samples collected from dormitory, classroom, laboratory, and office in several universities in China, were analyzed for seven types of PAEs. The total concentrations of seven PAEs (Σ7PAEs) ranged from 4.87 to 360 μg/g, with a median concentration of 51 μg/g, which is lower than that reported by other studies. Using the median concentration of Σ7PAEs as a metric, we assessed the levels of contamination in different microenvironments, resulting in the following ranking: dormitory > classroom > laboratory > office. There are significant differences in the levels of individual PAEs in different microenvironments. Radiation from sunlight, ventilation rates, cleaning frequency, and sprays were influential factors for the concentrations of individual PAEs in indoor dust. The indoor environmental conditions and consumption patterns profoundly affect PAEs levels. The sources of PAEs in classroom and office were more complex than in dormitory and laboratory. Daily intakes of PAEs were used to calculate carcinogenic and non-carcinogenic human risk for males and females, indicating a low health risk to humans. This is the first study to assess the risk of PAEs in university microenvironments and provides a valuable reference for further research.
Collapse
Affiliation(s)
- Jun Pan
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing, 404130, China
| | - Xin Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Ping Ding
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Haojie Luo
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Sha Cai
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing, 404130, China
| | - Qing Ge
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Liuyi Zhang
- School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing, 404130, China
| | - Guocheng Hu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing, 404130, China.
| |
Collapse
|
2
|
Tian J, Qian Y, He X, Qi R, Lei J, Wang Q, Feng C. Influencing factors and risk assessment of phthalate ester pollution in the agricultural soil on a tropical island. CHEMOSPHERE 2024; 357:142041. [PMID: 38636919 DOI: 10.1016/j.chemosphere.2024.142041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/01/2024] [Accepted: 04/12/2024] [Indexed: 04/20/2024]
Abstract
Phthalate esters (PAEs) are widely prevalent in agricultural soil and pose potential risks to crop growth and food safety. However, the current understanding of factors influencing the behavior and fate of PAEs is limited. This study conducted a large-scale investigation (106 sites in 18 counties with 44 crop types) of 16 types of PAEs on a tropical island. Special attention was given to the impacts of land use type, soil environmental conditions, agricultural activity intensity, and urbanization level. The health risks to adults and children from soil PAEs via multiple routes of exposure were also evaluated. The results showed that the mean concentration of PAEs was 451.87 ± 284.08 μg kg-1 in the agricultural soil. Elevated agricultural and urbanization activities contributed to more pronounced contamination by PAEs in the northern and southern regions. Land use type strongly affected the concentration and composition of PAEs in agricultural soils, and the soil PAE concentration decreased in the order of vegetable fields, orchards, paddy fields, and woodlands. In paddy fields, di-isobutyl phthalate and di-n-butyl phthalate made more substantial contributions to the process through which the overlying water inhibited volatilization. Soil microplastic abundance, pesticide usage, crop yield, gross domestic product, and distance to the nearest city were calculated to be the major factors influencing the concentration and distribution of PAEs. Soil pH, organic matter content, microplastic abundance and the fertilizer application rate can affect the adsorption of PAEs by changing the soil environment. A greater risk was detected in the northern region and paddy fields due to the higher soil PAE concentrations and the dietary structure of the population. This study reveals important pathways influencing the sources and fate of PAE pollution in agricultural soils, providing fundamental data for controlling PAE contamination.
Collapse
Affiliation(s)
- Jinfei Tian
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Yibin Qian
- Hainan Research Academy of Environmental Sciences, 571127, Haikou, PR China; National Plot Zone for Ecological Conservation (Hainan) Research Center, 571127, Haikou, PR China
| | - Xiaokang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Ruifang Qi
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Jinming Lei
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Qixuan Wang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Chenghong Feng
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing, 100875, PR China.
| |
Collapse
|
3
|
Du H, Cheng JL, Li ZY, Zhong HN, Wei S, Gu YJ, Yao CC, Zhang M, Cai QY, Zhao HM, Mo CH. Molecular insights into the catabolism of dibutyl phthalate in Pseudomonas aeruginosa PS1 based on biochemical and multi-omics approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171852. [PMID: 38518818 DOI: 10.1016/j.scitotenv.2024.171852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
A comprehensive understanding of the molecular mechanisms underlying microbial catabolism of dibutyl phthalate (DBP) is still lacking. Here, we newly isolated a bacterial strain identified as Pseudomonas aeruginosa PS1 with high efficiency of DBP degradation. The degradation ratios of DBP at 100-1000 mg/L by this strain reached 80-99 % within 72 h without a lag phase. A rare DBP-degradation pathway containing two monobutyl phthalate-catabolism steps was proposed based on intermediates identified by HPLC-TOF-MS/MS. In combination with genomic and transcriptomic analyses, we identified 66 key genes involved in DBP biodegradation and revealed the genetic basis for a new complete catabolic pathway from DBP to Succinyl-CoA or Acetyl-CoA in the genus Pseudomonas for the first time. Notably, we found that a series of homologous genes in Pht and Pca clusters were simultaneously activated under DBP exposure and some key intermediate degradation related gene clusters including Pht, Pca, Xyl, Ben, and Cat exhibited a favorable coexisting pattern, which contributed the high-efficient DBP degradation ability and strong adaptability to this strain. Overall, these results broaden the knowledge of the catabolic diversity of DBP in microorganisms and enhance our understanding of the molecular mechanism underlying DBP biodegradation.
Collapse
Affiliation(s)
- Huan Du
- Guangzhou Customs Technology Center, No. 66 Huacheng Avenue, Tianhe District, Guangzhou 510623, China; Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Center for Statistical Science, Tsinghua University, Beijing 100084, China
| | - Ji-Liang Cheng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Zhi-Yong Li
- Guangzhou Customs Technology Center, No. 66 Huacheng Avenue, Tianhe District, Guangzhou 510623, China
| | - Huai-Ning Zhong
- Guangzhou Customs Technology Center, No. 66 Huacheng Avenue, Tianhe District, Guangzhou 510623, China
| | - Shuang Wei
- Guangzhou Customs Technology Center, No. 66 Huacheng Avenue, Tianhe District, Guangzhou 510623, China
| | - Yu-Juan Gu
- Guangzhou Customs Technology Center, No. 66 Huacheng Avenue, Tianhe District, Guangzhou 510623, China
| | - Can-Can Yao
- Guangzhou Customs Technology Center, No. 66 Huacheng Avenue, Tianhe District, Guangzhou 510623, China
| | - Miaoyue Zhang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
4
|
Fan X, Zhang D, Hou T, Zhang Q, Tao L, Bian C, Wang Z. Mitochondrial DNA Stress-Mediated Health Risk to Dibutyl Phthalate Contamination on Zebrafish ( Danio rerio) at Early Life Stage. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7731-7742. [PMID: 38662601 DOI: 10.1021/acs.est.3c10175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Plastics contaminations are found globally and fit the exposure profile of the planetary boundary threat. The plasticizer of dibutyl phthalate (DBP) leaching has occurred and poses a great threat to human health and the ecosystem for decades, and its toxic mechanism needs further comprehensive elucidation. In this study, environmentally relevant levels of DBP were used for exposure, and the developmental process, oxidative stress, mitochondrial ultrastructure and function, mitochondrial DNA (mtDNA) instability and release, and mtDNA-cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) signaling pathway with inflammatory responses were measured in zebrafish at early life stage. Results showed that DBP exposure caused developmental impairments of heart rate, hatching rate, body length, and mortality in zebrafish embryo. Additionally, the elevated oxidative stress damaged mitochondrial ultrastructure and function and induced oxidative damage to the mtDNA with mutations and instability of replication, transcription, and DNA methylation. The stressed mtDNA leaked into the cytosol and activated the cGAS-STING signaling pathway and inflammation, which were ameliorated by co-treatment with DBP and mitochondrial reactive oxygen species (ROS) scavenger, inhibitors of cGAS or STING. Furthermore, the larval results suggest that DBP-induced mitochondrial toxicity of energy disorder and inflammation were involved in the developmental defects of impaired swimming capability. These results enhance the interpretation of mtDNA stress-mediated health risk to environmental contaminants and contribute to the scrutiny of mitochondrial toxicants.
Collapse
Affiliation(s)
- Xiaoteng Fan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dingfu Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tingting Hou
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qianqing Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lu Tao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chongqian Bian
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zaizhao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
5
|
Gholaminejad A, Mehdizadeh G, Dolatimehr A, Arfaeinia H, Farjadfard S, Dobaradaran S, Bonyadi Z, Ramavandi B. Phthalate esters pollution in the leachate, soil, and water around a landfill near the sea, Iran. ENVIRONMENTAL RESEARCH 2024; 248:118234. [PMID: 38272296 DOI: 10.1016/j.envres.2024.118234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/09/2023] [Accepted: 01/16/2024] [Indexed: 01/27/2024]
Abstract
This investigation aimed to scrutinize the level of phthalate esters (PEs) in the landfill leachate of a coastal city in the north of the Persian Gulf and the sensitive ecosystem (soil and water) around it. Soil (two depths) and water samples were prepared from 5 stations in wet and dry seasons. The studied landfill leachate contained 114-303 μg/L of phthalates. The highest concentration of phthalates was related to bis (2-ethylhexyl) phthalate (3257 ng/g) in the wet season at surface soil (0-5 cm) in the landfill site, while the lowest one (6 ng/g) belonged to dimethyl phthalate at sub-surface soil at 700 m from the landfill in the dry season. A significant change in the level of Σ6PEs in the dry (303 μg/L) and wet (114 μg/L) seasons (P ≤ 0.05) was observed for water samples. The PE concentrations in wet times were higher in all soil depths than in dry times. With increasing depth, the content of phthalates decreased in all studied environments. A direct relationship was observed between the phthalates concentration and the pH value of leachate/water and soil. The PEs concentration was linked to electrical conductivity (leachate: R2 = 0.65, P < 0.01 and surface soil: R2 = 0.77, P < 0.05) and the soil organic content. The ecological risk of di-n-butyl phthalate, benzyl butyl phthalate, bis (2-ethylhexyl) phthalate, and di-n-octyl phthalate in the wet season was greater than one. The results showed that significant levels of phthalate esters are released from landfills to the surrounding environment, which requires adequate measures to maintain the health of the ecosystem and nearby residents.
Collapse
Affiliation(s)
- Ali Gholaminejad
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Ghazal Mehdizadeh
- Division of Atmospheric Science, University of Nevada, Reno, United States
| | - Armin Dolatimehr
- Civil and Environmental Engineering Department, Istanbul Technical University, Istanbul, Turkey
| | - Hosein Arfaeinia
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Sima Farjadfard
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Sina Dobaradaran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Ziaeddin Bonyadi
- Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahman Ramavandi
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran.
| |
Collapse
|
6
|
Gong X, Xiong L, Xing J, Deng Y, Qihui S, Sun J, Qin Y, Zhao Z, Zhang L. Implications on freshwater lake-river ecosystem protection suggested by organic micropollutant (OMP) priority list. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132580. [PMID: 37738851 DOI: 10.1016/j.jhazmat.2023.132580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/06/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
Lake-river complex systems represent interconnected ecosystems wherein inflow rivers significantly influence the migration of terrigenous contaminants, particularly organic micropollutants (OMPs), into lakes. Given the extensive array of OMPs, screening for those with the highest potential hazard is crucial for safeguarding freshwater lake-river ecosystems. In this study, an optimized multi-criteria scoring method was applied to prioritize OMPs. Flux estimation was then performed to identify the contamination load contributed by the Le'an River to Poyang Lake. Higher concentrations of phthalate esters (PAEs) were detected in the lake-river system, ranging from 1154.5 to 22,732.8 ng/L, followed by antibiotics and polycyclic aromatic hydrocarbons (PAHs), while historical pollutant residues were comparably lower. Based on the prioritization methodology, 27 compounds, encompassing eight PAEs, six organochlorine pesticides (OCPs), six polychlorinated biphenyls (PCBs), five PAHs and two antibiotics, emerged as priority pollutants. Multiple risk assessments revealed that priority PAEs posed relatively high ecological and human health risks; concurrently, the annual fluxes of individual priority PAEs into the lake all exceeded 1000 kg, with DBP, DEHP and BBP fluxes reaching 18,352, 10,429, and 7825 kg, respectively. This research offers valuable insights stemming from OMP prioritization to aid in the conservation of freshwater lake ecosystems, particularly concerning lake-river system integrity.
Collapse
Affiliation(s)
- Xionghu Gong
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Lili Xiong
- Jiangxi Hydrological Monitoring Center, Hydrology Bureau of Jiangxi Province, Nanchang 330002, PR China
| | - Jiusheng Xing
- Jiangxi Hydrological Monitoring Center, Hydrology Bureau of Jiangxi Province, Nanchang 330002, PR China
| | - Yanqing Deng
- Jiangxi Hydrological Monitoring Center, Hydrology Bureau of Jiangxi Province, Nanchang 330002, PR China
| | - Su Qihui
- Xinjiang and Raohe Hydrology and Water Resources Monitoring Center, Hydrology Bureau of Jiangxi Province, Nanchang 330002, PR China
| | - Jing Sun
- Xinjiang and Raohe Hydrology and Water Resources Monitoring Center, Hydrology Bureau of Jiangxi Province, Nanchang 330002, PR China
| | - Yu Qin
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Zhonghua Zhao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China.
| | - Lu Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China.
| |
Collapse
|
7
|
Sánchez-Resino E, Marquès M, Gutiérrez-Martín D, Restrepo-Montes E, Martínez MÁ, Salas-Huetos A, Babio N, Salas-Salvadó J, Gil-Solsona R, Gago-Ferrero P. Exploring the Occurrence of Organic Contaminants in Human Semen through an Innovative LC-HRMS-Based Methodology Suitable for Target and Nontarget Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19236-19252. [PMID: 37934628 PMCID: PMC10722465 DOI: 10.1021/acs.est.3c04347] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 11/09/2023]
Abstract
Understanding the potential impact of organic contaminants on male fertility is crucial, yet limited studies have examined these chemicals in semen, with most focusing on urine and blood. To address this gap, we developed and validated a robust LC-HRMS methodology for semen analysis, with a focus on polar and semipolar chemicals. Our methodology enables the quantitative (or semiquantitative) analysis of >2000 chemicals being compatible with suspect and nontarget strategies and providing unprecedented insights into the occurrence and potential bioaccumulation of diverse contaminants in this matrix. We comprehensively analyzed exogenous organic chemicals and associated metabolites in ten semen samples from Spanish participants collected in an area with a large presence of the chemical industry included in the LED-FERTYL Spanish study cohort. This investigation revealed the presence of various contaminants in semen, including plastic additives, PFAS, flame retardants, surfactants, and insecticides. Notably, prevalent plastic additives such as phthalic acid esters and bisphenols were identified, indicating potential health risks. Additionally, we uncovered previously understudied chemicals like the tire additive 2-mercaptobenzothiazole and specific organophosphate flame retardants. This study showcases the potential of our methodology as a valuable tool for large-scale cohort studies, providing insights into the association between contaminant exposure and the risk of male fertility impairments.
Collapse
Affiliation(s)
- Elena Sánchez-Resino
- Laboratory
of Toxicology and Environmental Health, School of Medicine, Universitat Rovira i Virgili, IISPV, Sant LLorenç 21, Reus, Catalonia 43201, Spain
- Center
of Environmental, Food and Toxicological Technology - TecnATox, Universitat Rovira i Virgili, Reus 43201, Spain
| | - Montse Marquès
- Laboratory
of Toxicology and Environmental Health, School of Medicine, Universitat Rovira i Virgili, IISPV, Sant LLorenç 21, Reus, Catalonia 43201, Spain
- Center
of Environmental, Food and Toxicological Technology - TecnATox, Universitat Rovira i Virgili, Reus 43201, Spain
| | - Daniel Gutiérrez-Martín
- Department
of Environmental Chemistry, Institute of Environmental Assessment
and Water Research − Severo Ochoa Excellence Center (IDAEA), Spanish Council of Scientific Research (CSIC), Barcelona 08034, Spain
- Institute
of Sustainable Processes (ISP) and Department of Analytical Chemistry,
Faculty of Sciences, University of Valladolid
(UVa), Valladolid 47011, Spain
| | - Esteban Restrepo-Montes
- Department
of Environmental Chemistry, Institute of Environmental Assessment
and Water Research − Severo Ochoa Excellence Center (IDAEA), Spanish Council of Scientific Research (CSIC), Barcelona 08034, Spain
| | - María Ángeles Martínez
- Departament
de Bioquímica i Biotecnologia, Grup ANut-DSM, Institut d’Investigació
Sanitària Pere Virgili, CIBEROBN, Fisiopatologia de la Obesidad
y Nutrición (ISCIII), Universitat
Rovira i Virgili, Reus 43201, Spain
| | - Albert Salas-Huetos
- Departament
de Ciències Mèdiques Bàsiques, Unitat de Medicina
Preventiva, Grup ANut-DSM, Institut d’Investigació Sanitària
Pere Virgili, CIBEROBN, Fisiopatologia de la Obesidad y Nutrición
(ISCIII), Universitat Rovira i Virgili, Reus 43201, Spain
- Department
of Nutrition, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts 02115, United States
| | - Nancy Babio
- Departament
de Bioquímica i Biotecnologia, Grup ANut-DSM, Institut d’Investigació
Sanitària Pere Virgili, CIBEROBN, Fisiopatologia de la Obesidad
y Nutrición (ISCIII), Universitat
Rovira i Virgili, Reus 43201, Spain
| | - Jordi Salas-Salvadó
- Departament
de Bioquímica i Biotecnologia, Grup ANut-DSM, Institut d’Investigació
Sanitària Pere Virgili, CIBEROBN, Fisiopatologia de la Obesidad
y Nutrición (ISCIII), Universitat
Rovira i Virgili, Reus 43201, Spain
| | - Rubén Gil-Solsona
- Department
of Environmental Chemistry, Institute of Environmental Assessment
and Water Research − Severo Ochoa Excellence Center (IDAEA), Spanish Council of Scientific Research (CSIC), Barcelona 08034, Spain
| | - Pablo Gago-Ferrero
- Department
of Environmental Chemistry, Institute of Environmental Assessment
and Water Research − Severo Ochoa Excellence Center (IDAEA), Spanish Council of Scientific Research (CSIC), Barcelona 08034, Spain
| |
Collapse
|
8
|
Wang D, Zhu R, Lou J, Baek N, Fan X. Plasticizer phthalate esters degradation with a laccase from Trametes versicolor: effects of TEMPO used as a mediator and estrogenic activity removal. Biodegradation 2023; 34:431-444. [PMID: 37017762 DOI: 10.1007/s10532-023-10030-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 03/24/2023] [Indexed: 04/06/2023]
Abstract
Phthalate esters (PAEs) are toxic and persistent chemicals that are ubiquitous in the environment and have attracted worldwide attention due to their threats to the environment and human health. Dimethyl phthalate (DMP) is a relatively simple structure and one of the most observed PAEs in the environment. This study investigated the degradation of the DMP using Trametes versicolor laccase and its laccase-mediator systems. The degradation effect of laccase alone on DMP was poor, while the laccase-mediator systems can effectively enhance the degradation efficiency. Within 24 h, 45% of DMP (25 mg/L) was degraded in the presence of 0.8 U/mL laccase and 0.053 mM 2, 2, 6, 6-tetramethylpiperidine-1-oxyl (TEMPO). A certain concentration (1 mM) of metal ions Al3+, Cu2+ or Ca2+ can positively promote DMP degradation with the laccase-TEMPO system. Moreover, the structure of PAEs also had a great influence on the degradation efficiency. Higher degradation efficiencies were observed when incubating PAEs with short alkyl side chains by the laccase-TEMPO system compared to that with long alkyl side chains. Additionally, the branched-chain PAEs had a better degradation effect than the straight-chain. The estrogenic activity of the DMP solution after reaction was much smaller than that of the original solution. Finally, transformation products ortho-hydroxylated DMP and phthalic acid were identified by GC-MS and the possible degradation pathway was proposed. This study verifies the feasibility of the laccase-TEMPO system to degrade PAEs and provides a reference for exploring more potential value of laccase.
Collapse
Affiliation(s)
- Dan Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Ruofei Zhu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Jiangfei Lou
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Nawon Baek
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Xuerong Fan
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
9
|
Wu Q, Li G, Zhao CY, Na XL, Zhang YB. Association between phthalate exposure and obesity risk: A meta-analysis of observational studies. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 102:104240. [PMID: 37549759 DOI: 10.1016/j.etap.2023.104240] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/09/2023]
Abstract
According to epidemiological studies, phthalate exposure is associated with an increased risk of obesity in children and adults; however, these observations remain debatable. Therefore, we performed a systematic review and meta-analysis of the current literature to explore the effects of phthalate exposure on obesity. A systematic search was performed from inception to July 2022 in PubMed, EMBASE, Scopus, and Web of Science. Quality assessment was completed using criteria modified from Newcastle-Ottawa Scale (NOS) for the included studies. Meta-analysis showed that childhood exposure to MnBP, MBP, MEP, MiBP, and MECPP was positively correlated with obesity. In adults, MMP, MEP, and MiBP were positively correlated with adult abdominal obesity, while MEHHP, MECPP, and MCOP were positively correlated with adult general obesity. Subgroup analysis revealed that the positive correlation was particularly significant in women, as well as in Europe and the United States. Overall, a substantial association exists between phthalate exposure and obesity in children and adults. Sex and study site may provide limited sources of heterogeneity.
Collapse
Affiliation(s)
- Qian Wu
- Department of Environmental Hygiene, Public Health College, Harbin Medical University, Harbin, Heilongjiang Province 150086, China; Yichang Center for Disease Control and Prevention, Yichang, Hubei Province 443000, China
| | - Gang Li
- Department of Environmental Hygiene, Public Health College, Harbin Medical University, Harbin, Heilongjiang Province 150086, China; Department of Preventive Medicine, Public Health College, Qiqihar Medical University, Qiqihar, Heilongjiang Province 161006, China
| | - Chen-Yang Zhao
- Department of Environmental Hygiene, Public Health College, Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Xiao-Lin Na
- Department of Environmental Hygiene, Public Health College, Harbin Medical University, Harbin, Heilongjiang Province 150086, China.
| | - Yun-Bo Zhang
- Department of Environmental Hygiene, Public Health College, Harbin Medical University, Harbin, Heilongjiang Province 150086, China.
| |
Collapse
|
10
|
Hou Y, Tu M, Li C, Liu X, Wang J, Wei C, Zheng X, Wu Y. Risk Assessment of Phthalate Esters in Baiyangdian Lake and Typical Rivers in China. TOXICS 2023; 11:180. [PMID: 36851055 PMCID: PMC9962510 DOI: 10.3390/toxics11020180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/05/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Phthalate esters (PAEs) are frequently tracked in water environments worldwide. As a typical class of endocrine disruptor chemicals (EDCs), PAEs posed adverse effects on aquatic organisms at low concentration. Thus, they have attracted wide attention in recent years. In the present study, the concentrations of seven typical PAEs from 30 sampling sites in Baiyangdian Lake were measured, and the environmental exposure data of PAEs were gathered in typical rivers in China. Then, based on the aquatic life criteria (ALCs) derived from the reproductive toxicity data of aquatic organisms, two risk assessment methods, including hazard quotient (HQ) and probabilistic ecological risk assessment (PERA), were adopted to evaluate the ecological risks of PAEs in water. The sediment quality criteria (SQCs) of DEHP, DBP, BBP, DIBP and DEP were deduced based on the equilibrium partitioning method. Combined with the gathered environmental exposure data of seven PAEs in sediments from typical rivers in China, the ecological risk assessments of five PAEs in sediment were conducted only by the HQ method. The results of ecological risk assessment showed that in terms of water, DBP and DIBP posed low risk, while the risk of DEHP in Baiyangdian Lake cannot be ignored and should receive attention. In typical rivers in China, BBP and DEP posed no risk, while DIBP and DBP posed potential risk. Meanwhile, DEHP posed a high ecological risk. As far as sediment is concerned, DBP posed a high risk in some typical rivers in China, and the other rivers had medium risk. DEHP posed a high risk only in a few rivers and low to medium risk in others. This study provides an important reference for the protection of aquatic organisms and the risk management of PAEs in China.
Collapse
Affiliation(s)
- Yin Hou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Mengchen Tu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Cheng Li
- Institute of Green Development, Hebei Provincial Academy of Environmental Sciences, Shijiazhuang 050037, China
| | - Xinyu Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jing Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Chao Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xin Zheng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yihong Wu
- Institute of Green Development, Hebei Provincial Academy of Environmental Sciences, Shijiazhuang 050037, China
| |
Collapse
|
11
|
GC-MS Determination of Undeclared Phthalate Esters in Commercial Fragrances: Occurrence, Profiles and Assessment of Carcinogenic and Non-Carcinogenic Risk Associated with Their Consumption among Adult Consumers. Molecules 2023; 28:molecules28041689. [PMID: 36838677 PMCID: PMC9962674 DOI: 10.3390/molecules28041689] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Phthalates are chemicals that are extensively used in the manufacturing of cosmetic products. The occurrence of phthalate esters in personal care products may pose adverse effects on consumers' health. In this work, a simple, fast and reliable GC-MS method was developed and validated for concurrent determination of phthalate esters in fragrances. Simple procedures were employed for sample preparation and clean up. The recoveries achieved were in the range of 94.9% to 105.6% with RSD ≤ 4.06. The detection limits were in the range of 0.0010 to 0.0021 µg/mL. The GC-MS method was utilized to investigate the occurrence of phthalate esters in different brands of perfumes sold in the Saudi Arabian market. Diethyl phthalate was detected in all analyzed samples, with a maximum concentration of 5766 µg/mL, and di (2-ethylhexyl) phthalate was detected in the majority of the analyzed samples (95%), with a mean concentration of 55.9 µg/mL and a highest concentration of 377.7 µg/mL. Additionally, the exposure to phthalate esters due to the consumption of perfumes was investigated among the adult Saudi population for the first time. It was found that the systemic exposure dose, measured at mean concentrations, ranged from 4.59 × 10-4 to 4.29 × 10-2 (mg/kg/day) and from 5.00 × 10-4 to 4.68 × 10-2 (mg/kg/day) for male and female users, respectively. Moreover, the non-carcinogenic risk of the investigated phthalate esters and the carcinogenic risk of DEHP were also evaluated. The non-carcinogenic risk values of the detected phthalate esters were greater than 100, which indicates that exposure to these phthalate esters is unlikely to produce non-carcinogenic health effects to consumers. However, at maximum DEHP concentrations, the carcinogenic risk values were 5.49 × 10-5 for male users and 5.98 × 10-5 for female users, which indicates the possibility of DEHP to pose a carcinogenic health effect if present at high levels. Regular monitoring of undeclared chemicals such as phthalate esters in personal care products marketed in Saudi Arabia is extremely important to ensure consumers' safety. To the best of the authors' knowledge, this is the first study to assess the health risk associated with consumption of perfumes in Saudi Arabia.
Collapse
|
12
|
Miranowicz-Dzierżawska K, Zapór L, Skowroń J, Chojnacka-Puchta L, Sawicka D. The effects of co-exposure to methyl paraben and dibutyl phthalate on cell line derived from human skin. Toxicol Res 2022; 39:71-89. [PMID: 36721678 PMCID: PMC9839924 DOI: 10.1007/s43188-022-00151-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 07/14/2022] [Accepted: 08/09/2022] [Indexed: 02/03/2023] Open
Abstract
Data on the cumulative effects of chemical substances are necessary for the proper risk assessment, but their availability is still insufficient. The aim of the study was to evaluate the cytotoxic effect of methyl paraben (MePB) and dibutyl phthalate (DBP) on the cells of the skin line (A431) and to compare the cytotoxic effects of the tested substances after single application to A431 cells with the effects of an equimolar/equitoxic (1:1) binary mixture of these compounds as well as their mixtures in ratio 1:3: and 3:1. On the basis of the obtained results, it was found that there were interactions between the tested compounds in terms of cytotoxic effect on A431, assessed on the basis of metabolic activity of cells (MTT test) and integrity of their cell membranes (NRU test). The obtained values of synergy coefficients (SI) and isobolographic analysis indicate that between the tested chemicals in a two-component equimolar mixture (1:1) there is a synergism of action, which, at a high DBP content in the mixture (> 50%) turned into antagonism. Observations using a holotomographic microscope show morphological changes in A431 cells after exposure to both DBP and MePB separately and binary mixtures of these compounds, compared to untreated cells. The observed changes in cell morphology seem to be more pronounced when the cells are exposed to the binary mixtures of DBP and MePB than when exposed to these substances individually, which may confirm the synergy of cytotoxic activity between them (this phenomenon was observed for the higher of the tested concentrations in all tested proportions). It is important to consider such effects when considering the effects of cumulative exposure in the risk assessment in order not to underestimate the risk of adverse effects associated with exposure to chemical mixtures.
Collapse
Affiliation(s)
| | - Lidia Zapór
- Central Institute for Labour Protection-National Research Institute, Czerniakowska 16, 00-701 Warsaw, Poland
| | - Jolanta Skowroń
- Central Institute for Labour Protection-National Research Institute, Czerniakowska 16, 00-701 Warsaw, Poland
| | - Luiza Chojnacka-Puchta
- Central Institute for Labour Protection-National Research Institute, Czerniakowska 16, 00-701 Warsaw, Poland
| | - Dorota Sawicka
- Central Institute for Labour Protection-National Research Institute, Czerniakowska 16, 00-701 Warsaw, Poland
| |
Collapse
|
13
|
Biale G, La Nasa J, Mattonai M, Corti A, Castelvetro V, Modugno F. Seeping plastics: Potentially harmful molecular fragments leaching out from microplastics during accelerated ageing in seawater. WATER RESEARCH 2022; 219:118521. [PMID: 35526427 DOI: 10.1016/j.watres.2022.118521] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
Microplastics are the particulate plastic debris found almost everywhere as environmental contaminants. They are not chemically stable persistent pollutants, but reactive materials. In fact, synthetic polymers exposed to the environment undergo chemical and physical degradation processes which lead not only to mechanical but also molecular fragmentation, releasing compounds that are potentially harmful for the environment and human health. We carried out accelerated photo-oxidative ageing of four reference microplastics (low- and high-density polyethylene, polypropylene, and polystyrene) directly in artificial seawater. We then made a characterization at the molecular level along with a quantification of the chemical species leached into water. Gas chromatography/mass spectrometry analyses performed after selective extraction and derivatization enabled us to identify more than 60 different compounds. Analysis of the leachates from the three polyolefins revealed that the main degradation products were mono- and dicarboxylic acids, along with linear and branched hydroxy acids. The highest amount of leached degradation species was observed for polystyrene, with benzoic acid and phenol derivatives as the most abundant, along with oligomeric styrene derivatives. The results from reference microplastics were then compared with those obtained by analyzing leachates in artificial seawater from aged plastic debris collected in a natural environment. The differences observed between the reference and the environmental plastic leachates mainly concerned the relative abundances of the chemical species detected, with the environmental samples showing higher amounts of dicarboxylic acids and oxidized species.
Collapse
Affiliation(s)
- Greta Biale
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Jacopo La Nasa
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy; National Interuniversity Consortium of Materials Science and Technology (INSTM), Florence, Italy.
| | - Marco Mattonai
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Andrea Corti
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy; CISUP Center for the Integration of Scientific Instruments of the University of Pisa, Pisa, Italy
| | - Valter Castelvetro
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy; CISUP Center for the Integration of Scientific Instruments of the University of Pisa, Pisa, Italy
| | - Francesca Modugno
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy; CISUP Center for the Integration of Scientific Instruments of the University of Pisa, Pisa, Italy
| |
Collapse
|