1
|
Wang Y, Qiao M, Yang H, Chen Y, Jiao B, Liu S, Duan A, Wu S, Wang H, Yu C, Chen X, Duan H, Dai Y, Li B. Investigating the relationship of co-exposure to multiple metals with chronic kidney disease: An integrated perspective from epidemiology and adverse outcome pathways. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135844. [PMID: 39357351 DOI: 10.1016/j.jhazmat.2024.135844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/01/2024] [Accepted: 09/13/2024] [Indexed: 10/04/2024]
Abstract
Systematic studies on the associations between co-exposure to multiple metals and chronic kidney disease (CKD), as well as the underlying mechanisms, remain insufficient. This study aimed to provide a comprehensive perspective on the risk of CKD induced by multiple metal co-exposures through the integration of occupational epidemiology and adverse outcome pathway (AOP). The study participants included 401 male mine workers whose blood metal, β2-microglobulin (β2-MG), and cystatin C (Cys-C) levels were measured. Generalized linear models (GLMs), quantile g-computation models (qgcomp), least absolute shrinkage and selection operator (LASSO), and bayesian kernel machine regression (BKMR) were utilized to identify critical nephrotoxic metals. The mean concentrations of lead, cadmium, mercury, arsenic, and manganese were 191.93, 3.92, 4.66, 3.11, 11.35, and 16.33 µg/L, respectively. GLM, LASSO, qgcomp, and BKMR models consistently identified lead, cadmium, mercury, and arsenic as the primary contributors to kidney toxicity. Based on our epidemiological analysis, we used a computational toxicology method to construct a chemical-genetic-phenotype-disease network (CGPDN) from the Comparative Toxicogenomics Database (CTD), DisGeNET, and GeneCard databases, and further linked key events (KEs) related to kidney toxicity from the AOP-Wiki and PubMed databases. Finally, an AOP framework of multiple metals was constructed by integrating the common molecular initiating events (reactive oxygen species) and KEs (MAPK signaling pathway, oxidative stress, mitochondrial dysfunction, DNA damage, inflammation, hypertension, cell death, and kidney toxicity). This is the first AOP network to elucidate the internal association between multiple metal co-exposures and CKD, providing a crucial basis for the risk assessment of multiple metal co-exposures.
Collapse
Affiliation(s)
- Yican Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Mengyun Qiao
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Haitao Yang
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China; Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Yuanyuan Chen
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Bo Jiao
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Shuai Liu
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Airu Duan
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Siyu Wu
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Haihua Wang
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Changyan Yu
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Xiao Chen
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Huawei Duan
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Yufei Dai
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China.
| | - Bin Li
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China.
| |
Collapse
|
2
|
Ma H, Deng W, Liu J, Ding X. Association between urinary phthalate metabolites and Anemia in US adults. Sci Rep 2024; 14:21041. [PMID: 39251808 PMCID: PMC11385222 DOI: 10.1038/s41598-024-72147-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 09/04/2024] [Indexed: 09/11/2024] Open
Abstract
Initial research indicates a possible connection between exposure to phthalates and the development of anemia. To fill the gap in epidemiological data, our study utilized data from across the United States, representative on a national scale, to evaluate the association between the concentration of phthalate metabolites in urine and both anemia and iron levels. We gathered data on 11,406 individuals from the National Health and Nutrition Examination Survey (NHANES) database, spanning 2003-2018. We conducted logistic and linear regression analyses, adjusted for potential confounding factors, to evaluate the correlations between different phthalate metabolites and anemia, as well as serum iron levels, including gender-stratified analysis. Most urinary phthalate metabolites were positively correlated with an increased risk of anemia, and the majority were negatively correlated with serum iron levels. The study revealed that for every unit increase in ln-transformed metabolite concentrations, the odds ratios (ORs) for anemia increased to varying degrees, depending on the phthalate: Monobutyl phthalate (MBP) at 1.08 (95% CI 1.01-1.17, P = 0.0314), mono(3-carboxypropyl) phthalate (MCPP) at 1.17 (95% CI 1.10-1.24, P < 0.0001), mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) at 1.08 (95% CI 1.02-1.15, P = 0.0153), mono(2-ethyl-5-oxohexyl) phthalate (MEOHP) at 1.14 (95% CI 1.07-1.21, P < 0.0001), mono(2-ethyl-5-carboxypentyl) phthalate (MECPP) at 1.11 (95% CI 1.03-1.18, P = 0.0030), monocarboxynonyl phthalate (MCNP) at 1.11 (95% CI 1.03-1.19, p = 0.0050), and monocarboxyoctyl phthalate (MCOP) at 1.13 (95% CI 1.07-1.19, P < 0.0001). Increased levels of MBP, MEHP, MBzP, MCPP, MEHHP, MEOHP, MIBP, MECPP, MCNP, and MCOP were linked with changes in serum iron levels, ranging from - 0.99 µg/dL (95% CI - 1.69 to - 0.29) to - 3.72 µg/dL (95% CI - 4.32 to - 3.11). Mixed-exposure analysis shows consistency with single-exposure model. Further mediation analysis showed that the association between single urinary phthalates and the risk of anemia was mediated by serum iron with a mediation ratio of 24.34-95.48% (P < 0.05). The presence of phthalate metabolites in urine shows a positive correlation with the prevalence of anemia, which was possibly and partly mediated by iron metabolism. Nonetheless, to confirm a definitive causal link and comprehend the underlying mechanisms of how phthalate exposure influences anemia, additional longitudinal and experimental research is required.
Collapse
Affiliation(s)
- Huimiao Ma
- Beijing University of Chinese Medicine, Beijing, 100029, China
- Department of Hematology, Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Wenqi Deng
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Junxia Liu
- Department of Hematology, Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100078, China.
| | - Xiaoqing Ding
- Department of Hematology, Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100078, China.
| |
Collapse
|
3
|
Chen Q, Deng Q, Liao Q, Liu Y, Zhang Z, Wu D, Lv Y, Qin J, Liu Q, Li S, Long Z, Xing X, Wang Q, Zeng X, Dong G, Hou M, Xiao Y. 8-OHdG mediates the association of co-exposure to fifty-five typical endocrine-disrupting chemicals with renal function: a cross-section investigation in Southern Chinese adults. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:30779-30792. [PMID: 38613763 DOI: 10.1007/s11356-024-33266-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/05/2024] [Indexed: 04/15/2024]
Abstract
Individual typical endocrine-disrupting chemicals (EDCs), including organophosphate triesters (OPEs), parabens, triclosan (TCS), bisphenols, benzophenones (BPs), phthalates (PAEs), and synthetic phenolic antioxidants (SPAs), are associated with renal dysfunction. However, the combined effects and underlying mechanisms of mixed EDC exposure on renal function remain unclear. Two hundred ninety-nine adult participants were enrolled in the cross-sectional survey conducted in Guangzhou, China. Urinary levels of 7 OPEs, 6 parabens, TCS, 14 bisphenols, 8 BPs, 15 PAEs, 4 SPAs, and 8-hydroxy-2'-deoxyguanosine (8-OHdG) were determined, and estimated glomerular filtration rate (eGFR) was served as the outcome index. We found elevated levels of diphenyl phosphate (DPP), bisphenol A (BPA), mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), and mono-butyl phthalate (MBP) showed dose-responsive associations with eGFR decline, However, nonlinear associations were observed for bis(2-butoxyethyl) hydrogen phosphate (BBOEP), TCS, 4-hydroxybenzophenone (HBP), mono-n-pentyl phthalate (MnPP), and mono-benzyl phthalate (MBzP). The quantile-based g-computation model demonstrated that a quartile increase in the EDC mixture corresponded to a 0.383-SD decrease (95% CI - 0.658 ~ - 0.108, P = 0.007) in eGFR. Notably, BPA was identified as the primary contributor to this effect. Moreover, 8-OHdG mediated the eGFR decline associated with EDC mixtures with a mediation proportion of 25.49%. A sex-modified effect was also observed (P = 0.004), indicating that exposure to the mixture of EDC was linked to more pronounced renal dysfunction in females. Our novel findings suggest that exposure to a typical mixture of EDCs is associated with renal dysfunction in the general adult population of Southern China. Furthermore, 8-OHdG may play a role in the pathogenesis of EDC mixture-related renal dysfunction.
Collapse
Affiliation(s)
- Qingfei Chen
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, 510080, Guangdong, China
- Joint International Research Laboratory of Environment and Health, Ministry of Education, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - Qifei Deng
- School of Public Health, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, 511436, Guangdong, China
| | - Qilong Liao
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, 510080, Guangdong, China
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, People's Republic of China
| | - Yan Liu
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, 510080, Guangdong, China
| | - Zhaorui Zhang
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, 510080, Guangdong, China
- School of Public Health, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, 511436, Guangdong, China
| | - Dehua Wu
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, 510080, Guangdong, China
| | - Yanrong Lv
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, 510080, Guangdong, China
| | - Jingyao Qin
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, 510080, Guangdong, China
| | - Qing Liu
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, 510080, Guangdong, China
| | - Shuangqi Li
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, 510080, Guangdong, China
| | - Zihao Long
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, 510080, Guangdong, China
| | - Xiumei Xing
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, 510080, Guangdong, China
- Joint International Research Laboratory of Environment and Health, Ministry of Education, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - Qing Wang
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, 510080, Guangdong, China
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - Xiaowen Zeng
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, 510080, Guangdong, China
- Joint International Research Laboratory of Environment and Health, Ministry of Education, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - Guanghui Dong
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, 510080, Guangdong, China
- Joint International Research Laboratory of Environment and Health, Ministry of Education, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - Mengjun Hou
- Joint International Research Laboratory of Environment and Health, Ministry of Education, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - Yongmei Xiao
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, 510080, Guangdong, China.
- Joint International Research Laboratory of Environment and Health, Ministry of Education, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
4
|
Li B, Lu C, Liu Y, Wang X, Fu H, Li C, Sun M, Zhang Y, Li M. Antihypertensive effect and mechanism of the traditional recipe of medicine food homology (Buyang Huanwu Decoction) in China: Meta analysis and network pharmacological exploration. Heliyon 2024; 10:e23474. [PMID: 38205319 PMCID: PMC10776952 DOI: 10.1016/j.heliyon.2023.e23474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 01/12/2024] Open
Abstract
Background Hypertension has become a part of the lives of many people worldwide. With the development, an increasing number of people have begun to control their hypertension through products of medicine food homology, such as Buyang Huanwu Decoction (BYHWD). However, there has been no objective review of the regulation of hypertension by BYHWD. Methods As of 9 October 2023, this review made a detailed search of nine databases to look for random controlled trials (RCTs) focused on the use of BYHWD for treating hypertension. This was followed by network pharmacological analysis, and molecular docking assessment using AutoDockTools to explore the mode of action. Results BYHWD was effective in reducing SBP (MD: 0.767; 95 % CI: 0.629, 0.905; p = 0.000), DBP (MD: 0.427; 95 % CI: 0.292, 0.561; p = 0.000), 24h SBP (MD: 0.665; 95 % CI: 0.368, 0.962; p = 0.000), 24h DBP (MD: 0.547; 95 % CI: 0.318, 0.777; p = 0.000), dSBP (MD: 0.625; 95 % CI: 0.395, 0.855; p = 0.000), dDBP (MD: 0.632; 95 % CI: 0.401, 0.862; p = 0.000), nSBP (MD: 0.859; 95 % CI: 0.340, 1.377; p = 0.001), nDBP (MD: 0.704; 95 % CI: 0.297, 1.112; p = 0.001), pv (MD: 1.311; 95 % CI: 0.363, 2.259; p = 0.007) and NIHSS (MD: 1.149; 95 % CI: 0.100, 2.199; p = 0.032), and elevating CER (OR = 2.848; 95 % CI: 1.388, 5.843; p = 0.004). However, BYHWD did not significantly reduce HCY, and there was no significant difference in the incidence of AE. In terms of the mechanism of action, the main active ingredient of BYHWD is quercetin, and the core targets are AKT1, MMP9, and others. Molecular docking also showed that quercetin mainly interacts with the amino acid residue CYS-28 of MMP2. Second, the KEGG analysis showed that BYHWD mainly act on HIF-1, Apelin, and cGMP-PKG signalling pathways, and GO analysis showed that it related to the apical part of the cell, circulatory system processes, and nuclear receptor activity. Conclusion: BYHWD can lowered blood pressure, reduced plasma viscosity, and restored neurological function with good tolerability, and had no significant effect on HCY levels. This study further demonstrated that quercetin is the main active ingredient of BYHWD that acts via the AKT1 and HIF-1 signalling pathways. These results provide new guidance for people's dietary choices by the general public.
Collapse
Affiliation(s)
- Bo Li
- Inner Mongolia Medical University, Hohhot, 010010, China
- Inner Mongolia Autonomous Region Hospital of Traditional Chinese Medicine, Hohhot, 010050, China
| | - Chang Lu
- Inner Mongolia Medical University, Hohhot, 010010, China
- Inner Mongolia Autonomous Region Hospital of Traditional Chinese Medicine, Hohhot, 010050, China
| | - Yibo Liu
- Inner Mongolia Medical University, Hohhot, 010010, China
- Inner Mongolia Autonomous Region Hospital of Traditional Chinese Medicine, Hohhot, 010050, China
| | - Xiaodong Wang
- Inner Mongolia Medical University, Hohhot, 010010, China
- Inner Mongolia Autonomous Region Hospital of Traditional Chinese Medicine, Hohhot, 010050, China
| | - Haiqi Fu
- Inner Mongolia Medical University, Hohhot, 010010, China
- Inner Mongolia Autonomous Region Hospital of Traditional Chinese Medicine, Hohhot, 010050, China
| | - Changyi Li
- Inner Mongolia Medical University, Hohhot, 010010, China
- Inner Mongolia Autonomous Region Hospital of Traditional Chinese Medicine, Hohhot, 010050, China
| | - Mingjuan Sun
- Inner Mongolia Medical University, Hohhot, 010010, China
- Inner Mongolia Autonomous Region Hospital of Traditional Chinese Medicine, Hohhot, 010050, China
| | - Yajun Zhang
- Inner Mongolia Medical University, Hohhot, 010010, China
- Inner Mongolia Autonomous Region Hospital of Traditional Chinese Medicine, Hohhot, 010050, China
| | - Minhui Li
- Inner Mongolia Medical University, Hohhot, 010010, China
- Inner Mongolia Autonomous Region Hospital of Traditional Chinese Medicine, Hohhot, 010050, China
| |
Collapse
|
5
|
Wu Y, Wei Q, Li H, Yang H, Wu Y, Yu Y, Chen Q, He B, Chen F. Association of remnant cholesterol with hypertension, type 2 diabetes, and their coexistence: the mediating role of inflammation-related indicators. Lipids Health Dis 2023; 22:158. [PMID: 37752554 PMCID: PMC10521406 DOI: 10.1186/s12944-023-01915-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/03/2023] [Indexed: 09/28/2023] Open
Abstract
PURPOSE Cholesterol metabolism is a risk factor for cardiovascular disease, and recent studies have shown that cholesterol metabolism poses a residual risk of cardiovascular disease even when conventional lipid risk factors are in the optimal range. The association between remnant cholesterol (RC) and cardiovascular disease has been demonstrated; however, its association with hypertension, type 2 diabetes mellitus (T2DM), and the concomitance of the two diseases requires further study. This study aimed to evaluate the association of RC with hypertension, T2DM, and both in a large sample of the U.S. population, and to further explore the potential mechanisms involved. METHODS This cross-sectional study used data from the 2005-2018 cycles of the National Health and Nutrition Examination Survey (N = 17,749). Univariable and multivariable logistic regression analyses were performed to explore the relationships of RC with hypertension, T2DM, and both comorbidities. A restricted cubic spline regression model was used to reveal the dose effect. Mediation analyses were performed to explore the potential mediating roles of inflammation-related indicators in these associations. RESULTS Of the 17,749 participants included (mean [SD] age: 41.57 [0.23] years; women: 8983 (50.6%), men: 8766 (49.4%)), the prevalence of hypertension, T2DM, and their co-occurrence was 32.6%, 16.1%, and 11.0%, respectively. Higher RC concentrations were associated with an increased risk of hypertension, T2DM, and their co-occurrence (adjusted odds ratios for per unit increase in RC were 1.068, 2.259, and 2.362, and 95% confidence intervals were 1.063-1.073, 1.797-2.838, and 1.834-3.041, respectively), with a linear dose-response relationship. Even when conventional lipids were present at normal levels, positive associations were observed. Inflammation-related indicators (leukocytes, lymphocytes, monocytes, and neutrophils) partially mediated these associations. Among these, leukocytes had the greatest mediating effect (10.8%, 14.5%, and 14.0%, respectively). CONCLUSION The results of this study provide evidence that RC is associated with the risk of hypertension, T2DM, and their co-occurrence, possibly mediated by an inflammatory response.
Collapse
Affiliation(s)
- Yuxuan Wu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Qinfei Wei
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Husheng Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Han Yang
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Yuying Wu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Yiming Yu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Qiansi Chen
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Baochang He
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Fa Chen
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China.
- Clinical Research Unit, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China.
| |
Collapse
|
6
|
Xiang ST, Cao Y, Dong J, Li C, Duan Y, Li X, Qiu J. Association of urine phthalate metabolites levels with kidney function in 1610 US adolescents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27389-0. [PMID: 37148507 DOI: 10.1007/s11356-023-27389-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 04/28/2023] [Indexed: 05/08/2023]
Abstract
Phthalates are widely used as plasticizer or fragrance ingredients in various consumer products worldwide. However, evidence for the overall effects of mixed exposure to phthalate on kidney function has not been widely investigated. The purpose of this article was to assess the association of urine phthalate metabolite levels and kidney injury parameters in adolescents. We used data from the combined 2007-2016 National Health and Nutrition Examination Survey (NHANES). We fitted weighted linear regressions and Bayesian kernel machine regressions (BKMR) models to explore the association of urinary phthalate metabolites with four parameters of kidney function after adjusting for covariates. Weighted linear regression models showed that MiBP (β = 8.057; PFDR = 0.016) was significantly positively associated with eGFR and MEP (β = -0.799; PFDR < 0.001) was significantly negatively correlated with BUN. BKMR analysis showed that the higher the concentration of phthalate metabolite mixture, the higher eGFR in adolescents. Based on the results of these two models, our findings revealed that mixed exposure to phthalates was associated with elevated eGFR in adolescents. However, as the study is cross-sectional, reverse causality is possible, and altered kidney function may impact the concentration of phthalate metabolites in urine.
Collapse
Affiliation(s)
- Shi-Ting Xiang
- Hunan Children's Research Institute (HCRI), Hunan Children's Hospital, 86 Ziyuan Road, Changsha, 410007, China
| | - Yuhan Cao
- Hunan Children's Research Institute (HCRI), Hunan Children's Hospital, 86 Ziyuan Road, Changsha, 410007, China
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha, 410078, China
| | - Jie Dong
- Hunan Children's Research Institute (HCRI), Hunan Children's Hospital, 86 Ziyuan Road, Changsha, 410007, China
| | - Chao Li
- Department of Epidemiology and Medical Statistics, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha, 410078, China
| | - Yanying Duan
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha, 410078, China
| | - Xun Li
- Hunan Children's Research Institute (HCRI), Hunan Children's Hospital, 86 Ziyuan Road, Changsha, 410007, China
| | - Jun Qiu
- Hunan Children's Research Institute (HCRI), Hunan Children's Hospital, 86 Ziyuan Road, Changsha, 410007, China.
| |
Collapse
|
7
|
Yu Y, Wang Y, Dong Y, Shu S, Zhang D, Xu J, Zhang Y, Shi W, Wang SL. Butyl benzyl phthalate as a key component of phthalate ester in relation to cognitive impairment in NHANES elderly individuals and experimental mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:47544-47560. [PMID: 36746855 DOI: 10.1007/s11356-023-25729-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Phthalates are a group of neurotoxicants with cognitive-disrupting potentials. Given the structural diversity of phthalates, the corresponding neurotoxicity is dramatically altered. To identify the potential contributions of different phthalates on the process of cognitive impairment, data of 836 elders from the NHANES 2011-2014 cycles were used. Survey-weighted logistic regression and principal component analysis-weighted quantile sum regression (PCA-WQSR) models were applied to estimate the independent and combined associations of 11 urinary phthalate metabolites with cognitive deficit (assessed by 4 tests: Immediate Recall (IR), Delayed Recall (DR), Animal Fluency (AF), and Digit Symbol Substitution Test (DSST)) and to identify the potential phthalate with high weight. Laboratory mice were further used to examine the effect of phthalates on cognitive function and to explore the potential mechanisms. In logistic regression models, MBzP was the only metabolite positively correlated with four tests, with ORs of 2.53 (quartile 3 (Q3)), 2.26 (Q3), 2.89 (Q4) and 2.45 (Q2), 2.82 (Q4) for IR, DR, AF, and DSST respectively. In PCA-WQSR co-exposure models, low-molecular-weight (LMW) phthalates were the only PC positively linked to DSST deficit (OR: 1.93), which was further validated in WQSR analysis (WQS OR7-phthalates: 1.56 and WQS OR8-phthalates: 1.55); consistent with the results of logistic regression, MBzP was the dominant phthalate. In mice, butyl benzyl phthalate (BBP), the parent phthalate of MBzP, dose-dependently reduced cognitive function and disrupted hippocampal neurons. Additionally, the hippocampal transcriptome analysis identified 431 differential expression genes, among which most were involved in inhibiting the neuroactive ligand-receptor interaction pathway and activating the cytokine-cytokine receptor interaction pathway. Our study indicates the critical role of BBP in the association of phthalates and cognitive deficits among elderly individuals, which might be speculated that BBP could disrupt hippocampal neurons, activate neuroinflammation, and inhibit neuroactive receptors. Our findings provide new insight into the cognitive-disrupting potential of BBP.
Collapse
Affiliation(s)
- Yongquan Yu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, People's Republic of China
| | - Yucheng Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China
| | - Yu Dong
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China
| | - Shuge Shu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China
| | - Di Zhang
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, People's Republic of China
| | - Jiayi Xu
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, People's Republic of China
| | - Ying Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China
| | - Wei Shi
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China
| | - Shou-Lin Wang
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, People's Republic of China.
| |
Collapse
|
8
|
Tumu K, Vorst K, Curtzwiler G. Endocrine modulating chemicals in food packaging: A review of phthalates and bisphenols. Compr Rev Food Sci Food Saf 2023; 22:1337-1359. [PMID: 36789797 DOI: 10.1111/1541-4337.13113] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/07/2023] [Accepted: 01/14/2023] [Indexed: 02/16/2023]
Abstract
Phthalates and bisphenol chemicals have been widely used globally in packaging materials and consumer products for several decades. These highly functional chemicals have become a concern due to their toxicity (i.e., endocrine/hormone modulators) and ability to migrate from food contact materials (FCMs) into food matrices and the environment resulting in human and environmental health risks. FCMs, composed of postconsumer materials, are particularly high risk for containing these compounds. The evaluation of postconsumer recycled feedstocks in FCMs is compulsory and selection of an appropriate detection method to comply with applicable regulations is necessary to evaluate human and environmental safety. Numerous regulations have been proposed and passed globally for both compound classes that are recognized as priority pollutants by the United States Environmental Protection Agency and the European Union. Several brand owners and retailers have also released their own "restricted substance lists" due to the mounting consumer and regulatory concerns. This review article has two goals: (1) discuss the utilization, toxicology, human exposure routes, and occurrence levels of phthalates and bisphenols in FCMs and associated legislation in various countries and (2) discuss critical understanding and updates for detection/quantification techniques. Current techniques discussed include extraction and sample preparation methods (solid-phase microextraction [SPME], headspace SPME, Soxhlet procedure, ultrasound-assisted extraction), chromatographic techniques (gas, liquid, detectors), and environmental/blank considerations for quantification. This review complements a previous review of phthalates in foods from 2009 by discussing phthalate and bisphenol characteristics, analytical methods of determining concentrations in packaging materials, and their influence on the migration potential into food.
Collapse
Affiliation(s)
- Khairun Tumu
- Polymer and Food Protection Consortium, Iowa State University, Ames, Iowa, USA
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, USA
| | - Keith Vorst
- Polymer and Food Protection Consortium, Iowa State University, Ames, Iowa, USA
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, USA
| | - Greg Curtzwiler
- Polymer and Food Protection Consortium, Iowa State University, Ames, Iowa, USA
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
9
|
Fang Y, Chen Z, Chen J, Zhou M, Chen Y, Cao R, Liu C, Zhao K, Wang M, Zhang H. Dose-response mapping of MEHP exposure with metabolic changes of trophoblast cell and determination of sensitive markers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158924. [PMID: 36152845 DOI: 10.1016/j.scitotenv.2022.158924] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/18/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Mono(2-ethylhexyl) phthalate (MEHP) is a metabolite of DEHP which is one of phthalic acid esters (PAEs) widely used in daily necessities. Moreover, MEHP has been proven to have stronger biological toxicity comparing to DEHP. In particular, several recent population-based studies have reported that intrauterine exposure to MEHP results in adverse pregnancy outcomes. To explore the mechanisms and metabolic biomarkers of MEHP exposure, we examined the metabolic status of HTR-8/Svneo cell lines exposed to different doses of MEHP (0, 1.25, 5.0, 20 μM). Global and dose-response metabolomics tools were used to identify metabolic perturbations and sensitive markers associated with MEHP. Only 22 metabolic features (accounted for <1 %) were significantly changed when exposed to 1.25 μM. However, when the exposure dose was increased to 5 or 20 μM, the number of significantly changed metabolic features exceeded 300 (approximately 10 %). In particular, amino acid metabolism, pyrimidine metabolism and glutathione metabolism were widely affected according to the enrich analysis of those significant altered metabolites, which has and have previously been reported to be closely related to fetal development. Moreover, 5'-UMP and N-acetylputrescine with the lowest effective concentrations (EC-10 = 0.1 μM and EC+10 = 0.11 μM, respectively) were identified as sensitive endogenous biomarkers of MEHP exposure.
Collapse
Affiliation(s)
- Yiwei Fang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Zhiliang Chen
- Wuhan Prevention and Treatment Center for Occupational Diseases, Wuhan 430015, PR China
| | - Jinyu Chen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Minqi Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Yuanyao Chen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Rong Cao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Chunyan Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Kai Zhao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Min Wang
- Wuhan Prevention and Treatment Center for Occupational Diseases, Wuhan 430015, PR China.
| | - Huiping Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| |
Collapse
|
10
|
Yang R, Zheng J, Qin J, Liu S, Liu X, Gu Y, Yang S, Du J, Li S, Chen B, Dong R. Dibutyl phthalate affects insulin synthesis and secretion by regulating the mitochondrial apoptotic pathway and oxidative stress in rat insulinoma cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114396. [PMID: 36508788 DOI: 10.1016/j.ecoenv.2022.114396] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Dibutyl phthalate (DBP) is a typical phthalate (PAEs). The environmental health risks of DBP have gradually attracted attention due to the common use in the production of plastics, cosmetics and skin care products. DBP was associated with diabetes, but its mechanism is not clear. In this study, an in vitro culture system of rat insulinoma (INS-1) cells was established to explore the effect of DBP on insulin synthesis and secretion and the potential mechanisms. INS-1 cells were cultured in RPMI-1640 medium containing 10% fetal bovine serum and treated with 15, 30, 60 and 120 μmol/L of DBP and dimethyl sulfoxide (vehicle, < 0.1%) for 24 h. The contents of insulin in the intracellular fluid and the extracellular fluid of the cells were measured. The results showed that insulin synthesis and secretion in INS-1 cells were significantly decreased in 120 μmol/L DBP group. The apoptosis rate and mitochondrial membrane potential of INS-1 cells were measured by flow cytometry with annexin V-FITC conjugate and PI, and JC-1, respectively. The results showed that DBP caused an increase in the apoptosis rate and a significant decrease in the mitochondrial membrane potential in INS-1 cells in 60 μmol/L and 120 μmol/L DBP group. The results of western blot showed that the expression of Bax/Bcl-2, caspase-3, caspase-9 and Cyt-C were significantly increased. Meanwhile, the level of oxidative stress in INS-1 cells was detected by fluorescent probes DCFH-DA and western blot. With the increase of DBP exposure, the oxidative stress levels (MDA, GSH/GSSG) were increased; and the antioxidant index (SOD) levels were decreased. Our experimental results provide reliable evidence that DBP induced apoptosis and functional impairment in INS-1 cells through the mitochondrial apoptotic pathway and oxidative stress. Therefore, we hypothesized that interference with these two pathways could be considered in the development of preventive protection measures.
Collapse
Affiliation(s)
- Ruoru Yang
- School of Public Health, Institute of Nutrition, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China.
| | | | - Jin Qin
- Affiliated cancer hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450003, China.
| | - Shaojie Liu
- School of Public Health, Institute of Nutrition, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China.
| | - Xinyuan Liu
- School of Public Health, Institute of Nutrition, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China.
| | - Yiying Gu
- School of Public Health, Institute of Nutrition, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China.
| | - Shuyu Yang
- Nutrilite Health Institute, Shanghai 200023, China.
| | - Jun Du
- Nutrilite Health Institute, Shanghai 200023, China.
| | - Shuguang Li
- School of Public Health, Institute of Nutrition, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China.
| | - Bo Chen
- School of Public Health, Institute of Nutrition, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China.
| | - Ruihua Dong
- School of Public Health, Institute of Nutrition, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China.
| |
Collapse
|
11
|
Zhang X, Flaws JA, Spinella MJ, Irudayaraj J. The Relationship between Typical Environmental Endocrine Disruptors and Kidney Disease. TOXICS 2022; 11:32. [PMID: 36668758 PMCID: PMC9863798 DOI: 10.3390/toxics11010032] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/17/2022] [Accepted: 12/27/2022] [Indexed: 05/12/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are exogenous substances that alter the endocrine function of an organism, to result in adverse effects on growth and development, metabolism, and reproductive function. The kidney is one of the most important organs in the urinary system and an accumulation point. Studies have shown that EDCs can cause proteinuria, affect glomeruli and renal tubules, and even lead to diabetes and renal fibrosis in animal and human studies. In this review, we discuss renal accumulation of select EDCs such as dioxins, per- and polyfluoroalkyl substances (PFAS), bisphenol A (BPA), and phthalates, and delineate how exposures to such EDCs cause renal lesions and diseases, including cancer. The regulation of typical EDCs with specific target genes and the activation of related pathways are summarized.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Jodi A. Flaws
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Michael J. Spinella
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Joseph Irudayaraj
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute of Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|