1
|
Huang L, Hu X, Liu J, Wang J, Zhou Y, Li G, Dong G, Dong H. Air pollution is linked to cognitive decline independent of hypersensitive C-reactive protein: insights from middle-aged and older Chinese. Environ Health 2024; 23:111. [PMID: 39707297 DOI: 10.1186/s12940-024-01148-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 11/22/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Long-term air pollution exposure and inflammation are considered to be associated with cognitive decline. However, whether air pollution exposure related cognitive decline is dependent on inflammation remains uncertain. MATERIALS AND METHODS The present study collected data from China Health and Retirement Longitudinal Study (CHARLS) at baseline in 2011, with a follow up period in 2015. Concentration of air pollutants (particles with diameters ≤ 1.0 μm [PM1], ≤ 2.5 μm [PM2.5], ≤ 10 μm [PM10], nitrogen dioxide [NO2] and ozone [O3]) were obtained from China High Air Pollutants (CHAP) dataset. Hypersensitive C-reactive protein (hs-CRP), a systemic inflammation marker, was measured in blood of subjects and cognitive function was assessed by standardized questionnaire. RESULTS A total of 6434 participants were included in the study. Lower exposure to PM2.5, PM1, PM10 and NO2 were associated with mitigated cognitive decline. The odds ratios (ORs) for air pollutants changes and cognitive decline and 95% confidence intervals (CIs) were as follows: PM2.5-0.934(0.925, 0.943), PM1- 0.945 (0.935,0.955), PM10-0.977(0.972,0.982) and NO2-0.962(0.950,0.975), respectively. Hs-CRP showed no significant correlation with cognitive decline or change in levels of air pollution. The interaction regression analyses, both unadjusted and adjusted, did not uncover any significant correlation between hs-CRP and air pollution with respect to cognitive decline. Bootstrap test exhibited no significant mediating effect of hs-CRP on the relationship between any air pollutants and cognitive decline, the indirect effects of hs-CRP in conjunction with exposure to different air pollutants were all found to be non-significant, with the following bootstrap CIs and p-values: PM2.5-1.000([1.000,1.000], P = 0.480),PM1-1.000([1.000,1.000], P = 0.230),PM10-1.000([1.000,1.000], P = 0.650), O3-1.000([1.000,1.000], P = 0.470), ΔNO2-1.000([1.000,1.000], P = 0.830) . CONCLUSION Ambient air pollution exposure was linked to cognitive decline independent of hs-CRP level.
Collapse
Affiliation(s)
- Li Huang
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Xiangming Hu
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Jia Liu
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Jiajia Wang
- School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yingling Zhou
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Guang Li
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Guanghui Dong
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Haojian Dong
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
- Nyingchi People's Hospital, Nyingchi, Tibet, 860003, China.
| |
Collapse
|
2
|
Kyrychenko O. Health benefits of air pollution reduction: Evidence from economic slowdown in India. ECONOMICS AND HUMAN BIOLOGY 2024; 55:101437. [PMID: 39454267 DOI: 10.1016/j.ehb.2024.101437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 09/06/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024]
Abstract
This paper evaluates health benefits associated with the impact of air pollution reduction on infant mortality in India. Leveraging plausibly exogenous geographic variation in air pollution due to the post-2010 economic slowdown-a period largely overlooked in the literature-I find that improvements in air quality resulted in a significant decline in infant mortality, particularly through respiratory diseases and biological pathways such as in utero and post-birth exposure. The associated health benefits correspond to 1338 saved infant lives, translating to monetary gains of $312.5 million. The paper advances our understanding of the link between air pollution and human health in settings with elevated air pollution and suboptimal regulatory frameworks.
Collapse
Affiliation(s)
- Olexiy Kyrychenko
- Nijmegen School of Management, Radboud University, Heyendaalseweg 141, Nijmegen 6525 AJ, the Netherlands.
| |
Collapse
|
3
|
Li X, Liu S, Jiang N, Xu F, Liu H, Jia X. Causal effects of air pollutants on lung function and chronic respiratory diseases: a Mendelian randomization study. Front Public Health 2024; 12:1438974. [PMID: 39314792 PMCID: PMC11416934 DOI: 10.3389/fpubh.2024.1438974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/30/2024] [Indexed: 09/25/2024] Open
Abstract
Objectives Our study aims to clarify the causality between air pollutants and lung function, chronic respiratory diseases, and the potential mediating effects of inflammatory proteins. Method We employed Mendelian Randomization (MR) analysis with comprehensive instrumental variables screening criteria to investigate the effects of air pollutants on lung function and chronic lung diseases. Our study incorporated genetic instruments for air pollutants, ensuring F-statistics above 20.86. A total of 18 MR analyses were conducted using the inverse-variance weighted approach, along with heterogeneity and pleiotropy tests to validate the results. Mediated MR analysis was utilized to evaluate the inflammatory proteins mediating the effects of air pollutants. Result MR analysis demonstrated significant causal interactions of particulate matter 2.5 (PM2.5), PM10, and Nitrogen dioxide (NO2) with lung function decline. Specifically, PM10 negatively affected forced expiratory volume in one second (FEV1) (OR: 0.934, 95% CI: 0.904-0.965, p = 4.27 × 10-5), forced vital capacity (FVC) (OR: 0.941, 95% CI: 0.910-0.972, p = 2.86 × 10-4), and FEV1/FVC (OR: 0.965, 95% CI: 0.934-0.998, p = 0.036). PM2.5 and NO2 were identified as potential risk factors for impairing FEV1 (OR: 0.936, 95% CI: 0.879-0.998, p = 0.042) and FEV1/FVC (OR: 0.943, 95% CI: 0.896-0.992, p = 0.024), respectively. For chronic respiratory diseases, PM2.5 and NO2 were associated with increased COPD incidence (OR: 1.273, 95% CI: 1.053-1.541, p = 0.013 for PM2.5; OR: 1.357, 95% CI: 1.165-1.581, p = 8.74 × 10-5 for NO2). Sensitivity analyses confirmed the robustness of these findings, with no significant heterogeneity or horizontal pleiotropy detected. Conclusion Our study ascertained the causal correlations of air pollutants with lung function and COPD, emphasizing the importance of reducing air pollution. Interleukin-17A mediates the reduction of FEV1 and FVC by PM10, revealing potential therapeutic targets.
Collapse
Affiliation(s)
- Xuannian Li
- The First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Suqi Liu
- The First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Nan Jiang
- The First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Fei Xu
- Department of Geriatric Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Huaman Liu
- Department of General Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xinhua Jia
- Department of Pneumology and Critical Care Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
4
|
Cheng Z, Qin K, Zhang Y, Yu Z, Li B, Jiang C, Xu J. Air pollution and cancer daily mortality in Hangzhou, China: an ecological research. BMJ Open 2024; 14:e084804. [PMID: 38858146 PMCID: PMC11168133 DOI: 10.1136/bmjopen-2024-084804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/14/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Long-term exposure to air pollution has been linked to cancer incidence. However, the evidence is limited regarding the effect of short-term exposure to air pollution on cancer mortality. OBJECTIVES This study aimed to investigate associations between short-term exposure to air pollutants (sulfur dioxide (SO2), nitrogen dioxide (NO2), particulate matter with an aerodynamic diameter <10 mm (PM10) and PM2.5) and cancer daily mortality. METHODS This study used air quality, meteorological and daily cancer death data from 2014 to 2019 in Hangzhou, China. Generalised additive models (GAM) with quasi-Poisson regression were used to analyse the associations between air pollutants and cancer mortality with adjustment for confounding factors including time trends, day of week, temperature and humidity. Then, we conducted stratified analyses by sex, age, season and education. In addition, stratified analyses of age, season and education were performed within each sex to determine whether sex difference was modified by such factors. RESULTS After adjusting for potential confounders, the GAM results indicated a statistically significant relationship between increased cancer mortality and elevated air pollution concentrations, but only in the female population. For every 10 μg/m3 rise in pollutant concentration, the increased risk of cancer death in females was 6.82% (95% CI 3.63% to 10.10%) for SO2 on lag 03, and 2.02% (95% CI 1.12% to 2.93%) for NO2 on lag 01 and 0.89% (95% CI 0.46% to 1.33%) for PM10 on lag 03 and 1.29% (95% CI 0.64% to 1.95%) for PM2.5 on lag 03. However, no statistically significant association was found among males. Moreover, the differences in effect sizes between males and females were more pronounced during the cold season, among the elderly and among subjects with low levels of education. CONCLUSIONS Increased cancer mortality was only observed in females with rising concentrations of air pollutants. Further research is required to confirm this sex difference. Advocate for the reduction of air pollutant emissions to protect vulnerable groups.
Collapse
Affiliation(s)
- Zongxue Cheng
- Department of Chronic and Non-Communicable Disease, Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | - Kang Qin
- Department of Chronic and Non-Communicable Disease, Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | - Yan Zhang
- Department of Chronic and Non-Communicable Disease, Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | - Zhecong Yu
- Department of Chronic and Non-Communicable Disease, Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | - Biao Li
- Department of Chronic and Non-Communicable Disease, Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | - Caixia Jiang
- Department of Chronic and Non-Communicable Disease, Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | - Jue Xu
- Department of Chronic and Non-Communicable Disease, Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| |
Collapse
|
5
|
Kim H, Jang H, Lee W, Oh J, Lee JY, Kim MH, Lee JW, Kim HS, Lee JH, Ha EH. Association between long-term PM 2.5 exposure and risk of Kawasaki disease in children: A nationwide longitudinal cohort study. ENVIRONMENTAL RESEARCH 2024; 244:117823. [PMID: 38072109 DOI: 10.1016/j.envres.2023.117823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/06/2023] [Accepted: 11/28/2023] [Indexed: 12/25/2023]
Abstract
BACKGROUND Based on previous studies suggesting air pollution as a potential risk factor for Kawasaki Disease (KD), we examined the association of long-term exposure to childhood fine particulate matter (PM2.5) with the risk of KD. METHODS We used National Health Insurance Service-National Sample Cohort data from 2002 to 2019, which included beneficiaries aged 0 years at enrollment and followed-up until the onset of KD or age 5 years. The onset of KD was defined as the first hospital visit record with a primary diagnostic code of M30.3, based on the 10th revision of the International Classification of Diseases, and with an intravenous immunoglobulin (IVIG) prescription. We assigned PM2.5 concentrations to 226 districts, based on mean annual predictions from a machine learning-based ensemble prediction model. We performed Cox proportional-hazards modeling with time-varying exposures and confounders. RESULTS We identified 134,634 individuals aged five or less at enrollment and, of these, 1220 individuals who had a KD onset and an IVIG prescription during study period. The average annual concentration of PM2.5 exposed to the entire cohort was 28.2 μg/m³ (Standard Deviation 2.9). For each 5 μg/m³ increase in annual PM2.5 concentration, the hazard ratio of KD was 1.21 (95% CI 1.05-1.39). CONCLUSIONS In this nationwide, population-based, cohort study, long-term childhood exposure to PM2.5 was associated with an increased incidence of KD in children. The study highlights plausible mechanisms for the association between PM2.5 and KD, but further studies are needed to confirm our findings.
Collapse
Affiliation(s)
- Hanna Kim
- Department of Environmental Medicine, College of Medicine, Ewha Womans University, Seoul, 07804, Republic of Korea; Institute of Ewha-Seoul Clinical Laboratories for Environmental Health (IESEH), College of Medicine, Ewha Womans University, Seoul, 07804, Republic of Korea.
| | - Hyemin Jang
- Institute of Ewha-Seoul Clinical Laboratories for Environmental Health (IESEH), College of Medicine, Ewha Womans University, Seoul, 07804, Republic of Korea; Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Whanhee Lee
- Institute of Ewha-Seoul Clinical Laboratories for Environmental Health (IESEH), College of Medicine, Ewha Womans University, Seoul, 07804, Republic of Korea; School of Biomedical Convergence Engineering, College of Information and Biomedical Engineering, Pusan National University, Yangsan, 50612, Republic of Korea.
| | - Jongmin Oh
- Department of Environmental Medicine, College of Medicine, Ewha Womans University, Seoul, 07804, Republic of Korea; Institute of Ewha-Seoul Clinical Laboratories for Environmental Health (IESEH), College of Medicine, Ewha Womans University, Seoul, 07804, Republic of Korea; Department of Human Systems Medicine, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea.
| | - Ji-Young Lee
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul, 07804, Republic of Korea.
| | - Min-Ho Kim
- Ewha Medical Data Organization, College of Medicine, Ewha Womans University, Seoul, 07804, Republic of Korea.
| | - Jung Won Lee
- Institute of Ewha-Seoul Clinical Laboratories for Environmental Health (IESEH), College of Medicine, Ewha Womans University, Seoul, 07804, Republic of Korea; Department of Pediatrics, College of Medicine, Ewha Womans University, 07804, Seoul, Republic of Korea.
| | - Hae Soon Kim
- Institute of Ewha-Seoul Clinical Laboratories for Environmental Health (IESEH), College of Medicine, Ewha Womans University, Seoul, 07804, Republic of Korea; Department of Pediatrics, College of Medicine, Ewha Womans University, 07804, Seoul, Republic of Korea.
| | - Ji Hyen Lee
- Institute of Ewha-Seoul Clinical Laboratories for Environmental Health (IESEH), College of Medicine, Ewha Womans University, Seoul, 07804, Republic of Korea; Department of Pediatrics, College of Medicine, Ewha Womans University, 07804, Seoul, Republic of Korea.
| | - Eun-Hee Ha
- Department of Environmental Medicine, College of Medicine, Ewha Womans University, Seoul, 07804, Republic of Korea; Institute of Ewha-Seoul Clinical Laboratories for Environmental Health (IESEH), College of Medicine, Ewha Womans University, Seoul, 07804, Republic of Korea; Graduate Program in System Health Science and Engineering, Ewha Womans University, Ewha Medical Research Institute, College of Medicine, Seoul, 07804, Republic of Korea.
| |
Collapse
|
6
|
He S, Lundberg B, Hallberg J, Klevebro S, Pershagen G, Eneroth K, Melén E, Bottai M, Gruzieva O. Joint association of air pollution exposure and inflammation-related proteins in relation to infant lung function. Int J Hyg Environ Health 2024; 255:114294. [PMID: 37952388 DOI: 10.1016/j.ijheh.2023.114294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/21/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND AND AIM Systemic inflammation is one potential mechanism underlying negative impact of air pollution on lung function. Levels of inflammation-related proteins have the potential to characterize infants' susceptibility to air pollution induced lung function impairment. This study aimed to examine the interplay between air pollution exposure and inflammation-related proteins on lung function in 6-months-old infants. METHODS In the EMIL birth cohort from Stockholm (n = 82), dynamic spirometry, along with measurement of plasma levels of 92 systemic inflammation-related proteins (Olink Proseek Multiplex Inflammation panel) have been carried out in infants aged six months. Time-weighted average exposure to particles with an aerodynamic diameter of <10 μm (PM10), <2.5 μm (PM2.5), and nitrogen dioxide (NO2) at residential addresses from birth and onwards was estimated via validated dispersion models. To characterize the abnormality of inflammation-related protein profile, for each protein in each infant, we calculated the relative deviance of the protein level from age- and sex-specific median in terms of its age- and sex-specific interquartile range (IQR), followed by computing the absolute value of the smallest relative deviance, "minimum absolute deviance". Using linear regression models, interaction of air pollution and the abnormal inflammatory profile on lung function was estimated on the additive scale. RESULTS We found joint association of PM exposure and an abnormal inflammatory protein profile in relation to FEV0.5 and FVC. For 0.1 unit increase in minimum absolute deviance, one IQR increase in PM10 was associated with 85.9 ml (95% CI: -122.9, -48.9) additional decrease in FEV0.5, and 72.3 ml (95% CI: -121.5, -23.2) additional decrease in FVC. Similar results were obtained with PM2.5 exposure, while less apparent for NO2. CONCLUSIONS Early life air pollution exposure and abnormal inflammation-related protein profiles may interact synergistically towards lower lung function in infants.
Collapse
Affiliation(s)
- Shizhen He
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Björn Lundberg
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden; Sachs' Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Jenny Hallberg
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden; Sachs' Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Susanna Klevebro
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden; Sachs' Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Kristina Eneroth
- Environment and Health Administration, SLB-analys, Stockholm, Sweden
| | - Erik Melén
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden; Sachs' Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Matteo Bottai
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Olena Gruzieva
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| |
Collapse
|
7
|
Guo LH, Zeeshan M, Huang GF, Chen DH, Xie M, Liu J, Dong GH. Influence of Air Pollution Exposures on Cardiometabolic Risk Factors: a Review. Curr Environ Health Rep 2023; 10:501-507. [PMID: 38030873 DOI: 10.1007/s40572-023-00423-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2023] [Indexed: 12/01/2023]
Abstract
PURPOSE OF REVIEW The increasing prevalence of cardiometabolic risk factors (CRFs) contributes to the rise in cardiovascular disease. Previous research has established a connection between air pollution and both the development and severity of CRFs. Given the ongoing impact of air pollution on human health, this review aims to summarize the latest research findings and provide an overview of the relationship between different types of air pollutants and CRFs. RECENT FINDINGS CRFs include health conditions like diabetes, obesity, hypertension etc. Air pollution poses significant health risks and encompasses a wide range of pollutant types, air pollutants, such as particulate matter (PM), nitrogen dioxide (NO2), sulfur dioxide (SO2), and ozone (O2). More and more population epidemiological studies have shown a positive correlation between air pollution and CRFs. Although various pollutants have diverse effects on specific cellular molecular pathways, their main influence is on oxidative stress, inflammation response, and impairment of endothelial function. More and more studies have proved that air pollution can promote the occurrence and development of cardiovascular and metabolic risk factors, and the research on the relationship between air pollution and CRFs has grown intensively. An increasing number of studies are using new biological monitoring indicators to assess the occurrence and development of CRFs resulting from exposure to air pollution. Abnormalities in some important biomarkers in the population (such as homocysteine, uric acid, and C-reactive protein) caused by air pollution deserve more attention. Further research is warranted to more fully understand the link between air pollution and novel CRF biomarkers and to investigate potential prevention and interventions that leverage the mechanistic link between air pollution and CRFs.
Collapse
Affiliation(s)
- Li-Hao Guo
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, 74 Zhongshan 2Nd Road, Yuexiu District, Guangzhou, 510080, China
| | - Mohammed Zeeshan
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, 74 Zhongshan 2Nd Road, Yuexiu District, Guangzhou, 510080, China
| | - Guo-Feng Huang
- Guangdong Ecological Environmental Monitoring Center, State Environmental Protection Key Laboratory of Regional Air Quality Monitoring, Guangdong Environmental Protection Key Laboratory of Atmospheric Secondary Pollution, Guangzhou, 510308, China
| | - Duo-Hong Chen
- Guangdong Ecological Environmental Monitoring Center, State Environmental Protection Key Laboratory of Regional Air Quality Monitoring, Guangdong Environmental Protection Key Laboratory of Atmospheric Secondary Pollution, Guangzhou, 510308, China
| | - Min Xie
- Guangdong Ecological Environmental Monitoring Center, State Environmental Protection Key Laboratory of Regional Air Quality Monitoring, Guangdong Environmental Protection Key Laboratory of Atmospheric Secondary Pollution, Guangzhou, 510308, China
| | - Jun Liu
- Guangdong Ecological Environmental Monitoring Center, State Environmental Protection Key Laboratory of Regional Air Quality Monitoring, Guangdong Environmental Protection Key Laboratory of Atmospheric Secondary Pollution, Guangzhou, 510308, China
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, 74 Zhongshan 2Nd Road, Yuexiu District, Guangzhou, 510080, China.
| |
Collapse
|
8
|
Lin LZ, Chen JH, Yu YJ, Dong GH. Ambient air pollution and infant health: a narrative review. EBioMedicine 2023:104609. [PMID: 37169689 PMCID: PMC10363448 DOI: 10.1016/j.ebiom.2023.104609] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/26/2023] [Accepted: 04/24/2023] [Indexed: 05/13/2023] Open
Abstract
The extensive evidence regarding the effects of ambient air pollution on child health is well documented, but limited review summarized their health effects during infancy. Symptoms or health conditions attributed to ambient air pollution in infancy could result in the progression of severe diseases during childhood. Here, we reviewed previous empirical epidemiological studies and/or reviews for evaluating the linkages between ambient air pollution and various infant outcomes including adverse birth outcomes, infant morbidity and mortality, early respiratory health, early allergic symptoms, early neurodevelopment, early infant growth and other relevant outcomes. Patterns of the associations varied by different pollutants (i.e., particles and gaseous pollutants), exposure periods (i.e., pregnancy and postpartum) and exposure lengths (i.e., long-term and short-term). Protection of infant health requires that paediatricians, researchers, and policy makers understand to what extent infants are affected by ambient air pollution, and a call for action is still necessary to reduce ambient air pollution.
Collapse
Affiliation(s)
- Li-Zi Lin
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jin-Hui Chen
- School of Public Policy and Management, Tsinghua University, Beijing, 100084, China; High-Tech Research and Development Center, Ministry of Science and Technology, Beijing, 100044, China
| | - Yun-Jiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, 510655, China.
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
9
|
Ambient air pollution exposure linked to long COVID among young adults: a nested survey in a population-based cohort in Sweden. Lancet Reg Health Eur 2023; 28:100608. [PMID: 37131862 PMCID: PMC9989696 DOI: 10.1016/j.lanepe.2023.100608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 03/09/2023] Open
Abstract
Background Post COVID-19 conditions, also known as long COVID, are of public health concern, but little is known about their underlying risk factors. We aimed to investigate associations of air pollution exposure with long COVID among Swedish young adults. Methods We used data from the BAMSE (Children, Allergy, Environment, Stockholm, Epidemiology [in Swedish]) cohort. From October 2021 to February 2022 participants answered a web-questionnaire focusing on persistent symptoms following acute SARS-CoV-2 infection. Long COVID was defined as symptoms after confirmed infection with SARS-CoV-2 lasting for two months or longer. Ambient air pollution levels (particulate matter ≤2.5 μm [PM2.5], ≤10 μm [PM10], black carbon [BC] and nitrogen oxides [NOx]) at individual-level addresses were estimated using dispersion modelling. Findings A total of 753 participants with SARS-CoV-2 infection were included of whom 116 (15.4%) reported having long COVID. The most common symptoms were altered smell/taste (n = 80, 10.6%), dyspnea (n = 36, 4.8%) and fatigue (n = 34, 4.5%). Median annual PM2.5 exposure in 2019 (pre-pandemic) was 6.39 (interquartile range [IQR] 6.06-6.71) μg/m3. Adjusted Odds Ratios (95% confidence intervals) of PM2.5 per IQR increase were 1.28 (1.02-1.60) for long COVID, 1.65 (1.09-2.50) for dyspnea symptoms and 1.29 (0.97-1.70) for altered smell/taste. Positive associations were found for the other air pollutants and remained consistent across sensitivity analyses. Associations tended to be stronger among participants with asthma, and those having had COVID during 2020 (versus 2021). Interpretation Ambient long-term PM2.5 exposure may affect the risk of long COVID in young adults, supporting efforts for continuously improving air quality. Funding The study received funding from the Swedish Research Council (grant no. 2020-01886, 2022-06340), the Swedish Research Council for Health, Working life and Welfare (FORTE grant no. 2017-01146), the Swedish Heart-Lung Foundation, Karolinska Institute (no. 2022-01807) and Region Stockholm (ALF project for cohort and database maintenance).
Collapse
|
10
|
Calderón-Garcidueñas L, Torres-Jardón R, Greenough GP, Kulesza R, González-Maciel A, Reynoso-Robles R, García-Alonso G, Chávez-Franco DA, García-Rojas E, Brito-Aguilar R, Silva-Pereyra HG, Ayala A, Stommel EW, Mukherjee PS. Sleep matters: Neurodegeneration spectrum heterogeneity, combustion and friction ultrafine particles, industrial nanoparticle pollution, and sleep disorders-Denial is not an option. Front Neurol 2023; 14:1117695. [PMID: 36923490 PMCID: PMC10010440 DOI: 10.3389/fneur.2023.1117695] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/01/2023] [Indexed: 03/02/2023] Open
Abstract
Sustained exposures to ubiquitous outdoor/indoor fine particulate matter (PM2.5), including combustion and friction ultrafine PM (UFPM) and industrial nanoparticles (NPs) starting in utero, are linked to early pediatric and young adulthood aberrant neural protein accumulation, including hyperphosphorylated tau (p-tau), beta-amyloid (Aβ1 - 42), α-synuclein (α syn) and TAR DNA-binding protein 43 (TDP-43), hallmarks of Alzheimer's (AD), Parkinson's disease (PD), frontotemporal lobar degeneration (FTLD), and amyotrophic lateral sclerosis (ALS). UFPM from anthropogenic and natural sources and NPs enter the brain through the nasal/olfactory pathway, lung, gastrointestinal (GI) tract, skin, and placental barriers. On a global scale, the most important sources of outdoor UFPM are motor traffic emissions. This study focuses on the neuropathology heterogeneity and overlap of AD, PD, FTLD, and ALS in older adults, their similarities with the neuropathology of young, highly exposed urbanites, and their strong link with sleep disorders. Critical information includes how this UFPM and NPs cross all biological barriers, interact with brain soluble proteins and key organelles, and result in the oxidative, endoplasmic reticulum, and mitochondrial stress, neuroinflammation, DNA damage, protein aggregation and misfolding, and faulty complex protein quality control. The brain toxicity of UFPM and NPs makes them powerful candidates for early development and progression of fatal common neurodegenerative diseases, all having sleep disturbances. A detailed residential history, proximity to high-traffic roads, occupational histories, exposures to high-emission sources (i.e., factories, burning pits, forest fires, and airports), indoor PM sources (tobacco, wood burning in winter, cooking fumes, and microplastics in house dust), and consumption of industrial NPs, along with neurocognitive and neuropsychiatric histories, are critical. Environmental pollution is a ubiquitous, early, and cumulative risk factor for neurodegeneration and sleep disorders. Prevention of deadly neurological diseases associated with air pollution should be a public health priority.
Collapse
Affiliation(s)
- Lilian Calderón-Garcidueñas
- College of Health, The University of Montana, Missoula, MT, United States.,Universidad del Valle de México, Mexico City, Mexico
| | - Ricardo Torres-Jardón
- Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Glen P Greenough
- Department of Neurology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Randy Kulesza
- Department of Anatomy, Lake Erie College of Osteopathic Medicine, Erie, PA, United States
| | | | | | | | | | | | | | - Héctor G Silva-Pereyra
- Instituto Potosino de Investigación Científica y Tecnológica A.C., San Luis Potosi, Mexico
| | - Alberto Ayala
- Sacramento Metropolitan Air Quality Management District, Sacramento, CA, United States.,Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV, United States
| | - Elijah W Stommel
- Department of Neurology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Partha S Mukherjee
- Interdisciplinary Statistical Research Unit, Indian Statistical Institute, Kolkata, India
| |
Collapse
|