1
|
Zhu Y, Wang B, Farooq U, Li Y, Qi Z, Zhang Q. Effects of surfactants on the adsorption of norfloxacin onto ferrihydrite: comparison between anionic and cationic surfactants. ENVIRONMENTAL TECHNOLOGY 2025; 46:221-231. [PMID: 38770654 DOI: 10.1080/09593330.2024.2354056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024]
Abstract
There is little information on how widespread surfactants affect the adsorption of norfloxacin (NOR) onto iron oxide minerals. In order to elucidate the effects of various surfactants on the adsorption characteristics of NOR onto typical iron oxides, we have explored the different influences of sodium dodecylbenzene sulfonate (SDBS), an anionic surfactant, and didodecyldimethylammonium bromide (DDAB), a cationic surfactant, on the interactions between NOR and ferrihydrite under different solution chemistry conditions. Interestingly, SDBS facilitated NOR adsorption, whereas DDAB inhibited NOR adsorption. The adsorption-enhancement effect of SDBS was ascribed to the enhanced electrostatic attraction, the interactions between the adsorbed SDBS on ferrihydrite surfaces and NOR molecules, and the bridging effect of SDBS between NOR and iron oxide. In comparison, the adsorption-inhibition effect of DDAB owning to the adsorption site competitive adsorption between NOR and DDAB for the effective sites as well as the steric hindrance between NOR-DDAB complexes and the adsorbed DDAB on ferrihydrite surfaces. Additionally, the magnitude of the effects of surfactants on NOR adsorption declined with increasing pH values from 5.0 to 9.0, which was related to the amounts of surfactant binding to ferrihydrite surfaces. Moreover, when the background electrolyte was Ca2+, the enhanced effect of SDBS on NOR adsorption was caused by the formation of NOR-Ca2+-SDBS complexes. The inhibitory effect of DDAB was due to the DDAB coating on ferrihydrite, which undermined the cation-bridging effect. Together, the findings from this work emphasize the essential roles of widely existing surfactants in controlling the environmental fate of quinolone antibiotics.
Collapse
Affiliation(s)
- Yuwei Zhu
- Ecology Institute of the Shandong academy of sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, People's Republic of China
| | - Bin Wang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, People's Republic of China
| | - Usman Farooq
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, People's Republic of China
| | - Yanxiang Li
- The Testing Center of Shandong Bureau of China Metallurgical Geology Bureau, Jinan, People's Republic of China
| | - Zhichong Qi
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, People's Republic of China
| | - Qiang Zhang
- Ecology Institute of the Shandong academy of sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China
| |
Collapse
|
2
|
Niu J, Yuan R, Chen H, Zhou B, Luo S. Heterogeneous catalytic ozonation for the removal of antibiotics in water: A review. ENVIRONMENTAL RESEARCH 2024; 262:119889. [PMID: 39216738 DOI: 10.1016/j.envres.2024.119889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/12/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Antibiotics with pseudo-persistence in water have been regarded as emerging pollutants, which have obvious biological toxicity even at trace levels. On account of high reactivity, heterogeneous catalytic ozonation has been widely applied to remove antibiotics. Among the heterogeneous catalysts, with well-developed pores and regulable surface defects, carbon-based materials can act as both adsorbents and catalysts. Metal cations, surface hydroxyl (-OH) groups and oxygen vacancies (OVs) serve as primary active sites in metal oxides. However, composites (perovskite, apatite, etc.) with special crystalline structure have more crystallographic planes and abundant active sites. The unsaturated bonds and aromatic rings which have dense structure of the electron cloud are more likely to be attacked by ozone (O3) directly. Sulfonamides (SAs) can be oxidized by O3 directly within a short time due to the structure of activated aromatic rings and double bonds. With the existence of catalysts, almost all antibiotics can attain fair removal effects. The presence of water matrix can greatly influence the removal rate of pollutants via changing the surface properties of catalysts, competing active sites with O3, etc. Correspondingly, the application of diverse heterogeneous catalysts was introduced in details, based on modification including metal/non-metal doping, surface modification and carrier composite. The degradation pathways of SAs, fluoroquinolones (FQNs), tetracyclines (TCs) and β-lactams were summarized founded on the functional group structures. Furthermore, the effects of water matrix (pH, coexisting ions, organics) for catalytic ozonation were also debated. It is expected to proffer advanced guidance for researchers in catalytic ozonation of antibiotics.
Collapse
Affiliation(s)
- Jiameng Niu
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Rongfang Yuan
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Huilun Chen
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Beihai Zhou
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Shuai Luo
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
3
|
Pan J, Su T, Chen H, Bian R, Gao C, Ruan Z, Zhu S. An entire recycling of spent Al-bearing cathode powder as giniite sphere and lithiophophate plate with leaching-hydrothermal-precipitation process. ENVIRONMENTAL TECHNOLOGY 2024; 45:5037-5047. [PMID: 37970841 DOI: 10.1080/09593330.2023.2283796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/14/2023] [Indexed: 11/19/2023]
Abstract
Spent lithium battery is a polymetallic waste, and valuable to be recovered as Li-bearing chemical with the barriers of impurities separation, especially Fe and Al. Here in, Li-rich cathode powder was manually disassembled from spent battery, and then recovered as lithiophosphate plate in consideration of effective separation of impure Fe/Al. The powder comprised of 23.2% Fe, 3.2% Al, 5.5% Li and 19.6% P, and then dissolved by azotic acid as Li-rich solution. When the solution was heated to 190°C for 10 h with the supplementary of saccharose, more than 99.9% Fe and 98.9% Al were removed as spherical giniite particles, in accordance with the rest of Fe/Al at the concentrations of 2.1 and 14 mg/L, whilst the loss of Li was less than 1.5%. But without saccharose, the Fe/Al removals only achieved by 99.2% and 52.1%. It is also found that the Fe/Al/Li removal achieved by 99.6%, 96% and 25.3% after adjusting the solution to pH 2.7 by NaOH. After hydrothermal treatment, the rest Li can be recycled as lithiophosphate plate by pH adjustment, in contrast to the recovery efficiency of 98.5% Li. Such method raised a facile route to effectively separate impure Fe/Al from Li-rich cathode powder, and showed promising application in the industrial recovery of spent battery.
Collapse
Affiliation(s)
- Jingyi Pan
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, People's Republic of China
| | - Ting Su
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, People's Republic of China
- School of Environment, Northeast Normal University, Changchun, People's Republic of China
| | - Hongyu Chen
- School of Environment, Northeast Normal University, Changchun, People's Republic of China
| | - Rui Bian
- School of Environment, Northeast Normal University, Changchun, People's Republic of China
| | - Chengjie Gao
- Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing, People's Republic of China
| | - Zhuowei Ruan
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, People's Republic of China
| | - Suiyi Zhu
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, People's Republic of China
| |
Collapse
|
4
|
Jin B, Cheng S, Li L, Li H, Zhou Y, Chen H. Self-supporting three-dimensional CuNi-Sb-SnO 2 anode with ultra-long service life for efficient removal of antibiotics in wastewater. CHEMOSPHERE 2024; 365:143388. [PMID: 39307471 DOI: 10.1016/j.chemosphere.2024.143388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
Electrochemical ozone production (EOP) is a promising technology for the removal of contaminants in wastewater. However, traditional two-dimensional anodes for EOP are restricted by their reliance on substrates and limited surface area, thus exhibiting poor stability and efficiency. Herein, a novel three-dimensional Sb-SnO2 with Cu and Ni co-doped (3D CuNi-ATO) was synthesized via a facile pressing-sintering method without the Ti substrate. 3D CuNi-ATO had a specific surface area two orders of magnitude higher than conventional CuNi-ATO/Ti, as well as the significant capability of EOP that differs from intrinsic 3D ATO. This endowed 3D CuNi-ATO with the capability to remove tetracycline with a pseudo-first-order rate constant of 0.033 min-1 under a low current density of 5 mA cm-2 within 120 min, which was far more efficient than that by 3D ATO and other two-dimensional anodes reported. The 3D CuNi-ATO was confirmed stable in 100 cycles and had an accelerated service lifetime of over 1100 h versus 83 h of CuNi-ATO/Ti. The degradation of tetracycline in complex matrix and flow-through reactors further revealed the promising potential of 3D CuNi-ATO to be applied in scenarios of practical application and continuous high-rate treatment.
Collapse
Affiliation(s)
- Beichen Jin
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
| | - Shaoan Cheng
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Longxin Li
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
| | - Huahua Li
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yuxiang Zhou
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hua Chen
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
5
|
Noman M, Yu G, Tsegaye Awugichew D, Li X. Synthesis of surficial-modified green biochar catalyst generated by biogas residue biochar and potential application for catalytic ozonation degradation of ciprofloxacin. ENVIRONMENTAL RESEARCH 2024; 257:119314. [PMID: 38824988 DOI: 10.1016/j.envres.2024.119314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/04/2024]
Abstract
This study synthesized novel, green, and easily recoverable surface-modified economical catalysts via hydrothermal treatment (HT) successfully, utilizing biogas residue biochar (BRB), a food waste product from anaerobic fermentation, pyrolyzed at 500 °C for 50 min. Using autoclaves, a total of six solutions were prepared, each having 1 g fine-grinded BRB, surficial modified by adding glycerol (GL) (10 or 20 mL) and SDI water (70 or 60 mL), and heated in an oven at 240 °C, 180 °C, and 120 °C for 24 h. Afterward, the catalysts showed the potential for degradation of widely used emerging pollutants like ciprofloxacin. Taking advantage of catalytic surface modification, the catalytic ozonation degradation was more effective than that of a single ozonation. However, under similar conditions, catalyst amount 0.20 g, ozone dose 15 mg L-1, and ciprofloxacin 80 mg L-1, the performance of the 10 mL GL-180 °C catalyst was excellent. It showed a 92.45%-94.41% optimum removal rate in the 8-10 min interval. After five continuous cycles, the 10 mL GL-180 °C catalyst exhibited excellent stability and reusability. XPS, FT-IR, BET, XRD, and SEM before and after the reaction confirmed the successful synthesis and degradation mechanism. A possible degradation pathway was unrevealed based on a liquid chromatography-mass spectrometer (LC-MS) and scavenger test, proving the significant roles of superoxide radicals (O2•-), hydroxyl radicals (•OH), and singlet oxygen (1O2). Further, Electron paramagnetic resonance (EPR) analysis confirmed the presence of active oxygen species. Subsequently, 10 mL GL-180 °C showed promising degradation for the actual water environment, such as groundwater (73.55%) and river water (64.74%). This work provides a valuable economic strategy to convert biogas residue biochar into a low-cost catalyst for organic pollutant decomposition.
Collapse
Affiliation(s)
- Muhammad Noman
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangwei Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Dinkayehu Tsegaye Awugichew
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinlin Li
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
6
|
Zhang L, Zhang Q, Chen T, Wang C, Xiao C, Guo J, Pang X, Liu S. Magnetic MoS 2/Fe 3O 4 composite as an effective activator of persulfate for the degradation of tetracycline: performance, activation mechanisms and degradation pathways. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:1860-1878. [PMID: 38619908 DOI: 10.2166/wst.2024.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/18/2024] [Indexed: 04/17/2024]
Abstract
The activated persulfate (PS) process could produce sulfate radical (SO4·-) and rapidly degrade organic pollutants. The application of Fe3O4 as a promising PS activator was limited due to the rapid conversion of Fe2+ to Fe3+ on its surface. Mo4+ on MoS2 surface could be used as a reducing site to convert Fe3+ to Fe2+, but the separation and recovery of MoS2 was complex. In this study, MoS2/Fe3O4 was prepared to accelerate the Fe3+/Fe2+ cycle on Fe3O4 surface and achieved efficient separation of MoS2. The results showed that MoS2/Fe3O4 was more effective for PS activation compared to Fe3O4 or MoS2, with a removal efficiency of 91.8% for 20 mg·L-1 tetracycline (TC) solution under the optimal conditions. Fe2+ and Mo4+ on MoS2/Fe3O4 surface acted as active sites for PS activation with the generation of SO4•-, •OH, •O2-, and 1O2. Mo4+ acted as an electron donor to promote the Fe3+/Fe2+ cycling and thus improved the PS activation capability of MoS2/Fe3O4. The degradation pathways of TC were inferred as hydroxylation, ketylation of dimethylamino group and C-N bond breaking. This study provided a promising activated persulfate-based advanced oxidation process for the efficient degradation of TC by employing MoS2/Fe3O4 as an effective activator.
Collapse
Affiliation(s)
- Lanhe Zhang
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China; Lanhe Zhang and Qi Zhang are co-first authors
| | - Qi Zhang
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China; Lanhe Zhang and Qi Zhang are co-first authors
| | - Tengyue Chen
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Changyao Wang
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Chuan Xiao
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Jingbo Guo
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China E-mail:
| | - Xiangrui Pang
- School of Environment, Liaoning University, Shenyang 110036, China
| | - Shuhua Liu
- Jilin Power Supply Company, State Grid Jilin Electric Power Co., Ltd, Jilin 132000, China
| |
Collapse
|
7
|
Jia X, Zhang J, Huang Q, Xiong C, Ji H, Ren Q, Jin Z, Chen S, Guo W, Chen J, Ge Y, Ding Y. Efficient degradation of ciprofloxacin in wastewater by CuFe 2O 4/CuS photocatalyst activated peroxynomosulfate. ENVIRONMENTAL RESEARCH 2024; 241:117639. [PMID: 37972811 DOI: 10.1016/j.envres.2023.117639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/17/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
In this study, CuFe2O4/CuS composite photocatalysts were successfully synthesized for the activation of peroxynomosulfate to remove ciprofloxacin from wastewater. The structural composition and morphology of the materials were analyzed by XRD, SEM, TEM, and Raman spectroscopy. The electrochemical properties of the samples were tested by an electrochemical workstation. The band gap of the samples was calculated by DFT and compared with the experimental values. The effects of different catalysts, oxidant PMS concentrations, and coexisting ions on the experiments were investigated. The reusability and stability of the photocatalysts were also investigated. The mechanism of the photocatalytic degradation process was proposed based on the free radical trapping experiment. The results show that the p-p heterojunction formed between the two contact surfaces of the CuFe2O4 nanoparticle and CuS promoted the charge transfer between the interfaces and inhibited the recombination of electrons and holes. CuFe2O4-5/CuS photocatalyst has the best catalytic activity, and the removal rate of ciprofloxacin is 93.7%. The intermediates in the degradation process were tested by liquid chromatography-mass spectrometry (LC-MS), and the molecular structure characteristics of ciprofloxacin were analyzed by combining with DFT calculations. The possible degradation pathways of pollutants were proposed. This study reveals the great potential of the photocatalyst CuFe2O4/CuS in the activation of PMS for the degradation of ciprofloxacin wastewater.
Collapse
Affiliation(s)
- Xinyu Jia
- Anhui Advanced Building Materials Engineering Laboratory, Anhui Jianzhu University, Hefei, 230601, Anhui, China; Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, China; Key Laboratory of Huizhou Architecture in Anhui Province, Anhui Jianzhu University, Hefei, 230022, Anhui, China
| | - Jinhui Zhang
- Anhui Advanced Building Materials Engineering Laboratory, Anhui Jianzhu University, Hefei, 230601, Anhui, China
| | - Qinglin Huang
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, China
| | - Chunyu Xiong
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, China
| | - Haixia Ji
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, China
| | - Qifang Ren
- Key Laboratory of Huizhou Architecture in Anhui Province, Anhui Jianzhu University, Hefei, 230022, Anhui, China
| | - Zhen Jin
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, China
| | - Shaohua Chen
- Anhui Advanced Building Materials Engineering Laboratory, Anhui Jianzhu University, Hefei, 230601, Anhui, China; Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, China; Key Laboratory of Huizhou Architecture in Anhui Province, Anhui Jianzhu University, Hefei, 230022, Anhui, China
| | - Wanmi Guo
- Key Laboratory of Huizhou Architecture in Anhui Province, Anhui Jianzhu University, Hefei, 230022, Anhui, China
| | - Jing Chen
- Key Laboratory of Huizhou Architecture in Anhui Province, Anhui Jianzhu University, Hefei, 230022, Anhui, China
| | - Yao Ge
- Key Laboratory of Huizhou Architecture in Anhui Province, Anhui Jianzhu University, Hefei, 230022, Anhui, China
| | - Yi Ding
- Anhui Advanced Building Materials Engineering Laboratory, Anhui Jianzhu University, Hefei, 230601, Anhui, China; Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, China; Key Laboratory of Huizhou Architecture in Anhui Province, Anhui Jianzhu University, Hefei, 230022, Anhui, China; State Key Laboratory of Silica Sand Resources Utilization, Hefei, 230022, Anhui, China.
| |
Collapse
|
8
|
Nabizadeh R, Amrollahi R, Ghafary B, Norouzian Alam S. Influence of ozone supply mode and aeration on photocatalytic ozonation of organic pollutants in wastewater using TiO 2 and ZnO nanoparticles. Heliyon 2023; 9:e22854. [PMID: 38125433 PMCID: PMC10730601 DOI: 10.1016/j.heliyon.2023.e22854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/30/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Photocatalytic ozonation, which combines the effects of lighting and ozonation, has been shown to enhance the decolorization and degradation of organic pollutants in wastewater. Dye solutions with concentrations of 10 ppm for both methylene blue and methyl orange dyes were used. The influence of ozoneation on the performance of photocatalytic activity of TiO2 and ZnO nanoparticles for the removal of organic dyes from aqueous solutions was investigated. To evaluate their efficacy for the removal of methylene blue and methyl orange dyes from aqueous solutions, the photocatalysts were exposed to UV light for 90 min, with ozone supplied either intermittently or continuously by an SDBD cold plasma reactor. The photocatalysts utilized in this study were characterized using SEM and XRD techniques. The degree of color degradation was determined using UV-Vis spectroscopy. The results demonstrate that TiO2 and ZnO nanoparticles exhibit different degrees of photocatalytic activity for the two dyes. The addition of ozone was found to enhance both the color degradation and mineralization rates of the pollutants, with intermittent ozonation proving more effective than continuous ozonation. The most significant color degradation results were obtained using TiO2 nanoparticles with intermittent ozonation for methylene blue dye (97 %) and ZnO nanoparticles with intermittent ozonation for methyl orange dye (40 %). Overall, this study provides evidence that photocatalytic ozonation represents a promising technique for water treatment.
Collapse
Affiliation(s)
- Reyhaneh Nabizadeh
- Physics Department, Iran University of Science and Technology, Tehran, Iran
- Optoelectronics Research Center, Iran University of Science and Technology, Tehran, Iran
| | - Rezvaneh Amrollahi
- Physics Department, Iran University of Science and Technology, Tehran, Iran
| | - Bijan Ghafary
- Physics Department, Iran University of Science and Technology, Tehran, Iran
| | - Shahab Norouzian Alam
- Physics Department, Iran University of Science and Technology, Tehran, Iran
- Optoelectronics Research Center, Iran University of Science and Technology, Tehran, Iran
| |
Collapse
|
9
|
Wang Q, Han Z, Liu H, Chen T, Zou X, Chu Z, Hu J, Sun F, Wang H. The pH-sensitive transformation of birnessite and its effect on the fate of norfloxacin. CHEMOSPHERE 2023; 341:139932. [PMID: 37619744 DOI: 10.1016/j.chemosphere.2023.139932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Birnessite plays a crucial role in regulating the fate of contaminants in soil, which is affected by the crystal structure of birnessite. In this study, the transformation of triclinic birnessite to hexagonal birnessite was examined at various pH values, and their reactivity towards norfloxacin was investigated. The findings indicate that the conversion from triclinic birnessite to hexagonal birnessite occurs under pH conditions lower than 7. The lower of the solution pH where the birnessite formed, the higher the surface reactivity. Throughout the transformation process, the migration of Mn3+ and the increased interlayer protons generated more reactive oxygen species, which enhanced the surface reactivity towards norfloxacin. Specifically, at a conversion pH of 1, the norfloxacin removal rate significantly increases from 14% to 97% compared to triclinic birnessite. The mechanism of norfloxacin removal by triclinic and hexagonal birnessite is illustrated. These findings provide valuable insights into the dynamic transformation of birnessites in aqueous environments with varying pH values and their impact on norfloxacin removal.
Collapse
Affiliation(s)
- Qimengzi Wang
- Key Laboratory of Nano-Minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, China; Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Zhengyan Han
- Key Laboratory of Nano-Minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, China; Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Haibo Liu
- Key Laboratory of Nano-Minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, China; Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Tianhu Chen
- Key Laboratory of Nano-Minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, China; Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xuehua Zou
- Key Laboratory of Nano-Minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, China; Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Ziyang Chu
- Key Laboratory of Nano-Minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, China; Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Jinchao Hu
- Key Laboratory of Nano-Minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, China; Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Fuwei Sun
- Key Laboratory of Nano-Minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, China; Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Hanlin Wang
- Key Laboratory of Nano-Minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, China; Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|
10
|
Poomipuen K, Sakulthaew C, Chokejaroenrat C, Angkaew A, Techauay K, Poompoung T, Teingtham K, Phansak P, Lueangjaroenkit P, Snow DD. Dual Activation of Peroxymonosulfate Using MnFe 2O 4/g-C 3N 4 and Visible Light for the Efficient Degradation of Steroid Hormones: Performance, Mechanisms, and Environmental Impacts. ACS OMEGA 2023; 8:36136-36151. [PMID: 37810650 PMCID: PMC10552087 DOI: 10.1021/acsomega.3c04333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/31/2023] [Indexed: 10/10/2023]
Abstract
Single activation of peroxymonosulfate (PMS) in a homogeneous system is sometimes insufficient for producing reactive oxygen species (ROS) for water treatment applications. In this work, manganese spinel ferrite and graphitic carbon nitride (MnFe2O4/g-C3N4; MnF) were successfully used as an activator for PMS under visible light irradiation to remove the four-most-detected-hormone-contaminated water under different environmental conditions. The incorporation of g-C3N4 in the nanocomposites led to material enhancements, including increased crystallinity, reduced particle agglomeration, amplified magnetism, improved recyclability, and increased active surface area, thereby facilitating the PMS activation and electron transfer processes. The dominant active radical species included singlet oxygen (1O2) and superoxide anions (O2•-), which were more susceptible to the estrogen molecular structure than testosterone due to the higher electron-rich moieties. The self-scavenging effect occurred at high PMS concentrations, whereas elevated constituent ion concentrations can be both inhibitors and promoters due to the generation of secondary radicals. The MnF/PMS/vis system degradation byproducts and possible pathways of 17β-estradiol and 17α-methyltestosterone were identified. The impact of hormone-treated water on Oryza sativa L. seed germination, shoot length, and root length was found to be lower than that of untreated water. However, the viability of both ELT3 and Sertoli TM4 cells was affected only at higher water compositions. Our results confirmed that MnF and visible light could be potential PMS activators due to their superior degradation performance and ability to produce safer treated water.
Collapse
Affiliation(s)
- Kitipong Poomipuen
- Department
of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand
| | - Chainarong Sakulthaew
- Department
of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand
- Department
of Veterinary Nursing, Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand
| | - Chanat Chokejaroenrat
- Department
of Environmental Technology and Management, Faculty of Environment, Kasetsart University, Bangkok 10900, Thailand
| | - Athaphon Angkaew
- Department
of Environmental Technology and Management, Faculty of Environment, Kasetsart University, Bangkok 10900, Thailand
| | - Kanidrawee Techauay
- Department
of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand
| | - Thapanee Poompoung
- Department
of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand
| | - Kanokwan Teingtham
- Department
of Agronomy, Faculty of Agriculture at Kamphaeng Sean, Kasetsart University, Nakhon Pathom 73140, Thailand
| | - Piyaporn Phansak
- Division
of Biology, Faculty of Science, Nakhon Phanom
University, Nakhon
Phanom 48000, Thailand
| | | | - Daniel D. Snow
- School
of Natural Resources and Nebraska Water Center, Part of the Robert
B. Daugherty Water for Food Global Institute, 202 Water Sciences Laboratory, University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0844, United
States
| |
Collapse
|
11
|
Wang M, Feng L. A carbon based-screen-printed electrode amplified with two-dimensional reduced graphene/Fe 3O 4 nanocomposite as electroanalytical sensor for monitoring 4-aminophenol in environmental fluids. CHEMOSPHERE 2023; 323:138238. [PMID: 36868416 DOI: 10.1016/j.chemosphere.2023.138238] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
The analysis water pollutants are so important strategy for investigation of water quality. On the other hand, 4-aminophenol is known as a hazardous and high-risk compound for humans, and its detection and measurement is very important for investigating the quality of surface and groundwater. In this study, graphene/Fe3O4 nanocomposite was synthesized by a simple chemical method and characterized by EDS and TEM methods and results showed Nano spherical shape of Fe3O4 nanoparticle with diameter about 20 nM decorated at surface of 2D reduce graphene nanosheet (2D-rG-Fe3O4). The 2D-rG-Fe3O4 was used as excellent catalyst at surface of carbon-based screen-printed electrode (CSPE) and used as electroanalytical sensor in monitoring and determination of 4-aminophenol in waste water sample. The results confirmed improving ∼4.0 times in oxidation signal and reducing 120 mV in oxidation potential of 4-aminophenol at surface of 2D-rG-Fe3O4/CSPE compare to CSPE, respectively. The electrochemical investigation showed pH dependence behavior with equal value of electron and proton for -aminophenol at surface of 2D-rG-Fe3O4/CSPE. Using square wave voltammetry method (SWV), the 2D-rG-Fe3O4/CSPE successfully monitored 4-aminophenol in the concentration range 1.0 nM-200 μM. Finally, 2D-rG-Fe3O4/CSPE monitored 4-aminophenol in the different environmental fluids such as urban waste water, industrial waste water and river samples with recovery range 97.2%-104.3% that confirm powerful ability of 2D-rG-Fe3O4/CSPE as analytical tool.
Collapse
Affiliation(s)
- Moxi Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, PR China
| | - Li Feng
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
12
|
Wang X, Tarahomi M, Sheibani R, Xia C, Wang W. Progresses in lignin, cellulose, starch, chitosan, chitin, alginate, and gum/carbon nanotube (nano)composites for environmental applications: A review. Int J Biol Macromol 2023; 241:124472. [PMID: 37076069 DOI: 10.1016/j.ijbiomac.2023.124472] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
Water sources are becoming increasingly scarce, and they are contaminated by industrial, residential, and agricultural waste-derived organic and inorganic contaminants. These contaminants may pollute the air, water, and soil in addition to invading the ecosystem. Because carbon nanotubes (CNTs) can undergo surface modification, they can combine with other substances to create nanocomposites (NCs), including biopolymers, metal nanoparticles, proteins, and metal oxides. Furthermore, biopolymers are significant classes of organic materials that are widely used for various applications. They have drawn attention due to their benefits such as environmental friendliness, availability, biocompatibility, safety, etc. As a result, the synthesis of a composite made of CNT and biopolymers can be very effective for a variety of applications, especially those involving the environment. In this review, we reported environmental applications (including removal of dyes, nitro compounds, hazardous materialsو toxic ions, etc.) of composites made of CNT and biopolymers such as lignin, cellulose, starch, chitosan, chitin, alginate, and gum. Also, the effect of different factors such as the medium pH, the pollutant concentration, temperature, and contact time on the adsorption capacity (AC) and the catalytic activity of the composite in the reduction or degradation of various pollutants has been systematically explained.
Collapse
Affiliation(s)
- Xuan Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Mehrasa Tarahomi
- Amirkabir University of Technology-Mahshahr Campus, University St., Nahiyeh San'ati, Mahshahr, Khouzestan, Iran
| | - Reza Sheibani
- Amirkabir University of Technology-Mahshahr Campus, University St., Nahiyeh San'ati, Mahshahr, Khouzestan, Iran.
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| | - Weidong Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
13
|
Aljar MAA, Rashdan S, Almutawah A, El-Fattah AA. Synthesis and Characterization of Biodegradable Poly(vinyl alcohol)-Chitosan/Cellulose Hydrogel Beads for Efficient Removal of Pb(II), Cd(II), Zn(II), and Co(II) from Water. Gels 2023; 9:gels9040328. [PMID: 37102940 PMCID: PMC10137731 DOI: 10.3390/gels9040328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/26/2023] [Accepted: 04/08/2023] [Indexed: 04/28/2023] Open
Abstract
Globally, water contamination by heavy metals is a serious problem that affects the environment and human health. Adsorption is the most efficient way of water treatment for eliminating heavy metals. Various hydrogels have been prepared and used as adsorbents to remove heavy metals. By taking advantage of poly(vinyl alcohol) (PVA), chitosan (CS), cellulose (CE), and the process for physical crosslinking, we propose a simple method to prepare a PVA-CS/CE composite hydrogel adsorbent for the removal of Pb(II), Cd(II), Zn(II) and Co(II) from water. Structural analyses of the adsorbent were examined by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy-energy dispersive X-ray (SEM-EDX) analysis, and X-ray diffraction (XRD). PVA-CS/CE hydrogel beads had a good spherical shape together with a robust structure and suitable functional groups for the adsorption of heavy metals. The effects of adsorption parameters such as pH, contact time, adsorbent dose, initial concentration of metal ions, and temperature on the adsorption capacity of PVA-CS/CE adsorbent were studied. The adsorption characteristics of PVA-CS/CE for heavy metals may be completely explained by pseudo-second-order adsorption and the Langmuir adsorption model. The removal efficiency of PVA-CS/CE adsorbent for Pb(II), Cd(II), Zn(II), and Co(II) was 99, 95, 92, and 84%, respectively, within 60 min. The heavy metal's hydrated ionic radius may be crucial in determining the adsorption preference. After five consecutive adsorption-desorption cycles, the removal efficiency remained over 80%. As a result, the outstanding adsorption-desorption properties of PVA-CS/CE can potentially be extended to industrial wastewater for heavy metal ion removal.
Collapse
Affiliation(s)
- Mona A Aziz Aljar
- Department of Chemistry, College of Science, University of Bahrain, Sakhir P.O. Box 32038, Bahrain
| | - Suad Rashdan
- Department of Chemistry, College of Science, University of Bahrain, Sakhir P.O. Box 32038, Bahrain
| | - Abdulla Almutawah
- Department of Chemistry, College of Science, University of Bahrain, Sakhir P.O. Box 32038, Bahrain
| | - Ahmed Abd El-Fattah
- Department of Chemistry, College of Science, University of Bahrain, Sakhir P.O. Box 32038, Bahrain
- Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt
| |
Collapse
|
14
|
Li S, Zhang M, Sun J, Sun J, Wang Y. Preparation and characterization of superior hydrophilic PVDF/DA membranes by the self-polymerization approach of dopamine. Front Chem 2023; 11:1162348. [PMID: 37065826 PMCID: PMC10097915 DOI: 10.3389/fchem.2023.1162348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/15/2023] [Indexed: 03/31/2023] Open
Abstract
Polyvinylidene fluoride (PVDF) membranes are favored for their excellent properties. However, the inherent strong hydrophobicity of PVDF membranes limits their development in the field of water treatment. The objective of this study was to improve the performance of PVDF membranes using the self-polymerization, strong adhesion properties, and biocompatible effects of dopamine (DA). The PVDF/DA membrane modification conditions were simulated and optimized using response surface methodology (RSM), and the experimental design was used to investigate three main parameters. The results showed that the DA solution concentration of 1.65 g/L, the coating time of 4.5 h, the post-treatment temperature of 25°C, the contact angle decreased from 69° to 33.9°, and the pure water flux on the PVDF/DA membrane was higher than that on the original membrane. The absolute value of the relative error between the actual and predicted values is only 3.36 %. In the MBR parallel comparison test, compared with the PVDF/DA membrane, the total amount of extracellular polymers (EPS) of the PVDF membrane increased by 1.46 times and the polysaccharide increased by 1.56 times, which further showed that the PVDF/DA modified membrane had the excellent anti-pollution ability. Through Alpha diversity analysis, the biodiversity detected on PVDF/DA membranes was higher than that of PVDF membranes, which further proved its good bio-adhesion ability. These findings could offer a reference for the hydrophilicity, antifouling, and stability of PVDF/DA membranes, which would establish the foundation for the comprehensive applications in MBR.
Collapse
Affiliation(s)
- Shaofeng Li
- School of Materials and Environmental Engineering, Shenzhen Polytechnic, Shenzhen, Guangdong, China
- *Correspondence: Shaofeng Li, ; Ying Wang,
| | - Meilin Zhang
- School of Materials and Environmental Engineering, Shenzhen Polytechnic, Shenzhen, Guangdong, China
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang, Liaoning, China
| | - Jian Sun
- School of Materials and Environmental Engineering, Shenzhen Polytechnic, Shenzhen, Guangdong, China
| | - Jianping Sun
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang, Liaoning, China
| | - Ying Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
- *Correspondence: Shaofeng Li, ; Ying Wang,
| |
Collapse
|
15
|
Iranmanesh R, Pourahmad A, Shabestani DS, Jazayeri SS, Sadeqi H, Akhavan J, Tounsi A. Wavelet-artificial neural network to predict the acetone sensing by indium oxide/iron oxide nanocomposites. Sci Rep 2023; 13:4266. [PMID: 36918606 PMCID: PMC10015010 DOI: 10.1038/s41598-023-29898-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/13/2023] [Indexed: 03/16/2023] Open
Abstract
This study applies a hybridized wavelet transform-artificial neural network (WT-ANN) model to simulate the acetone detecting ability of the Indium oxide/Iron oxide (In2O3/Fe2O3) nanocomposite sensors. The WT-ANN has been constructed to extract the sensor resistance ratio (SRR) in the air with respect to the acetone from the nanocomposite chemistry, operating temperature, and acetone concentration. The performed sensitivity analyses demonstrate that a single hidden layer WT-ANN with nine nodes is the highest accurate model for automating the acetone-detecting ability of the In2O3/Fe2O3 sensors. Furthermore, the genetic algorithm has fine-tuned the shape-related parameters of the B-spline wavelet transfer function. This model accurately predicts the SRR of the 119 nanocomposite sensors with a mean absolute error of 0.7, absolute average relative deviation of 10.12%, root mean squared error of 1.14, and correlation coefficient of 0.95813. The In2O3-based nanocomposite with a 15 mol percent of Fe2O3 is the best sensor for detecting acetone at wide temperatures and concentration ranges. This type of reliable estimator is a step toward fully automating the gas-detecting ability of In2O3/Fe2O3 nanocomposite sensors.
Collapse
Affiliation(s)
- Reza Iranmanesh
- Faculty of Civil Engineering, K.N. Toosi University of Technology, No. 1346, Vali Asr Street, Mirdamad Intersection, Tehran, Iran
| | - Afham Pourahmad
- Department of Polymer Engineering, Amirkabir University of Technology, Tehran, 1591634311, Iran
| | | | | | - Hamed Sadeqi
- Department of Internet and Wide Network, Iran Industrial Training Center Branch, University of Applied Science and Technology, Tehran, Iran
| | - Javid Akhavan
- Mechanical Engineering Department, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, NJ, 07030, USA
| | - Abdelouahed Tounsi
- Material and Hydrology Laboratory, Civil Engineering Department, Faculty of Technology, University of Sidi Bel Abbes, Sidi Bel Abbès, Algeria
- Department of Civil and Environmental Engineering, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Eastern Province, Saudi Arabia
| |
Collapse
|
16
|
Jiabao Q, Zhan Q, Hongyu C, Zhihua W, Qi H, Yuxin Z, Hong Z, Yidi G, Ying Z, Xianze W, Suiyi Z. Pyrometallurgy treatment of electroplating sludge, emulsion mud and coal ash: ZnAlFeO 4 spinel separation and stabilization in calcium metasilicate glass. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 329:117101. [PMID: 36566727 DOI: 10.1016/j.jenvman.2022.117101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Electroplating sludge was a hazardous waste comprised of heavy metals and other Fe/Al/Ca/Si impurities, and produced massively in surface treatment industry. In the past, it was commonly purified via hydrometallurgy, chlorination and reduction calcination routes, but also blended as additive in rotary kiln, to stabilize the heavy metals in geopolymer. Herein, an alternative strategy was developed to treat a real electroplating sludge for recycling magnetic Zn-rich spinel and stabilizing Zn in calcium metasilicate glass via a facile pyrometallurgy route with the blending of emulsion mud and coal ash. The sludge contained 35.6% Zn and 0.54% Cr and then was blended with 50% emulsion mud. After calcination at 1200 °C, the product was highly dispersed, whilst octahedral ZnAlFeO4 spinel with Zn content of 40.0% were formed and separated by using magnet, in accordance with the recycling efficiency of 51.2% Zn from the electroplating sludge. But after calcination at 1400 °C, the gypsum in emulsion mud was decomposed as CaO and accelerated the dissolution of Si-bearing substance as calcium metasilicate glass for covering ZnAlFeO4 spinel, resulting in the Zn leaching of 1568 mg/L. By adding 50% Si-rich coal ash in the calcination system, more calcium metasilicate glass were generated, and then the Zn concentration in the toxic leaching test was only 12.09 mg/L. During the calcination, Cr showed similar performance to Al/Fe and involved in the spinel formation. This provided a new route to recycle Zn from Zn-rich electroplating sludge and to solidify heavy metals via calcium metasilicate glass route.
Collapse
Affiliation(s)
- Qin Jiabao
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun, China
| | - Qu Zhan
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun, China
| | - Chen Hongyu
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun, China; College of Resources and Environment, Zhongkai University of Agriculture and Engineering, 501 Zhongkai-road, Guangzhou, China
| | - Wang Zhihua
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun, China; Henan-Tuoren Medical Equipment Group Co., Ltd, Menggang-town, Changyuan, China
| | - Han Qi
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun, China
| | - Zhang Yuxin
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun, China
| | - Zhang Hong
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun, China
| | - Gao Yidi
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun, China
| | - Zhang Ying
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun, China
| | - Wang Xianze
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun, China
| | - Zhu Suiyi
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun, China; College of Resources and Environment, Zhongkai University of Agriculture and Engineering, 501 Zhongkai-road, Guangzhou, China.
| |
Collapse
|
17
|
Asiri AM, Shahzad MK, Hussain S, Zhu K, Khan SB, Alamry KA, Alfifi SY, Marwani HM. Analysis of XGaO 3 (X = Ba and Cs) cubic based perovskite materials for photocatalytic water splitting applications: a DFT study. Heliyon 2023; 9:e14112. [PMID: 36925547 PMCID: PMC10011483 DOI: 10.1016/j.heliyon.2023.e14112] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023] Open
Abstract
Energy conversion has become an important technology for meeting energy production and consumption in the modern era. Water splitting and solar cell technologies are projected to close the gap between demand and consumption. Therefore, XGaO3 (X = Ba and Cs) compounds having characteristics i.e., electrical, optical, mechanical, and structural are depicted by using a density functional theory (DFT) based CASTEP software with ultrasoft pseudo-potential plane-wave and Generalized Gradient Approximation and Perdew Burke Ernzerhof exchange correlation functional (GGA-PBE). According to the findings, all of these compounds have a cubic "pm3m" structure with space group 221. The CsGaO3 and BaGaO3 have direct and indirect band gaps, with respect to electronic band-structure recreations. Density of states like total density of states (TDOS) and partial density of states (PDOS) commend the extent of localization of electrons in numerous bands. The optical properties of these compounds are explored by adjusting dispersion curve/relation for theoretical dielectric function (DF) scale to the corresponding peaks. As a result, these materials could be used to consume light in the visible zone via photo catalysis. CsGaO3 in combination with BaGaO3 can produce effective results, so these compounds have a remarkable potential application for sensing and water splitting.
Collapse
Affiliation(s)
- Abdullah M Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Muhammad Khuram Shahzad
- Institute of Physics, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan.,Center of Theoretical and Computational Research, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Shoukat Hussain
- Institute of Physics, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan.,Center of Theoretical and Computational Research, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Kai Zhu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Sher Bahadar Khan
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Khalid Ahmad Alamry
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Soliman Y Alfifi
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Hadi M Marwani
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
18
|
Wu X, Si P. Electrochemical detection of lignin from dietary fiber by laccases immobilized on nanocomposite of CNTs and ionic liquid. INT J ELECTROCHEM SC 2023. [DOI: 10.1016/j.ijoes.2023.100065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
19
|
Development of nanostructured based ZnO@WO3 photocatalyst and its photocatalytic and electrochemical properties: Degradation of Rhodamine B. INT J ELECTROCHEM SC 2023. [DOI: 10.1016/j.ijoes.2023.100055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
20
|
Theoretical -Experimental study of factors affecting the thermal conductivity of SWCNT-CuO (25:75)/water nanofluid and its challenging comparison with CuO nanofluids/water aiming to improve the base fluid thermal conductivity. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
|