1
|
Ma Y, Hu Y, Yang X, Shang Q, Huang Q, Hu L, Jia P, Zhou Y. Fabrication, functionalization and applications of cellulose based aerogels: A review. Int J Biol Macromol 2025; 284:138114. [PMID: 39608549 DOI: 10.1016/j.ijbiomac.2024.138114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/19/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Cellulose based aerogels have recently gained a lot of interest in the past few years because of their sustainability, biocompatibility, biodegradability, and biosafety. Cellulose is an excellent raw material for the preparation of aerogels because of its advantages of strong renewability, low cost, good biocompatibility and easy degradation. The nanoscale cellulose can be prepared by physical, chemical and biological enzyme methods for the preparation of nanocellulose based aerogels (NCBAs). As a third-generation aerogels, NCBAs have the advantages of high porosity, large specific surface area, low density, low dielectric constant and high adsorption, which have many potential applications in adsorption, insulation, energy storage, electromagnetics, and biomedical fields. Here, the recent reported preparation technology of nano-cellulose and NCBAs were reviewed, the preparation methods of cellulose nanocrystals, cellulose nanofibers, and bacterial cellulose were highlighted. Furthermore, the research progresses of manufacturing and applications of functional cellulose hydrogels in the field of dye adsorption, oil adsorption, heavy metal ion adsorption, carbon dioxide adsorption, thermal insulation applications, energy storage, electromagnetic interference application, and biomedicine application were reported comprehensively. Further insights into the future research direction of NCBAs were provided.
Collapse
Affiliation(s)
- Yufeng Ma
- College of Materials Science and Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Yun Hu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), 16 Suojin North Road, Nanjing 210042, China
| | - Xiao Yang
- College of Materials Science and Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China; Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), 16 Suojin North Road, Nanjing 210042, China
| | - Qianqian Shang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), 16 Suojin North Road, Nanjing 210042, China.
| | - Qin Huang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products/Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China
| | - Lihong Hu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), 16 Suojin North Road, Nanjing 210042, China
| | - Puyou Jia
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), 16 Suojin North Road, Nanjing 210042, China.
| | - Yonghong Zhou
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), 16 Suojin North Road, Nanjing 210042, China
| |
Collapse
|
2
|
Tang Q, Leng S, Tan Y, Cheng H, Liu Q, Wang Z, Xu Y, Zhu L, Wang C. Chitosan/dextran-based organohydrogel delivers EZH2 inhibitor to epigenetically reprogram chemo/immuno-resistance in unresectable metastatic melanoma. Carbohydr Polym 2024; 346:122645. [PMID: 39245506 DOI: 10.1016/j.carbpol.2024.122645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024]
Abstract
Melanoma either intrinsically possesses resistance or rapidly acquires resistance to anti-tumor therapy, which often leads to local recurrence or distant metastasis after resection. In this study, we found histone 3 lysine 27 (H3K27) demethylated by an inhibitor of histone methyltransferase EZH2 could epigenetically reverse the resistance to chemo-drug paclitaxel (PTX), or enhance the efficacy of immune checkpoint inhibitor anti-TIGIT via downregulating TIGIT ligand CD155. Next, to address the complexity in the combination of multiple bioactive molecules with distinct therapeutic properties, we developed a polysaccharides-based organohydrogel (OHG) configured with a heterogenous network. Therein, hydroxypropyl chitosan (HPC)-stabilized emulsions for hydrophobic drug entrapment were crosslinked with oxidized dextran (Odex) to form a hydrophilic gel matrix to facilitate antibody accommodation, which demonstrated a tunable sustained release profile by optimizing emulsion/gel volume ratios. As results, local injection of OHG loaded with EZH2 inhibitor UNC1999, PTX and anti-TIGIT did not only synergistically enhance the cytotoxicity of PTX, but also reprogrammed the immune resistance via bi-directionally blocking TIGIT/CD155 axis, leading to the recruitment of cytotoxic effector cells into tumor and conferring a systemic immune memory to prevent lung metastasis. Hence, this polysaccharides-based OHG represents a potential in-situ epigenetic-, chemo- and immunotherapy platform to treat unresectable metastatic melanoma.
Collapse
Affiliation(s)
- Qi Tang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Shaolong Leng
- Department of Dermatovenereology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, PR China
| | - Yinqiu Tan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China; Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, PR China
| | - Huan Cheng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Qi Liu
- The First Dongguan Affiliated Hospital Guangdong Medical University No. 42, Jiaoping Road Dongguan, Guangdong 523710, PR China
| | - Zhongjuan Wang
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, No.245, People East Road, Kunming 650051, PR China
| | - Yunsheng Xu
- Department of Dermatovenereology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, PR China.
| | - Linyu Zhu
- Department of Dermatovenereology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, PR China.
| | - Cuifeng Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China; Department of neurosurgery, JiuJiang Hospital of Traditional Chinese Medicine, Jiujiang, PR China.
| |
Collapse
|
3
|
Jiang Z, Song T, Huang B, Qi C, Peng Z, Wang T, Li Y, Ye L. Hollow Biomass Adsorbent Derived from Platanus Officinalis Grafted with Polydopamine-Mediated Polyethyleneimine for the Removal of Eriochrome Black T from Water. Molecules 2024; 29:5730. [PMID: 39683889 DOI: 10.3390/molecules29235730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Platanus officinalis fibers (PFs) taking advantage of high-availability, eco-friendly and low-cost characteristics have attracted significant focus in the field of biomaterial application. Polyethyleneimine grafted with polydopamine on magnetic Platanus officinalis fibers (PEI-PDA@M-PFs) were prepared through a two-step process of mussel inspiration and the Michael addition reaction, which can work as an effective multifunctional biomass adsorbent for anionic dye with outstanding separation capacity and efficiency. The as-prepared PEI-PDA@M-PFs possess desirable hydrophilicity, magnetism and positive charge, along with abundant amino functional groups on the surface, facilitating efficient adsorption and the removal of Eriochrome Black T (EBT) dyes from water. In addition to the formation mechanism, the adsorption properties, including adsorption isotherms, kinetics, and the reusability of the absorbent, were studied intensively. The as-prepared PEI-PDA@M-PFs achieved a theoretical maximum adsorption capacity of 166.11 mg/g under optimal conditions (pH 7.0), with 10 mg of the adsorbent introduced into the EBT solution. The pseudo-second-order kinetic and Langmuir models were well matched with experimental data. Moreover, thermodynamic data ΔH > 0 revealed homogeneous chemical adsorption with a heat-absorption reaction. The adsorbent remained at high stability and recyclability even after five cycles of EBT adsorption processes. These above findings provide new insights into the adsorption processes and the development of biologic material for sustainable applications.
Collapse
Affiliation(s)
- Zefeng Jiang
- School of Water and Environment, Chang'an University, Xi'an 710054, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region, Ministry of Education, Chang'an University, Xi'an 710054, China
- Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid and Regions, Ministry of Water Resources, Chang'an University, Xi'an 710054, China
| | - Tongyang Song
- School of Water and Environment, Chang'an University, Xi'an 710054, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region, Ministry of Education, Chang'an University, Xi'an 710054, China
- Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid and Regions, Ministry of Water Resources, Chang'an University, Xi'an 710054, China
| | - Bowen Huang
- School of Water and Environment, Chang'an University, Xi'an 710054, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region, Ministry of Education, Chang'an University, Xi'an 710054, China
- Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid and Regions, Ministry of Water Resources, Chang'an University, Xi'an 710054, China
| | - Chengqiang Qi
- School of Water and Environment, Chang'an University, Xi'an 710054, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region, Ministry of Education, Chang'an University, Xi'an 710054, China
- Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid and Regions, Ministry of Water Resources, Chang'an University, Xi'an 710054, China
| | - Zifu Peng
- School of Water and Environment, Chang'an University, Xi'an 710054, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region, Ministry of Education, Chang'an University, Xi'an 710054, China
- Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid and Regions, Ministry of Water Resources, Chang'an University, Xi'an 710054, China
| | - Tong Wang
- School of Water and Environment, Chang'an University, Xi'an 710054, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region, Ministry of Education, Chang'an University, Xi'an 710054, China
- Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid and Regions, Ministry of Water Resources, Chang'an University, Xi'an 710054, China
| | - Yuliang Li
- School of Water and Environment, Chang'an University, Xi'an 710054, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region, Ministry of Education, Chang'an University, Xi'an 710054, China
- Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid and Regions, Ministry of Water Resources, Chang'an University, Xi'an 710054, China
| | - Linjing Ye
- School of Water and Environment, Chang'an University, Xi'an 710054, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region, Ministry of Education, Chang'an University, Xi'an 710054, China
- Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid and Regions, Ministry of Water Resources, Chang'an University, Xi'an 710054, China
| |
Collapse
|
4
|
Sebeia N, Jabli M. In-situ biosynthesis of metallic nanoparticles using Allium sativum and Chondrilla juncea extract: characterization and application in dye decolorization. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024:1-12. [PMID: 39460565 DOI: 10.1080/15226514.2024.2417845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
The synthesis of catalysts has gained specific concern due to their versatile applications in particular azo dye decolorization. In the current work, metallic nanoparticles (copper and silver) were In-situ biosynthesised using Allium sativum and Chondrilla juncea extract. The obtained Allium-copper oxide and Allium-silver oxide materials were analyzed using SEM, TEM, FT-IR, TGA-DTG, SEM, TEM, and XRD techniques. Allium peels had a rough surface, with nanoparticles equally distributed over it. The crystal structure of Allium peels was altered after the addition of CuO and AgO nanoparticles. The highest residual mass values in the prepared materials indicated that the metallic nanoparticles were, in situ, formed. The prepared materials had worse thermal stability than Allium peel powders. The azo dyes, Calmagite and Naphthol Blue Black B were tested in the catalytic power of the resulting materials. The decolorization process was affected by the dye structure, amount of H2O2, dye concentration, time of reaction, and temperature of the bath. The activation energy values for Allium-CuO were 18.44 kJ mol-1 for calmagite, and 23.28 kJ mol-1 for naphthol blue black, respectively. Nevertheless, the energy values for Allium-AgO were 50.01 kJ mol-1 for calmagite and 12.44 kJ mol-1 for Naphthol blue black. The calculated low energy values for the prepared materials suggested the high efficiency of the use of these catalysts in azo dye decolorization under the change of some main experimental conditions.
Collapse
Affiliation(s)
- Nouha Sebeia
- Textile Materials and Processes Research Unit, Tunisia National Engineering School of Monastir, University of Monastir, Monastir, Tunisia
| | - Mahjoub Jabli
- Textile Materials and Processes Research Unit, Tunisia National Engineering School of Monastir, University of Monastir, Monastir, Tunisia
- Department of Chemistry, College of Science, Majmaah University, Al-Majmaah, Saudi Arabia
| |
Collapse
|
5
|
Chen X, Zhang G, Hou F, Zhu J. Highly effective removal of basic fuchsin dye using carboxymethyl konjac glucomannan grafted acrylic acid-acrylamide/montmorillonite composite hydrogel. Int J Biol Macromol 2024; 277:134163. [PMID: 39059536 DOI: 10.1016/j.ijbiomac.2024.134163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/20/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
This study developed a nanocomposite hydrogel, CAM4-MMT, for efficiently removing basic fuchsin dye from water. The hydrogel was prepared by grafting a copolymer of acrylic acid (AA) and acrylamide (AM) onto carboxymethyl konjac glucomannan (CMKGM), and doped with montmorillonite (MMT), exhibited excellent thermal stability, a porous inner structure, large specific surface area (1.407 m2/g), and high swelling capacity (107.3 g/g). The hydrogel achieved a maximum adsorption capacity of 694.1 mg/g and a removal rate of 99.5 %. The Langmuir isotherm and pseudo-second-order kinetic model best described the adsorption process. Regeneration and reuse tests confirmed that the hydrogel has excellent recyclability. In conclusion, the CAM4-MMT composite hydrogel efficiently removed basic fuchsin from water solutions, offering a new scheme for eliminating basic fuchsin using natural polysaccharides with promising applications.
Collapse
Affiliation(s)
- Xing Chen
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China
| | - Guanghua Zhang
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China.
| | - Feifan Hou
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China
| | - Junfeng Zhu
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China
| |
Collapse
|
6
|
Guembe-García M, Utzeri G, Valente AJM, Ibeas S, Trigo-López M, García JM, Vallejos S. Efficient extraction of textile dyes using reusable acrylic-based smart polymers. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135006. [PMID: 38941828 DOI: 10.1016/j.jhazmat.2024.135006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024]
Abstract
Water pollution from industrial or household waste, containing dyes from the textile industry, poses a significant environmental challenge requiring immediate attention. In this study, we have developed a crosslinked-smart-polymer film based on 2-(dimethylamino)ethyl methacrylate copolymerized with other hydrophilic and hydrophobic commercial monomers, and its efficacy in removing 21 different textile dyes was assessed. The smart polymer effectively interacts with and adsorbs dyes, inducing a noticeable colour change. UV-Vis spectroscopy analysis confirmed a removal efficiency exceeding 90 % for anionic dyes, with external diffusion identified as the primary influencing factor on process kinetics, consistent with both pseudo-first-order kinetics and the Crank-Dual model. Isothermal studies revealed distinct adsorption behaviors, with indigo carmine adhering to a Freundlich isotherm while others conformed to the Langmuir model. Permeation and fluorescence analyses corroborated isotherm observations, verifying surface adsorption. Significantly, our proof-of-concept demonstrated the resilience of the smart-film to common fabric softeners and detergents without compromising adsorption capacity. Additionally, the material exhibited reusability (for at least 5 cycles), durability, and good thermal and mechanical properties, with T5 and T10 values of 265 °C and 342 °C, respectively, a Tg of 168 °C, and a water swelling percentage of 54.3 %, thus confirming its stability and suitability for industrial application. ENVIRONMENTAL IMPLICATION: Dyes released during laundry processes should be classified as "hazardous materials" owing to their significant toxicity towards aquatic organisms, with the potential to disrupt ecosystems and harm aquatic biodiversity. This paper discusses the development of a novel acrylic material in film form, engineered to extract toxic anionic dyes. This study directly contributes to mitigating the environmental impact associated with the fashion industry and the domestic use of textiles. It can be implemented on both an industrial and personal scale, thereby encouraging more sustainable practices and promoting collaborative citizen science efforts towards.
Collapse
Affiliation(s)
- Marta Guembe-García
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Gianluca Utzeri
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Artur J M Valente
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Saturnino Ibeas
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Miriam Trigo-López
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Jose Miguel García
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Saul Vallejos
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain.
| |
Collapse
|
7
|
Ma S, Xu K, Zhu X, Liu M, Xu Y, Luo K. Hierarchical mesoporous TiO 2/starch-based microparticles used as an efficient and reusable adsorbent for removal of water-soluble dye. Int J Biol Macromol 2024; 274:133380. [PMID: 38925192 DOI: 10.1016/j.ijbiomac.2024.133380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/16/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
The widespread use of organic dyes in various industrial applications, driven by rapid industrialization, has become a significant environmental concern. Thus, highly efficient and reusable adsorbent for removal of pollutant dyes have gained increasing attention in water treatment. In this study, we present TiO2 nanoparticle-embedded mesoporous starch-based microparticle (TiO2@MSMP) with hierarchical rose-like structure were synthesis by using acetone precipitation of short-chain glucan (SCG) obtained from waxy maize starch. The resulting TiO2@MSMP exhibits an A-type crystalline polymorph and mean particle size of approximately 2 μm, displaying a type IV adsorption isotherm with a mean pore diameter of 19 nm and an average surface area of 12.34 m2/g. The adsorption ability of TiO2@MSMP towards methyl orange (MO) and crystal violet (CV) were 85.8 mg/g and 103.8 mg/g, respectively. The reusability of TiO2@MSMP was achieved by UV irradiation, which resulted in photodegradation of the adsorbed dye over 80 % while maintaining good absorption ability and structural stability during the recycling process. Given its cost-effectiveness, high adsorption capacity, and excellent reusability, TiO2@MSMP holds promise as an effective and environmentally friendly adsorbent with significant potential for removing dyes from aqueous solutions and purifying water.
Collapse
Affiliation(s)
- Shuang Ma
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Kaiyan Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Xiaoning Zhu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Mengyao Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Ying Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Ke Luo
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China.
| |
Collapse
|
8
|
Sundaresan R, Mariyappan V, Chen SM, Ramachandran B, Paulsamy R, Rasu R. Construction of an electrochemical sensor towards environmental hazardous 4-nitrophenol based on Nd(OH) 3-embedded VSe 2 nanocomposite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:46470-46483. [PMID: 36781666 DOI: 10.1007/s11356-023-25688-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
The toxicity of 4-nitrophenol (4-NP) is one of the most common threats to the environment; therefore, developing a simple and sensitive analytical method to detect 4-NP is crucial. In this study, we prepared the Nd(OH)3/VSe2 nanocomposite using the simple hydrothermally assisted ultrasonication method and it was used to detect the 4-NP. Different characterization techniques were used to investigate the morphological and chemical compositions of Nd(OH)3/VSe2 nanocomposite. All of these investigations revealed that Nd(OH)3 nanoparticles were finely dispersed on the surface of the VSe2 nanosheet. The electrical conductivity of our prepared samples was evaluated by the electrochemical impedance spectroscopic technique. The CV and DPV methods were used to explore the electrochemical activity of 4-NP at the Nd(OH)3/VSe2/GCE sensor which exhibited a wide linear range (0.001 to 640 µM), low limit of detection (0.008 µM), and good sensitivity (0.41 µA µM-1 cm-2), respectively. Additionally, Nd(OH)3/VSe2/GCE sensor was tested in water samples for the detection of 4-NP, which exhibited good recovery results. The Nd(OH)3/VSe2 electrode material is a novel one for the electrochemical sensor field, and the obtained overall results also proved that our proposed material is an active material for sensor applications.
Collapse
Affiliation(s)
- Ruspika Sundaresan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan
| | - Vinitha Mariyappan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan.
| | - Balaji Ramachandran
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan
| | - Raja Paulsamy
- Department of Chemistry, Vivekananda College of Arts and Science, Agastheeswaram, Kanyakumari, 629 004, Tamil Nadu, India
| | - Ramachandran Rasu
- Department of Chemistry, The Madura College, Tamil Nadu, Vidya Nagar, Madurai, 625 011, India
| |
Collapse
|
9
|
Hama Aziz KH, Fatah NM, Muhammad KT. Advancements in application of modified biochar as a green and low-cost adsorbent for wastewater remediation from organic dyes. ROYAL SOCIETY OPEN SCIENCE 2024; 11:232033. [PMID: 39076783 PMCID: PMC11285854 DOI: 10.1098/rsos.232033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/10/2024] [Indexed: 07/31/2024]
Abstract
Synthetic organic dyes, which are resistant to biodegradation, pose a notable health risk, potentially leading to cancer and respiratory infections. Researchers have addressed this concern by exploring physicochemical methods to remove organic dyes from wastewater. A particularly promising solution involves modified biochar adsorbents, which demonstrate high efficiency in organic dye removal. Biochar, a charcoal-like material derived from biomass pyrolysis, offers advantages such as low cost, eco-friendliness, high efficiency and reusability. Beyond its role in sustainable soil remediation, biochar proves effective in removing organic dyes from wastewater after undergoing physical or chemical modification. Acid-base activation or metal-heteroatom impregnation enhances biochar's adsorption capacity. This comprehensive review examines the attributes of biochar, common methods for production and modification, and the impacts of raw materials, pyrolysis temperature, heating rate and residence time. It further elucidates the biochar adsorption mechanism in the removal of organic dyes, assessing factors influencing efficiency, including biochar feedstock, solution pH, adsorption temperature, particle size, initial dye concentration, biochar dosage and reaction time. It explores challenges, opportunities, reusability and regeneration methods of biochar in treating organic dye wastewater. It also discusses recent advances in organic dye removal using adsorption-based biochar. The review ultimately advocates for enhancing biochar's adsorption performance through post-modification.
Collapse
Affiliation(s)
- Kosar Hikmat Hama Aziz
- Department of Chemistry, College of Science, University of Sulaimani, Qlyasan Street, Sulaymaniyah City, Kurdistan Region 46001, Iraq
- Medical Laboratory Analysis Department, College of Health Sciences, Cihan University-Sulaimaniya, Sulaymaniyah, Kurdistan Region 46001, Iraq
| | - Nazhad Majeed Fatah
- Department of Environmental Science, College of Environmental Sciences, University of Sulaimani, Sulaymaniyah-Chwarta 46001, Iraq
| | - Khalid Taib Muhammad
- Department of Natural Resources, College of Agricultural Engineering Sciences, University of Sulaimani, Sulaymaniyah 46001, Iraq
| |
Collapse
|
10
|
Yang H, Wu K, Zhu J, Lin Y, Ma X, Cao Z, Ma W, Gong F, Liu C, Pan J. Highly efficient and selective removal of anionic dyes from aqueous solutions using polyacrylamide/peach gum polysaccharide/attapulgite composite hydrogels with positively charged hybrid network. Int J Biol Macromol 2024; 266:131213. [PMID: 38552690 DOI: 10.1016/j.ijbiomac.2024.131213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/08/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
To avoid the weakness (lower adsorption rate and selectivity) of peach gum polysaccharide (PGP) and improve the adsorption performance of polyacrylamide (PAAm) hydrogel (lower adsorption capacity), in the present work, the PGP was chemically tailored to afford ammoniated PGP (APGP) and quaternized PGP (QPGP), and attapulgite (ATP) was bi-functionalized with cation groups and carbon‑carbon double bond. Then, PAAm/APGP and PAAm/QPGP/ATP hydrogels were synthesized via redox polymerization. The synthesis procedure and properties of hydrogels were traced by FTIR, SEM, XPS, TGA, TEM, and BET methods, and the dye adsorption performance of the hydrogels was evaluated using the new coccine (NC) and tartrazine (TTZ) aqueous solutions as the model anionic dyes. Effects of initial dye concentration, pH, and ionic strength on the adsorption were investigated. Compared with PAAm/APGP hydrogel, PAAm/APGP/ATP hydrogel exhibits higher adsorption rate, superior adsorption capacity, stability, and selectivity towards anionic dye. The adsorption process of PAAm/QPGP/ATP hydrogel reached equilibrium in about 20 min and followed the pseudo-second-order kinetic model and Langmuir isotherm. The adsorption capacities towards NC and TTZ of PAAm/QPGP/ATP hydrogel were calculated as 873.235 and 731.432 mg/g. This hydrogel adsorbent originating from PAAm, PGP, and ATP shows great promise for application in practical water treatment.
Collapse
Affiliation(s)
- Haicun Yang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China; National Experimental Demonstration Center for Materials Science and Engineering (Changzhou University), Changzhou, Jiangsu 213164, People's Republic of China
| | - Kaide Wu
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Jianbo Zhu
- Shandong Jianbang New Material Co., Ltd, Jining, Shandong 370800, People's Republic of China
| | - Yongxiang Lin
- Shandong Jianbang New Material Co., Ltd, Jining, Shandong 370800, People's Republic of China
| | - Xudong Ma
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Zheng Cao
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China; National Experimental Demonstration Center for Materials Science and Engineering (Changzhou University), Changzhou, Jiangsu 213164, People's Republic of China.
| | - Wenzhong Ma
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China; National Experimental Demonstration Center for Materials Science and Engineering (Changzhou University), Changzhou, Jiangsu 213164, People's Republic of China.
| | - Fanghong Gong
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China; School of Mechanical Technology, Wuxi Institute of Technology, Wuxi, Jiangsu 214121, People's Republic of China.
| | - Chunlin Liu
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China; National Experimental Demonstration Center for Materials Science and Engineering (Changzhou University), Changzhou, Jiangsu 213164, People's Republic of China
| | - Ji Pan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China; School of Rail Transportation, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China.
| |
Collapse
|
11
|
Reghioua A, Atia D, Hamidi A, Jawad AH, Abdulhameed AS, Mbuvi HM. Production of eco-friendly adsorbent of kaolin clay and cellulose extracted from peanut shells for removal of methylene blue and congo red removal dyes. Int J Biol Macromol 2024; 263:130304. [PMID: 38382796 DOI: 10.1016/j.ijbiomac.2024.130304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 02/06/2024] [Accepted: 02/17/2024] [Indexed: 02/23/2024]
Abstract
This present work targets the production of an eco-friendly adsorbent (hereinafter KA/CEL) from kaolin clay functionalized with cellulose extract obtained from peanut shells. The adsorbents were used for decolorization of two different types of organic dyes (cationic: methylene blue, MB; anionic: Congo red, CR) from an aqueous environment. Several analytical methods, including Brunauer-Emmett-Teller (surface properties), Fourier Transforms infrared (functionality), scanning electron microscope, Energy dispersive X-Ray (morphology), and pHpzc test (surface charge), were used to attain the physicochemical characteristics of KA/CEL. The Box-Behnken Design (BBD) was applied to determine the crucial factors affecting adsorption performance. These included cellulose loading at 25 %, an adsorbent dose of 0.06 g, solution pH set at 10 for MB and 7 for CR, a temperature of 45 °C, and contact times of 12.5 min for MB and 20 min for CR dye. The adsorption data exhibited better agreement with the pseudo-second-order kinetic and Freundlich models. The Langmuir model estimated the monolayer capacity to be 291.5 mg/g for MB and 130.7 mg/g for CR at a temperature of 45 °C. This study's pivotal finding underscores the promising potential of KA/CEL as an effective adsorbent for treating wastewater contaminated with organic dyes.
Collapse
Affiliation(s)
- Abdallah Reghioua
- Fac. Technology, University of El Oued, 39000 El Oued, Algeria; Laboratory of Applied Chemistry and Environment, University of El Oued, 39000 El Oued, Algeria; Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia.
| | - Djamal Atia
- Fac. Exact Sciences, University of El Oued, 39000 El Oued, Algeria
| | | | - Ali H Jawad
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia; Advanced Biomaterials and Carbon Development Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia; Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah 64001, Iraq
| | - Ahmed Saud Abdulhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Anbar, Ramadi, Iraq; College of Engineering, University of Warith Al-Anbiyaa, Karbala, Iraq
| | - Harun M Mbuvi
- Department of Chemistry, Kenyatta University Nairobi, Kenya
| |
Collapse
|
12
|
Mohammad Sharifi K, Poursattar Marjani A, Gozali Balkanloo P. Enhanced dye removal using montmorillonite modified with graphene quantum dots in sustainable salep nanocomposite hydrogel. Sci Rep 2024; 14:7011. [PMID: 38528090 PMCID: PMC10963790 DOI: 10.1038/s41598-024-57729-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/21/2024] [Indexed: 03/27/2024] Open
Abstract
This research investigated the utilization of graphene quantum dot/montmorillonite (GQD/MMT) as an effective nanofiller in a hydrogel composed of salep biopolymer. The semi-IPN hydrogel was synthesized using salep as the substrate, acrylamide (AAm) as the monomer, ammonium persulfate (APS) as an initiator in free radical polymerization, and N,N'-methylenebisacrylamide (MBA) as a cross-linking agent. The hydrogels were applied to remove safranin (SA), methylene blue (MB), crystal violet (CV), methyl green (MG), congo red (CR), and malachite green (MG) dyes from the water. The diverse properties were analyzed using a scanning electron microscope, fourier infrared spectroscopy, mapping, energy dispersive spectroscopy, weighing analysis, X-ray diffraction, and thermal stability analyses. The optimism of the prepared adsorbent in dye absorption was evaluated by measuring the swelling amount, pH impact, adsorbent dosage, and contact time. The adsorption calculations were described using kinetics and isotherm models. The results indicated that the Langmuir isotherm model (R2 = 99.6) and the pseudo-second-order kinetic model (R2 = 99.9) provided the best fit for the absorption process of MB. The presence of additional amounts of GQD/MMT had a reciprocal effect on the adsorption efficiency due to the accumulation of GQD/MMT in the semi-interpenetrating polymer network (semi-IPN (structure. The findings revealed that the samples exhibited high thermal stability, and the absorption process was primarily chemical. Furthermore, the nanocomposite hydrogels demonstrated distinct mechanisms for absorbing anionic dye (CR) and cationic dye (MB). Under optimal conditions, using 7 wt% GQD/MMT at a concentration of 5 ppm, pH = 7, an adsorbent dosage of 50 mg, at room temperature, and a contact time of 90 min, the maximum removal efficiencies were achieved: MB (96.2%), SA (98.2%), MG (86%), CV (99.8%), MG (95.8%), and CR (63.4%). These results highlight the adsorbent's high absorption capacity, rapid removal rate, and reusability, demonstrating its potential as an eco-friendly and cost-effective solution for removing dyes from water.
Collapse
|
13
|
Niculescu AG, Mihaiescu B, Mihaiescu DE, Hadibarata T, Grumezescu AM. An Updated Overview of Magnetic Composites for Water Decontamination. Polymers (Basel) 2024; 16:709. [PMID: 38475395 DOI: 10.3390/polym16050709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Water contamination by harmful organic and inorganic compounds seriously burdens human health and aquatic life. A series of conventional water purification methods can be employed, yet they come with certain disadvantages, including resulting sludge or solid waste, incomplete treatment process, and high costs. To overcome these limitations, attention has been drawn to nanotechnology for fabricating better-performing adsorbents for contaminant removal. In particular, magnetic nanostructures hold promise for water decontamination applications, benefiting from easy removal from aqueous solutions. In this respect, numerous researchers worldwide have reported incorporating magnetic particles into many composite materials. Therefore, this review aims to present the newest advancements in the field of magnetic composites for water decontamination, describing the appealing properties of a series of base materials and including the results of the most recent studies. In more detail, carbon-, polymer-, hydrogel-, aerogel-, silica-, clay-, biochar-, metal-organic framework-, and covalent organic framework-based magnetic composites are overviewed, which have displayed promising adsorption capacity for industrial pollutants.
Collapse
Affiliation(s)
- Adelina-Gabriela Niculescu
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania
| | - Bogdan Mihaiescu
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania
| | - Dan Eduard Mihaiescu
- Department of Organic Chemistry, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Tony Hadibarata
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania
- Environmental Engineering Program, Faculty of Engineering and Science, Curtin University, Miri 98009, Malaysia
| | - Alexandru Mihai Grumezescu
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania
| |
Collapse
|
14
|
Pandey S, Kim S, Kim YS, Kumar D, Kang M. Fabrication of next-generation multifunctional LBG-s-AgNPs@ g-C 3N 4 NS hybrid nanostructures for environmental applications. ENVIRONMENTAL RESEARCH 2024; 240:117540. [PMID: 37925126 DOI: 10.1016/j.envres.2023.117540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 10/15/2023] [Accepted: 10/28/2023] [Indexed: 11/06/2023]
Abstract
Toxic industrial wastes and microbial pathogens in water pose a continuous threat to aquatic life as well as alarming situations for humans. Developing advanced materials with an environmentally friendly approach is always preferable for heterogeneous visible light photocatalysis. As a green reducing tool, LBG-s-AgNPs@ g-C3N4 NS hybrid nanostructures were anchored onto graphitic carbon nitride (g-C3N4) using an environmentally friendly approach of anchoring/decorating AgNPs onto g-C3N4. With the help of advanced techniques, the fabricated hybrid nanostructures were characterized. Using a sheet like matrix of g-C3N4, nanosized and well-defined uniform AgNPs displayed good antibacterial activity as well as superior photodegradation of hazardous dyes, including methylene blue (MB) and Rhodamine B (RhB). Based on the disc diffusion method, three pathogenic microorganisms of clinical significance can be identified by showing the magnitude of their susceptibility. As a result, the following antimicrobial potency was obtained: E. coli ≥ M. luteus ≥ S. aureus. In this study, green synthesized (biogenic) AgNPs decorated with g-C3N4 were found to be more potent antimicrobials than traditional AgNPs. Under visible light irradiation, LBG-s-AgNPs@g-C3N4 NS (0.01 M) demonstrated superior photocatalytic performance: ∼100% RhB degradation and ∼99% of MB degradation in 160 min. LBG-s-AgNPs@g-C3N4 NS showed the highest kinetic rate, 3.44 × 10-2 min-1, which is 27.74 times for the control activity in case of MB dye. While in case of RhB dye LBG-s-AgNPs@g-C3N4 NS showed the highest kinetic rate, 2.26 × 10-2 min-1, which is 17.51 times for the control activity. Due to the surface plasmon resonance (SPR) and reduction in recombination of the electrons and holes generated during photocatalysis, anchoring AgNPs to g-C3N4 further enhanced the photocatalytic degradation of dyes. Using this photocatalyst, hazardous dyes can be efficiently and rapidly degraded, allowing it to be applied for wastewater treatment contaminated with dyes. It also showed remarkable antimicrobial activity towards Gram-ve/Gram + ve pathogens.
Collapse
Affiliation(s)
- Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea; School of Bioengineering and Food Technology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, Himachal Pradesh, India.
| | - Sujeong Kim
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Young Soo Kim
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Misook Kang
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
15
|
Rodríguez-Ramírez CA, Tasqué JE, Garcia NL, D'Accorso NB. Hemicelluloses hydrogel: Synthesis, characterization, and application in dye removal. Int J Biol Macromol 2023; 253:127010. [PMID: 37734519 DOI: 10.1016/j.ijbiomac.2023.127010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/14/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
Novel materials using biowaste as adsorbents in wastewater treatment have been allocated considerable interest. Herein, we present the synthesis of different hydrogels of crosslinked polyacrylamide in presence of hemicelluloses with/ without bentonite, using a soft reaction condition. The structure of new hydrogels was characterized by spectroscopic, thermal and microscopic experiments. The semi-interpenetrated network with hemicelluloses: 10 %; acrylamide 79 %; bentonite 10 %; N,N,N',N'-tetramethylethylenediamine: 1 % allows reducing 20 % the use of non-renewable acrylamide, without changing its decomposition temperatures and keeping its water absorption capacity. This hydrogel was applied to dye removals, such as rhodamine B, methylene red and methylene blue in aqueous solutions. In the case of methylene blue, highest removal is observed with maximum adsorption of qmax = 140.66 mg/g, compared to material without hemicelluloses that only a qmax = 88.495 mg/g. The adsorption kinetics and equilibrium adsorption isotherms are in accordance with the pseudo-second-order kinetic model and Langmuir isotherm model, respectively. The developed hydrogel from hemicelluloses represents a potential alternative adsorbent for a sustainable system of sewage treatment.
Collapse
Affiliation(s)
- C A Rodríguez-Ramírez
- Universidad de Buenos Aires, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina; CONICET- Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Buenos Aires, Argentina
| | | | - Nancy Lis Garcia
- CONICET- Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Buenos Aires, Argentina
| | - Norma B D'Accorso
- Universidad de Buenos Aires, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina; CONICET- Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Buenos Aires, Argentina.
| |
Collapse
|
16
|
Eddy NO, Garg R, Garg R, Ukpe RA, Abugu H. Adsorption and photodegradation of organic contaminants by silver nanoparticles: isotherms, kinetics, and computational analysis. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 196:65. [PMID: 38112987 DOI: 10.1007/s10661-023-12194-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023]
Abstract
In view of the widespread and distribution of several classes and types of organic contaminants, increased efforts are needed to reduce their spread and subsequent environmental contamination. Although several remediation approaches are available, adsorption and photodegradation technologies are presented in this review as one of the best options because of their environmental friendliness, cost-effectiveness, accessibility, less selectivity, and wider scope of applications among others. The bandgap, particle size, surface area, electrical properties, thermal stability, reusability, chemical stability, and other properties of silver nanoparticles (AgNPS) are highlighted to account for their suitability in adsorption and photocatalytic applications, concerning organic contaminants. Literatures have been reviewed on the application of various AgNPS as adsorbent and photocatalyst in the remediation of several classes of organic contaminants. Theories of adsorption have also been outlined while photocatalysis is seen to have adsorption as the initial mechanism. Challenges facing the application of silver nanoparticles have also been highlighted and possible solutions have been presented. However, current information is dominated by applications on dyes and the view of the authors supports the need to strengthen the usefulness of AgNPS in adsorption and photodegradation of more classes of organic contaminants, especially emerging contaminants. We also encourage the simultaneous applications of adsorption and photodegradation to completely convert toxic wastes to harmless forms.
Collapse
Affiliation(s)
- Nnabuk Okon Eddy
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Enugu State, Nigeria.
| | - Rajni Garg
- Department of Applied Science and Humanities, Galgotias College of Engineering & Technology, Greater Noida, Uttar Pradesh, 201310, India
| | - Rishav Garg
- Department of Civil Engineering, Galgotias College of Engineering & Technology, Greater Noida, Uttar Pradesh, 201310, India
| | | | - Hillary Abugu
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Enugu State, Nigeria
| |
Collapse
|
17
|
Cai Q, Zeng J, Lin X, Xia D, Yu W, Qiu J, Yang M, Wang X. Study on the Effect of AO-Coupled Constructed Wetlands on Conventional and Trace Organic Pollutant Treatment. ACS OMEGA 2023; 8:38983-38990. [PMID: 37901527 PMCID: PMC10601076 DOI: 10.1021/acsomega.3c03461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/04/2023] [Indexed: 10/31/2023]
Abstract
In this study, a pilot-scale integrated process was developed, which combined the integrated biological contact oxidation technology (AO) and the improved constructed wetland technology. The results showed significant removal efficiency for both conventional and trace organic pollutants. The average removal efficiencies for COD, NH4+-N, and TP were 78.52, 85.95, and 49.47%, respectively. For trace organic pollutants, triclocarban, triclosan, and sulfadiazine, the removal efficiencies reached 60.14, 57.42, and 84.29%, respectively. The AO stage played a crucial role in removing trace organic pollutants, achieving removal efficiencies of 37.28, 43.44, and 83.82% for triclocarban, triclosan, and sulfadiazine, respectively. Subsequent treatment using improved constructed wetland technology with coal slag + gravel fillers demonstrated the highest removal efficiency, with average efficiencies of 68.66, 63.38, and 81.32% for triclocarban, triclosan, and sulfadiazine, respectively. Correlation analysis revealed positive correlations between temperature, precipitation, and the removal efficiency of COD, NH4+-N, and TP, while negative correlations were observed with the removal efficiency of triclocarban, triclosan, and sulfadiazine. Furthermore, the influent concentrations of triclocarban and triclosan were significantly negatively correlated with the removal efficiency of COD and TP. The presence of triclocarban and triclosan potentially reduced the microbial diversity and hindered sludge sedimentation performance.
Collapse
Affiliation(s)
- Qianyi Cai
- College
of Forestry, Guangxi University, Nanning 530004, China
- South
China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Jingwen Zeng
- South
China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Xiaojun Lin
- South
China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Di Xia
- South
China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Weida Yu
- South
China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Jinrong Qiu
- South
China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Mei Yang
- College
of Forestry, Guangxi University, Nanning 530004, China
| | - Xiujuan Wang
- South
China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| |
Collapse
|
18
|
Cai J, Peng Y, Jiang Y, Li L, Wang H, Li K. Application of Fe-MOFs in Photodegradation and Removal of Air and Water Pollutants: A Review. Molecules 2023; 28:7121. [PMID: 37894600 PMCID: PMC10609057 DOI: 10.3390/molecules28207121] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/08/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023] Open
Abstract
Photocatalytic technology has received increasing attention in recent years. A pivotal facet of photocatalytic technology lies in the development of photocatalysts. Porous metal-organic framework (MOF) materials, distinguished by their unique properties and structural characteristics, have emerged as a focal point of research in the field, finding widespread application in the photo-treatment and conversion of various substances. Fe-based MOFs have attained particular prominence. This review explores recent advances in the photocatalytic degradation of aqueous and gaseous substances. Furthermore, it delves into the interaction between the active sites of Fe-MOFs and pollutants, offering deeper insights into their mechanism of action. Fe-MOFs, as photocatalysts, predominantly facilitate pollutant removal through redox processes, interaction with acid sites, the formation of complexes with composite metal elements, binding to unsaturated metal ligands (CUSs), and hydrogen bonding to modulate their respiratory behavior. This review also highlights the focal points of future research, elucidating the challenges and opportunities that lie ahead in harnessing the characteristics and advantages of Fe-MOF composite catalysts. In essence, this review provides a comprehensive summary of research progress on Fe-MOF-based catalysts, aiming to serve as a guiding reference for other catalytic processes.
Collapse
Affiliation(s)
- Jun Cai
- National Joint Engineering Research Center of Energy Saving and Environmental Protection Technology in Metallurgy and Chemical Engineering Industry, Kunming University of Science and Technology, Kunming 650093, China;
| | - Yang Peng
- Kunming Electric Power Design Institute Limited Liability Company, Kunming 650034, China
| | - Yanxin Jiang
- Yunnan Hubai Environmental Protection Technology Co., Ltd., Kunming 650034, China
| | - Li Li
- Zhejiang Ecological and Environmental Monitoring Center, Hangzhou 310012, China
| | - Hua Wang
- National Joint Engineering Research Center of Energy Saving and Environmental Protection Technology in Metallurgy and Chemical Engineering Industry, Kunming University of Science and Technology, Kunming 650093, China;
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China
| | - Kongzhai Li
- National Joint Engineering Research Center of Energy Saving and Environmental Protection Technology in Metallurgy and Chemical Engineering Industry, Kunming University of Science and Technology, Kunming 650093, China;
| |
Collapse
|
19
|
Jung S, Kim J, Bang J, Jung M, Park S, Yun H, Kwak HW. pH-sensitive cellulose/chitin nanofibrillar hydrogel for dye pollutant removal. Carbohydr Polym 2023; 317:121090. [PMID: 37364959 DOI: 10.1016/j.carbpol.2023.121090] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023]
Abstract
In this study, a pH-sensitive smart hydrogel was successfully prepared by combining a polyelectrolyte complex using biopolymeric nanofibrils. By adding a green citric acid cross-linking agent to the formed chitin and cellulose-derived nanofibrillar polyelectrolytic complex, a hydrogel with excellent structural stability could be prepared even in a water environment, and all processes were conducted in an aqueous system. The prepared biopolymeric nanofibrillar hydrogel not only enables rapid conversion of swelling degree and surface charge according to pH but can also effectively remove ionic contaminants. The ionic dye removal capacity was 372.0 mg/g for anionic AO and 140.5 mg/g for cationic MB. The surface charge conversion ability according to pH could be easily applied to the desorption of the removed contaminants, and as a result, it showed an excellent contaminant removal efficiency of 95.1 % or more even in the repeated reuse process 5 times. Overall, the eco-friendly biopolymeric nanofibrillar pH-sensitive hydrogel shows potential for complex wastewater treatment and long-term use.
Collapse
Affiliation(s)
- Seungoh Jung
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jungkyu Kim
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Junsik Bang
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Minjung Jung
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sangwoo Park
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Heecheol Yun
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hyo Won Kwak
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
20
|
Xia M, Yang R, Zhao N, Chen X, Dong M, Chen J. A Method of Water COD Retrieval Based on 1D CNN and 2D Gabor Transform for Absorption-Fluorescence Spectra. MICROMACHINES 2023; 14:1128. [PMID: 37374713 DOI: 10.3390/mi14061128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/19/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023]
Abstract
Chemical Oxygen Demand (COD) is one of the indicators of organic pollution in water bodies. The rapid and accurate detection of COD is of great significance to environmental protection. To address the problem of COD retrieval errors in the absorption spectrum method for fluorescent organic matter solutions, a rapid synchronous COD retrieval method for the absorption-fluorescence spectrum is proposed. Based on a one-dimensional convolutional neural network and 2D Gabor transform, an absorption-fluorescence spectrum fusion neural network algorithm is developed to improve the accuracy of water COD retrieval. Results show that the RRMSEP of the absorption-fluorescence COD retrieval method is 0.32% in amino acid aqueous solution, which is 84% lower than that of the single absorption spectrum method. The accuracy of COD retrieval is 98%, which is 15.3% higher than that of the single absorption spectrum method. The test results on the actual sampled water spectral dataset demonstrate that the fusion network outperformed the absorption spectrum CNN network in measuring COD accuracy, with the RRMSEP improving from 5.09% to 1.15%.
Collapse
Affiliation(s)
- Meng Xia
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Ruifang Yang
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China
| | - Nanjing Zhao
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Xiaowei Chen
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China
| | - Ming Dong
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Jingsong Chen
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
21
|
Yuan W, Wang F, Qu X, Wang S, Lei B, Shao J, Wang Q, Lin J, Wang W, Dong X. In situ rapid synthesis of hydrogels based on a redox initiator and persistent free radicals. NANOSCALE ADVANCES 2023; 5:1999-2009. [PMID: 36998656 PMCID: PMC10044294 DOI: 10.1039/d3na00038a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/14/2023] [Indexed: 06/19/2023]
Abstract
The development of fast and economical hydrogel manufacturing methods is crucial for expanding the application of hydrogels. However, the commonly used rapid initiation system is not conducive to the performance of hydrogels. Therefore, the research focuses on how to improve the preparation speed of hydrogels and avoid affecting the properties of hydrogels. Herein, a redox initiation system with nanoparticle-stabilized persistent free radicals was introduced to rapidly synthesize high-performance hydrogels at room temperature. A redox initiator composed of vitamin C and ammonium persulfate rapidly provides hydroxyl radicals at room temperature. Simultaneously, three-dimensional nanoparticles can stabilize free radicals and prolong their lifetime, thereby increasing the free radical concentration and accelerating the polymerization rate. And casein enabled the hydrogel to achieve impressive mechanical properties, adhesion, and electrical conductivity. This method greatly facilitates the rapid and economical synthesis of high-performance hydrogels and presents broad application prospects in the field of flexible electronics.
Collapse
Affiliation(s)
- Wei Yuan
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech) Nanjing 211816 China
| | - Fangfang Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech) Nanjing 211816 China
| | - Xinyu Qu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech) Nanjing 211816 China
| | - Siying Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech) Nanjing 211816 China
| | - Bing Lei
- School of Physical Science and Information Technology, Liaocheng University Liaocheng 252059 China
| | - Jinjun Shao
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech) Nanjing 211816 China
| | - Qian Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech) Nanjing 211816 China
| | - Jianjian Lin
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| | - Wenjun Wang
- School of Physical Science and Information Technology, Liaocheng University Liaocheng 252059 China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech) Nanjing 211816 China
- School of Chemistry & Materials Science, Jiangsu Normal University Xuzhou 221116 China
| |
Collapse
|
22
|
Altintig E, Özcelik TÖ, Aydemir Z, Bozdag D, Kilic E, Yılmaz Yalçıner A. Modeling of methylene blue removal on Fe 3O 4 modified activated carbon with artificial neural network (ANN). INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 25:1714-1732. [PMID: 36927305 DOI: 10.1080/15226514.2023.2188424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In this study, AC/Fe3O4 adsorbent was first synthesized by modifying activated carbon with Fe3O4. The structure of the adsorbent was then characterized using analysis techniques specific surface area (BET), Scanning Electron Microscopy with Energy Dispersive X-ray Spectroscopy (SEM-EDX), and Fourier Transform Infrared Spectroscopy (FTIR). Equilibrium, thermodynamic and kinetic studies were carried out on the removal of methylene blue (MB) dyestuff from aqueous solutions AC/Fe3O4 adsorbent. The Langmuir maximum adsorption capacity of AC/Fe3O4 was 312.8 mg g-1, and the best fitness was observed with the pseudo-second-order kinetics model, with an endothermic adsorption process. In the final stage of the study, the adsorption process of MB on AC/Fe3O4 was modeled using artificial neural network modeling (ANN). Considering the smallest mean square error (MSE), The backpropagation neural network was configured as a three-layer ANN with a tangent sigmoid transfer function (Tansig) at the hidden layer with 10 neurons, linear transfer function (Purelin) the at output layer and Levenberg-Marquardt backpropagation training algorithm (LMA). Input parameters included initial solution pH (2.0-9.0), amount (0.05-0.5 g L-1), temperature (298-318 K), contact time (5-180 min), and concentration (50-500 mg L-1). The effect of each parameter on the removal and adsorption percentages was evaluated. The performance of the ANN model was adjusted by changing parameters such as the number of neurons in the middle layer, the number of inputs, and the learning coefficient. The mean absolute percentage error (MAPE) was used to evaluate the model's accuracy for the removal and adsorption percentage output parameters. The absolute fraction of variance (R2) values were 99.83, 99.36, and 98.26% for the dyestuff training, validation, and test sets, respectively.
Collapse
Affiliation(s)
- Esra Altintig
- Pamukova Vocational School, Sakarya University of Applied Sciences, Sakarya, Turkey
| | - Tijen Över Özcelik
- Industrial Engineering Department, Engineering Faculty, Sakarya University, Sakarya, Turkey
| | | | - Dilay Bozdag
- Industrial Engineering Department, Engineering Faculty, Sakarya University, Sakarya, Turkey
- Akcoat Advanced Chemical Coating Materials Industry and Trade Joint Stock Company, Sakarya, Turkey
| | - Eren Kilic
- Ser Durable Consumer Goods Domestic and Foreign Trade Industry Inc., Kayseri, Turkey
| | - Ayten Yılmaz Yalçıner
- Industrial Engineering Department, Engineering Faculty, Sakarya University, Sakarya, Turkey
| |
Collapse
|
23
|
Hu SZ, Deng YF, Li L, Zhang N, Huang T, Lei YZ, Wang Y. Biomimetic Polylactic Acid Electrospun Fibers Grafted with Polyethyleneimine for Highly Efficient Methyl Orange and Cr(VI) Removal. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3770-3783. [PMID: 36856335 DOI: 10.1021/acs.langmuir.2c03508] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The rapid growth of industrialization has resulted in the release of large quantities of pollutants into the environment, especially dyes and heavy metals, which are environmentally hazardous for humans and animals. It is considered as the most promising and environmentally friendly route to develop green materials by using the green modification method, which has no negative impact on the environment. In this work, the green material of polylactic acid (PLA) was used as the substrate material, and a novel modification method of polydopamine (PDA)-assisted polyethyleneimine (PEI) grafting was developed. The electrospun PLA fibers are mainly composed of stereocomplex crystallites, which were achieved via the electrospinning of poly(l-lactic acid) and poly(d-lactic acid). The water-soluble PEI was grafted onto the PDA-modified PLA fibers through the glutaraldehyde-assisted cross-linking reaction. The prepared composite fibers can be degraded, which is environmentally friendly and meets the requirements of sustainable development. The potential application of such PLA composite fibers in wastewater treatment was intensively evaluated. The results show that at appropriate fabrication conditions (PDA concentration of 3 g·L-1 and a PEI molecular weight of 70,000 g·mol-1), the composite fibers exhibit the maximum adsorption capacities of 612 and 398.41 mg·g-1 for methyl orange (MO) and hexavalent chromium [Cr(VI)], respectively. Simultaneously, about 64.79% of Cr(VI) adsorbed on the composite fibers was reduced to Cr(III). The above results show that the PLA composite fibers have a good development prospect in the field of wastewater treatment.
Collapse
Affiliation(s)
- Shao-Zhong Hu
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
- School of Chemistry, Southwest Jiaotong University, Chengdu 610031, China
| | - Yu-Fan Deng
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
- School of Chemistry, Southwest Jiaotong University, Chengdu 610031, China
| | - Liang Li
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
- School of Chemistry, Southwest Jiaotong University, Chengdu 610031, China
| | - Nan Zhang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
- School of Chemistry, Southwest Jiaotong University, Chengdu 610031, China
| | - Ting Huang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
- School of Chemistry, Southwest Jiaotong University, Chengdu 610031, China
| | - Yan-Zhou Lei
- Analytical and Testing Center, Southwest Jiaotong University, Chengdu 610031, China
| | - Yong Wang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
- School of Chemistry, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
24
|
Kaur H, Devi N, Siwal SS, Alsanie WF, Thakur MK, Thakur VK. Metal-Organic Framework-Based Materials for Wastewater Treatment: Superior Adsorbent Materials for the Removal of Hazardous Pollutants. ACS OMEGA 2023; 8:9004-9030. [PMID: 36936323 PMCID: PMC10018528 DOI: 10.1021/acsomega.2c07719] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
In previous years, different pollutants, for example, organic dyes, antibiotics, heavy metals, pharmaceuticals, and agricultural pollutants, have been of note to the water enterprise due to their insufficient reduction during standard water and wastewater processing methods. MOFs have been found to have potential toward wastewater management. This Review focused on the synthesis process (such as traditional, electrochemical, microwave, sonochemical, mechanochemical, and continuous-flow spray-drying method) of MOF materials. Moreover, the properties of the MOF materials have been discussed in detail. Further, MOF materials' applications for wastewater treatment (such as the removal of antibiotics, organic dyes, heavy metal ions, and agricultural waste) have been discussed. Additionally, we have compared the performances of some typical MOFs-based materials with those of other commonly used materials. Finally, the study's current challenges, future prospects, and outlook have been highlighted.
Collapse
Affiliation(s)
- Harjot Kaur
- Department
of Chemistry, M.M. Engineering College,
Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India
| | - Nishu Devi
- Mechanics
and Energy Laboratory, Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Samarjeet Singh Siwal
- Department
of Chemistry, M.M. Engineering College,
Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India
| | - Walaa F. Alsanie
- Department
of Clinical Laboratories Sciences, The Faculty of Applied Medical
Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Manju Kumari Thakur
- Department
of Chemistry, Government Degree College Sarkaghat, Himachal Pradesh University, Shimla 171005, India
| | - Vijay Kumar Thakur
- Biorefining
and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, United Kingdom
- School of
Engineering, University of Petroleum &
Energy Studies (UPES), Dehradun, Uttarakhand 248007, India
- Centre
for Research & Development, Chandigarh
University, Mohali, Punjab 140413, India
| |
Collapse
|
25
|
Facile Fabrication of Oxygen-Defective ZnO Nanoplates for Enhanced Photocatalytic Degradation of Methylene Blue and In Vitro Antibacterial Activity. Catalysts 2023. [DOI: 10.3390/catal13030567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
In this study, we examined whether catalysts with many defects have excellent photoactivity. We prepared ZnO nanoplates with varying degrees of defects in a short time of 4 h by varying the crystal growth temperature at 50, 100, 150, and 200 °C under a strong alkali NaOH atmosphere of 4.0 M. During high-temperature preparation of ZnO, crystal defects were reduced and crystallinity was further increased. In crystallized systems over 100 °C, rhombic nanoplates were used to control particle shape and induce growth in only two axes. The PL, Raman, and XPS analyses confirmed the presence of strong oxygen vacancies in all ZnO nanoplates, and the vacancies decreased with increasing crystallization temperatures. Methylene blue (MB) dye was initially fixed at 50 mg/L with a peak decrease in absorption at 600–700 nm, confirming its decomposition over time. For the 5 h reaction, the MB removal concentration follows the following order: ZnO-50 < ZnO-100 < ZnO-150 < ZnO-200. The study confirms that ZnO-200 nanoplates with fewer oxygen vacancies decompose MB more quickly. ZnO-200 nanoplates synthesized at 200 °C provided the best sterilization performance when tested against gram-positives and gram-negatives, Escherichia coli and Staphylococcus aureus, respectively. ZnO-200 nanoplates after 3 h showed a high sterilization performance of 96.95% (86.67% in a dark room) for staphylococcus aureus and 95.82% (74.66% in a dark room) for Escherichia coli when irradiated with light. Particularly noteworthy in this study is that ·OH and ·O2− radicals are generated more strongly in ZnO-200 than in ZnO-50 nanoplates. These results show that too-strong oxygen vacancies rather inhibit the antibacterial performance, and that the virtue of moderation also exists in the catalytic activity.
Collapse
|