1
|
Ferreira JT, Amaral FM, Brasileiro-Vidal AC, Bezerra RP, Bezerra ASC, Motteran F, Kato MT, Florencio L, Menezes O, Gavazza S. Evaluating the removal of the tetra-azo dye direct black-22 in Chlorella vulgaris closed-cultivation systems. ENVIRONMENTAL TECHNOLOGY 2024:1-9. [PMID: 39324732 DOI: 10.1080/09593330.2024.2406989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/04/2024] [Indexed: 09/27/2024]
Abstract
The removal of the tetra-azo dye Direct Black 22 (DB22) using the microalga Chlorella vulgaris was evaluated in the present study, aiming to understand the contribution of different processes (biodegradation, photodegradation, and adsorption) in the removal of this contaminant. The growth and morphological characteristics of C. vulgaris were not affected by the presence of the dye in the reaction medium. The efficiency of dye removal was 62.6 ± 1.46%, 47.7 ± 7.2% of which was attributed to photodegradation, while 13.2 ± 6.5% were associated with the contribution of the microalga by an enzymatic route and 1.7 ± 9.6% with an adsorption process. Additionally, tests with the organism Allium cepa as a bioindicator revealed that DB22 and its byproducts did not induce toxicity, but cytotoxicity and genotoxicity were induced. We observed that genotoxicity was reduced after the remediation process. Our results establish photodegradation as the primary mechanism and biodegradation as the secondary mechanism driving the removal of DB22 within a Chlorella culture. Researchers must carefully consider all aspects involved in the removal process, including photodegradation, biodegradation, and adsorption processes.
Collapse
Affiliation(s)
- Jucélia T Ferreira
- Laboratory of Environmental Sanitation, Department of Civil and Environmental Engineering, Federal University of Pernambuco, Cidade Universitária, Recife, Brazil
| | - Fernanda M Amaral
- Laboratory of Environmental Sanitation, Department of Civil and Environmental Engineering, Federal University of Pernambuco, Cidade Universitária, Recife, Brazil
| | | | - Raquel P Bezerra
- Department of Morphology and Animal Physiology, Rural Federal University of Pernambuco, Recife, Brazil
| | - Albean S C Bezerra
- Department of Genetics, Federal University of Pernambuco, Cidade Universitária, Recife, Brazil
| | - Fabricio Motteran
- Laboratory of Environmental Sanitation, Department of Civil and Environmental Engineering, Federal University of Pernambuco, Cidade Universitária, Recife, Brazil
| | - Mário T Kato
- Laboratory of Environmental Sanitation, Department of Civil and Environmental Engineering, Federal University of Pernambuco, Cidade Universitária, Recife, Brazil
| | - Lourdinha Florencio
- Laboratory of Environmental Sanitation, Department of Civil and Environmental Engineering, Federal University of Pernambuco, Cidade Universitária, Recife, Brazil
| | - Osmar Menezes
- Laboratory of Environmental Sanitation, Department of Civil and Environmental Engineering, Federal University of Pernambuco, Cidade Universitária, Recife, Brazil
| | - Sávia Gavazza
- Laboratory of Environmental Sanitation, Department of Civil and Environmental Engineering, Federal University of Pernambuco, Cidade Universitária, Recife, Brazil
| |
Collapse
|
2
|
Campos V, Domingos JMF, Nolasco MA, Morais LCDE, Marques DG. Assessment of treatability of the Tietê River through a process of coagulation-flocculation associated with hydrodynamic cavitation and ozonation. AN ACAD BRAS CIENC 2024; 96:e20230856. [PMID: 39166547 DOI: 10.1590/0001-3765202420230856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 04/26/2024] [Indexed: 08/23/2024] Open
Abstract
As it flows through the city of São Paulo, the Tietê River receives heavy discharges of industrial effluents and domestic sewage, resulting from the city's continuous urban expansion and the inadequacy of its sanitary sewage system. This study focused on an analysis of the efficiency of PGα21Ca and quaternary ammonium tannate, water purification products, based on coagulation-flocculation and sedimentation tests, followed by treatment with a hydrodynamic cavitation reactor associated with ozonation in the treatment of Tietê River water. The removal of turbidity, apparent color, and chemical oxygen demand (COD) were evaluated. Jar testing assays were conducted, and the best turbidity removal rates were obtained with a concentration of 300 mg L-1 for PGα21Ca and 150 mg L-1 for quaternary ammonium tannate. The coagulation-flocculation treatment removed approximately 93% of turbidity for both coagulants. After combining coagulation-flocculation with hydrodynamic cavitation with ozonation, the final COD removal rate applying PGα21Ca was 47.63% in 1 hour of reaction, while that of quaternary ammonium tannate was 40.13% in 2 hours of reaction. Although the results appear to indicate the superior performance of PGα21Ca, it should be noted that the treatment with quaternary ammonium tannate also provided good results in reducing turbidity, COD, and apparent color, using a smaller dose of this coagulant and that its use may be more advantageous from an environmental point of view, due to its natural composition.
Collapse
Affiliation(s)
- Valquíria Campos
- Universidade Estadual Paulista - UNESP , Instituto de Ciência e Tecnologia de Sorocaba, Av. Três de Março, 511, Alto da Boa Vista, 18087-180 Sorocaba, SP, Brazil
| | - Janaina M F Domingos
- Universidade de São Paulo - USP , Escola de Artes, Ciências e Humanidades, Rua Arlindo Bettio, 1000, Ermelino Matarazzo, 03828-000 São Paulo, SP, Brazil
| | - Marcelo A Nolasco
- Universidade de São Paulo - USP , Escola de Artes, Ciências e Humanidades, Rua Arlindo Bettio, 1000, Ermelino Matarazzo, 03828-000 São Paulo, SP, Brazil
| | - Leandro C DE Morais
- Universidade Estadual Paulista - UNESP , Instituto de Ciência e Tecnologia de Sorocaba, Av. Três de Março, 511, Alto da Boa Vista, 18087-180 Sorocaba, SP, Brazil
| | - Diego G Marques
- Universidade Estadual Paulista - UNESP , Instituto de Ciência e Tecnologia de Sorocaba, Av. Três de Março, 511, Alto da Boa Vista, 18087-180 Sorocaba, SP, Brazil
| |
Collapse
|
3
|
Kalia S, Samuchiwal S, Dalvi V, Malik A. Exploring fungal-mediated solutions and its molecular mechanistic insights for textile dye decolorization. CHEMOSPHERE 2024; 360:142370. [PMID: 38763399 DOI: 10.1016/j.chemosphere.2024.142370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 03/29/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Decolorization of textile dyes and study of their intermediate compounds is necessary to comprehend the mechanism of dye degradation. In the present study, different fungal mediated solutions were explored to provide an alternative to treat the reactive dyes. Growing biomass of Pleurotus sajor caju showed 83% decolorization (249.99 mg L-1 removal) of Reactive Blue 13 (RB 13) and 63% decolorization (188.83 mg L-1) of Reactive Black 5 (RB 5) at 300 mg L-1 initial concentration on 8 d. Higher laccase activity was positively correlated with increase in decolorization. However, increasing dye concentration has inhibitory effect on fungal biomass due to increase in toxicity. In laccase mediated decolorization, laccase produced from P. sajor caju using carbon rich waste material as substrate showed 89% decolorization (276.36 mg L-1 removal) of RB 13 and 33% decolorization (105.37 mg L-1 removal) of RB 5 at 300 mg L-1 initial dye concentration in 100 min at 30 °C and pH 3.0'. Comparing the two methods, laccase-mediated decolorization shows better decolorization in less time and does not produce sludge. Further, the present work also attempted to study the dye degradation pathway for Reactive blue 13 via laccase mediated process. Fourier-transform infrared spectroscopy (FTIR), high-performance liquid chromatography (HPLC), and gas chromatography-mass spectrometry (GC-MS) were utilized to identify the degraded products. The GC-MS analysis showed the formation of naphthalene, naphthalene 2-ol, benzene,1-2, dicarboxylic acid, 4, amino, 6,chloro, 1-3-5, triazin-2-ol as the final degraded products after enzymatic degradation of RB 13. These findings provide in-depth study of laccase-mediated textile dye degradation mechanism.
Collapse
Affiliation(s)
- Shweta Kalia
- Applied Microbiology Lab, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, 110016, India.
| | - Saurabh Samuchiwal
- Applied Microbiology Lab, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, 110016, India.
| | - Vivek Dalvi
- Applied Microbiology Lab, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, 110016, India.
| | - Anushree Malik
- Applied Microbiology Lab, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, 110016, India.
| |
Collapse
|
4
|
Shah AA, Walia S, Kazemian H. Advancements in combined electrocoagulation processes for sustainable wastewater treatment: A comprehensive review of mechanisms, performance, and emerging applications. WATER RESEARCH 2024; 252:121248. [PMID: 38335752 DOI: 10.1016/j.watres.2024.121248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
This review explores the potential and challenges of combining electrochemical, especially electrocoagulation (EC) process, with various - wastewater treatment methods such as membranes, chemical treatments, biological methods, and oxidation processes to enhance pollutant removal and reduce costs. It emphasizes the advantages of using electrochemical processes as a pretreatment step, including increased volume and improved quality of permeate water, mitigation of membrane fouling, and lower environmental impact. Pilot-scale studies are discussed to validate the effectiveness of combined EC processes, particularly for industrial wastewater. Factors such as electrode materials, coating materials, and the integration of a third process are discussed as potential avenues for improving the environmental sustainability and cost-effectiveness of the combined EC processes. This review also discusses factors for improvement and explores the EC process combined with Advanced Oxidation Processes (AOP). The conclusion highlights the need for combined EC processes, which include reducing electrode consumption, evaluating energy efficiency, and conducting pilot-scale investigations under continuous flow conditions. Furthermore, it emphasizes future research on electrode materials and technology commercialization. Overall, this review underscores the importance of combined EC processes in meeting the demand for clean water resources and emphasizes the need for further optimization and implementation in industrial applications.
Collapse
Affiliation(s)
- Aatif Ali Shah
- Materials Technology & Environmental Research (MATTER) lab, University of Northern British Columbia, Prince George, BC, Canada; Environment Science Program, Faculty of Environment, University of Northern British Columbia, Prince George, BC V2N4Z9, Canada.
| | - Sunil Walia
- Materials Technology & Environmental Research (MATTER) lab, University of Northern British Columbia, Prince George, BC, Canada
| | - Hossein Kazemian
- Materials Technology & Environmental Research (MATTER) lab, University of Northern British Columbia, Prince George, BC, Canada; Northern Analytical Lab Services (Northern BC's Environmental and Climate Solutions Innovation Hub), University of Northern British Columbia, Prince George, BC, Canada; Environment Science Program, Faculty of Environment, University of Northern British Columbia, Prince George, BC V2N4Z9, Canada.
| |
Collapse
|
5
|
Sebastian SL, Kalivel P, Subbiah K, David JJ, Stephen AMM, Palanichamy J. Electrocoagulation using Ti/Ti for the remediation and reuse of aqueous Dispersive Blue-79. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:177. [PMID: 38243084 DOI: 10.1007/s10661-024-12320-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/05/2024] [Indexed: 01/21/2024]
Abstract
The entire ecology is contaminated by the synthetic dyes that are widely utilised in the textile industries. They can be handled using a variety of technologies, but an eco-friendly method called electrocoagulation has been used to prevent additional contamination. Textile wastewater containing disperse dyes are successfully treated in Electrocoagulation (EC) utilizing Al, Fe, and Stainless Steel (SS), but it is not cost effective, also the treated water contains certain mg/L of the metals used, along with dye components, which obstructs the reuse of the same. The effects of initial pH, applied voltage, dye concentration, supporting electrolyte, and treatment time on the colour removal efficiency (CRE) and consumption of energy were examined in EC process followed by activated charcoal filtration (hybrid process) with a monopolar Ti/Ti electrode on the remediation of aqueous solution of Dispersive Blue-79 (dye 3G). The maximum CREobtained was 99.4%, chemical oxygen demand (COD) 93%, and biological oxygen demand (BOD) 85%, under the following optimized operating conditions, applied voltage 15 V, pH = 7, concentration of dye, electrolyte 110 mg/L, 0.2 g/L and time = 15 min. The overall operating cost for the treatment of aqueous dye 3G was 0.455US/m3. The mechanism of EC was studied using XPS analysis in the sludge obtained. For the purpose of the reuse, FTIR, AAS, and ICP-OES analysis were done and compared with the aqueous dye 3G, after EC and hybrid process to ensure the maximum removal of the degraded dye components and metal. ICP-OES results showed that there were no traces of metal in the treated aqueous dye 3G using this method. Throughout the study, the experimental outcomes indicated that the hybrid process upgraded the quality of the treated aqueous dye 3G.
Collapse
Affiliation(s)
- Sahaya Leenus Sebastian
- Department of Applied Chemistry, Karunya Institute of Technology and Sciences, Coimbatore, 641114, Tamil Nadu, India
| | - Parameswari Kalivel
- Department of Applied Chemistry, Karunya Institute of Technology and Sciences, Coimbatore, 641114, Tamil Nadu, India.
| | - Kavitha Subbiah
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, 641114, Tamil Nadu, India
| | - Jovitha Jane David
- Department of Applied Chemistry, Karunya Institute of Technology and Sciences, Coimbatore, 641114, Tamil Nadu, India
| | - Asath Murphy Maria Stephen
- Department of Applied Chemistry, Karunya Institute of Technology and Sciences, Coimbatore, 641114, Tamil Nadu, India
| | - Jegathambal Palanichamy
- Water Institute, Karunya Institute of Technology and Sciences, Coimbatore, 641114, Tamil Nadu, India
| |
Collapse
|
6
|
Zhang Y, Plesner TJ, Ouyang Y, Zheng YC, Bouhier E, Berentzen EI, Zhang M, Zhou P, Zimmermann W, Andersen GR, Eser BE, Guo Z. Computer-aided discovery of a novel thermophilic laccase for low-density polyethylene degradation. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131986. [PMID: 37413797 DOI: 10.1016/j.jhazmat.2023.131986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/21/2023] [Accepted: 07/01/2023] [Indexed: 07/08/2023]
Abstract
Polyethylene (PE) and industrial dyes are recalcitrant pollutants calling for the development of sustainable solutions for their degradation. Laccases have been explored for removal of contaminants and pollutants, including dye decolorization and plastic degradation. Here, a novel thermophilic laccase from PE-degrading Lysinibaccillus fusiformis (LfLAC3) was identified through a computer-aided and activity-based screening. Biochemical studies of LfLAC3 indicated its high robustness and catalytic promiscuity. Dye decolorization experiments showed that LfLAC3 was able to degrade all the tested dyes with decolorization percentage from 39% to 70% without the use of a mediator. LfLAC3 was also demonstrated to degrade low-density polyethylene (LDPE) films after eight weeks of incubation with either crude cell lysate or purified enzyme. The formation of a variety of functional groups was detected using Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). Damage on the surfaces of PE films was observed via scanning electron microscopy (SEM). The potential catalytic mechanism of LfLAC3 was disclosed by structure and substrate-binding modes analysis. These findings demonstrated that LfLAC3 is a promiscuous enzyme that has promising potential for dye decolorization and PE degradation.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Biological and Chemical Engineering, Aarhus University, 8000 Aarhus, Denmark
| | - Thea Jess Plesner
- Department of Biological and Chemical Engineering, Aarhus University, 8000 Aarhus, Denmark
| | - Yi Ouyang
- Department of Biological and Chemical Engineering, Aarhus University, 8000 Aarhus, Denmark
| | - Yu-Cong Zheng
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße10, 35043 Marburg, Germany
| | - Etienne Bouhier
- Department of Biological Engineering, University of Technology of Compiegne, Compiegne, France
| | | | - Mingliang Zhang
- Department of Biological and Chemical Engineering, Aarhus University, 8000 Aarhus, Denmark; Engineering Research Center of Industrial Microbiology of Ministry of Education, Fujian Normal University, Fuzhou, China
| | - Pengfei Zhou
- Department of Biological and Chemical Engineering, Aarhus University, 8000 Aarhus, Denmark; Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Product Processing, Guangzhou 510610, China
| | - Wolfgang Zimmermann
- Institute of Analytical Chemistry, Leipzig University, 04103 Leipzig, Germany
| | - Gregers Rom Andersen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Bekir Engin Eser
- Department of Biological and Chemical Engineering, Aarhus University, 8000 Aarhus, Denmark
| | - Zheng Guo
- Department of Biological and Chemical Engineering, Aarhus University, 8000 Aarhus, Denmark.
| |
Collapse
|