1
|
Xiong ZW, Guo LN, Jiang H, Zhang Y, Gao Q, Li J, Chen S, Li X, Javaid MA, Li DQ, Xie H. A handy way for forming N-doped TiO 2/carbon from pectin and d,l-serine hydrazide hydrochloride. Int J Biol Macromol 2024; 277:134155. [PMID: 39098462 DOI: 10.1016/j.ijbiomac.2024.134155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/14/2024] [Accepted: 07/23/2024] [Indexed: 08/06/2024]
Abstract
N-doped TiO2/carbon composites (N-TiPC) have shown excellent photodegradation performances to the organic contaminants but are limited by the multistage preparation (i.e., preparation of porous carbon, preparation of N-doped TiO2, and loading of N-doped TiO2 on porous carbon). Here, we develop a handy way by combining the Pickering emulsion-gel template route and chelation reaction of polysaccharides. The N-TiPC is obtained by calcinating pectin/Dl-serine hydrazide hydrochloride (SHH)-Ti4+ chelate and is further described by modern characterization techniques. The results show that the N atom is successfully doped into the TiO2 lattice, and the bandgap value of N-TiPC is reduced to 2.3 eV. Moreover, the particle size of N-TiPC remains about 10 nm. The configurations of the composites are simulated using DFT calculation. The photocatalytic experiments show that N-TiPC has a high removal efficiency for methylene blue (MB) and oxytetracycline hydrochloride (OTC-HCL). The removal ratios of MB (20 mg/L, 50 mL) and OTC-HCL (30 mg/L, 50 mL) are 99.41 % and 78.29 %, respectively. The cyclic experiments show that the photocatalyst has good stability. Overall, this study provides a handy way to form N-TiPC with enhanced photodegradation performances. It can also be promoted to other macromolecules such as cellulose and its derivatives, sodium alginate, chitosan, lignin, etc.
Collapse
Affiliation(s)
- Zi-Wei Xiong
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi 830052, Xinjiang, PR China
| | - Li-Na Guo
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi 830052, Xinjiang, PR China
| | - Hui Jiang
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi 830052, Xinjiang, PR China
| | - Yue Zhang
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi 830052, Xinjiang, PR China
| | - Qin Gao
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi 830052, Xinjiang, PR China
| | - Jun Li
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi 830052, Xinjiang, PR China.
| | - Sheng Chen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China
| | - Xin Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China
| | - Muhammad Asif Javaid
- Department of Applied Sciences, National Textile University, Faisalabad 37610, Pakistan
| | - De-Qiang Li
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi 830052, Xinjiang, PR China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd., Hangzhou 310003, Zhejiang, PR China
| |
Collapse
|
2
|
Liu L, Cui Z, Feng B, Sui M, Huang H, Wu Z. Synthesis of Fe 2O 3/TiO 2 Photocatalytic Composites for Methylene Blue Degradation as a Novel Strategy for High-Value Utilisation of Iron Scales. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4546. [PMID: 39336287 PMCID: PMC11432992 DOI: 10.3390/ma17184546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024]
Abstract
In this study, novel Fe2O3/TiO2 photocatalytic composites were synthesised by combining traditional oxidation roasting with the sol-gel method, using low-cost metallurgical waste (iron scales) as the raw material. The characterisation results revealed that the oxidised iron scales could be transformed into high-purity and porous Fe2O3 particles through oxidation roasting, thereby providing additional sites for the adsorption process and thus serving as an effective carrier for TiO2-based photocatalytic materials. During the sol-gel process, TiO2 was loaded onto the synthesised Fe2O3 particles, generating core-shell heterostructure Fe2O3/TiO2 photocatalytic composites. Under visible light irradiation for 90 min, the Fe2O3/TiO2 photocatalytic composites achieved a remarkable methylene blue removal rate (97.71%). This reaction process followed the quasi-first-order kinetic model with a rate constant of 0.038 min-1. The results have demonstrated that this combination of various components in the Fe2O3/TiO2 photocatalytic composites improved the adsorption, light utilisation, and charge separation effect of the photocatalysts. Moreover, the material exhibited favourable stability and recyclability, making it a decent candidate for the treatment of wastewater from the biochemical industry. Therefore, this study provides a new strategy for improving the photocatalytic activity of TiO2 and expanding the high value-added utilisation of iron scales.
Collapse
Affiliation(s)
- Li Liu
- School of Metallurgical Engineering, Anhui University of Technology, Maanshan 243002, China
| | - Zhenghao Cui
- School of Metallurgical Engineering, Anhui University of Technology, Maanshan 243002, China
| | - Bo Feng
- School of Metallurgical Engineering, Anhui University of Technology, Maanshan 243002, China
| | - Mengjing Sui
- School of Metallurgical Engineering, Anhui University of Technology, Maanshan 243002, China
| | - Huaqin Huang
- School of Metallurgical Engineering, Anhui University of Technology, Maanshan 243002, China
| | - Zhaoyang Wu
- Anhui International Joint Research Center for Metallurgical Processes and Systems Science, Anhui University of Technology, Maanshan 243002, China
| |
Collapse
|
3
|
Gharagozlou M, Elmi Fard N, Ghahari M, Tavakkoli Yaraki M. Bimetal Cu/Ni-BTC@SiO 2 metal-organic framework as high performance photocatalyst for degradation of azo dyes under visible light irradiation. ENVIRONMENTAL RESEARCH 2024; 256:119229. [PMID: 38797465 DOI: 10.1016/j.envres.2024.119229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/05/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
There has been significant attention on the efficient degradation of pollutants in wastewater using metal-organic frameworks (MOFs) photocatalytic methods over the past decade. Herein, we examined the elimination of two different types of water-contaminating dyes, specifically cationic dye methylene blue (MB) and anionic dye methyl orange (MO), through the application of bimetal Cu/Ni-BTC@SiO2 MOF as high performance photocatalyst. The bimetal Cu/Ni-BTC@SiO2 photocatalyst was synthesized and characterized by XRD, FTIR, SEM, TEM, TGA, BET, DRS, and VSM techniques. The examination of the impact of different operational factors on the elimination of pollutants involved a comprehensive analysis of variables including the photocatalyst type, initial pollutant concentration, quantity of photocatalyst, and pH levels. The highest removal efficiency for MO and MB dyes by the photocatalyst was found to be 98 and 71%, respectively, within 60 min. In the fifth reaction stage, degradation efficiency for MO and MB was 76 and 56% respectively. Kinetic investigations demonstrated that, in the context of the uptake of MB and MO dyes, the interparticle diffusion, and pseudo-second-order models emerged as possessing the most robust correlation coefficients with the experimental data, registering values of 0.988 and 0.961, respectively. The examination of isotherms reveals that the isotherm models proposed by BET, and Anderson (V) demonstrate the highest level of conformity with the empirical data for the decomposition of MB and MO dyes, correspondingly. The TOC levels decreased significantly from 51 to 14 and 47 to 3 mg/L for MB and MO dyes, indicating the effective mineralization process using Cu/Ni-BTC@SiO2.
Collapse
Affiliation(s)
- Mehrnaz Gharagozlou
- Department of Nanomaterials and Nanocoatings, Institute for Color, Science, and Technology, P.O. Box 654-16765, Tehran, Iran.
| | - Narges Elmi Fard
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mehdi Ghahari
- Department of Nanomaterials and Nanocoatings, Institute for Color, Science, and Technology, P.O. Box 654-16765, Tehran, Iran
| | - Mohammad Tavakkoli Yaraki
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109, Australia.
| |
Collapse
|
4
|
Vlasenko NV, Yanushevska OI, Didenko OZ, Strizhak PE. Glycerol Oligomerization over Titania-Based Catalyst Compositions. Chemistry 2024; 30:e202302733. [PMID: 37962034 DOI: 10.1002/chem.202302733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/04/2023] [Accepted: 11/14/2023] [Indexed: 11/15/2023]
Abstract
The possibility of using TiO2 -based compositions: individual and sulfated titania, and their composites with carbon nanotubes as catalysts for glycerol oligomerization has been displayed. The effect of modification of TiO2 with sulfur and carbon nanotubes on acid-base and catalytic characteristics in the glycerol conversion was investigated. The activation of glycerol on the catalysts has been studied using attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy. Only the samples based on sulfated titania are active over glycerol transformation, showing up to 58.7 % conversion. This is explained by the presence of strong base sites. Glycerides up to pentaglycerides, both linear and nonlinear structure are formed by glycerol oligomerization over TiO2 -S. The addition of nanotubes to the catalyst reduces both the glycerol conversion (up to 10.5 %) and the yield of glycerides. However, the spectrum of the resulting products is significantly narrowed, increasing the selectivity for short-chain glycerides: the portion of diglycerides reaches 72 %, and triglycerides 21 %. Herewith, glycerides of a linear structure only formed.
Collapse
Affiliation(s)
- Nina V Vlasenko
- LV Pysarzhevskii Institute of Physical Chemistry, National Academy of Sciences of Ukraine, Prosp. Nauky 31, 03028, Kyiv, Ukraine
| | - Olena I Yanushevska
- National Technical University of Ukraine, "Igor Sikorsky Kyiv Polytechnic Institute", Prosp. Peremohy, 37, 03056, Kyiv, Ukraine
| | - Olga Z Didenko
- LV Pysarzhevskii Institute of Physical Chemistry, National Academy of Sciences of Ukraine, Prosp. Nauky 31, 03028, Kyiv, Ukraine
| | - Peter E Strizhak
- LV Pysarzhevskii Institute of Physical Chemistry, National Academy of Sciences of Ukraine, Prosp. Nauky 31, 03028, Kyiv, Ukraine
| |
Collapse
|
5
|
Gong J, Jiang H, Li X, Cheng H, Wang Z, Cai J, Li M, Wang P, Wang H, Hu X, Hu X. Highly efficient activation of periodate by a manganese-modified biochar to rapidly degrade methylene blue. ENVIRONMENTAL RESEARCH 2024; 241:117657. [PMID: 37980988 DOI: 10.1016/j.envres.2023.117657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/25/2023] [Accepted: 11/11/2023] [Indexed: 11/21/2023]
Abstract
In this study, the manganese oxide/biochar composites (Mn@BC) were synthesized from Phytolacca acinosa Roxb. The Mn@BC was analyzed via techniques of Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray diffraction analysis (XRD). The results show that MnOx is successfully loaded on the surface of BC, and the load of MnOx can increase the number of surface functional groups of BC. X-ray photoelectron spectroscopy (XPS) shows that MnOx loaded on BC mainly exists in three valence forms: Mn(Ⅱ), Mn(Ⅲ), and Mn(Ⅳ). The ability of Mn@BC to activate periodate (PI) was studied by simulating the degradation of methylene blue (MB) dye. The degradation experiment results showed that the MB removal rate by the Mn@BC/PI system reached 97.4% within 30 min. The quenching experiment and electron paramagnetic resonance (EPR) analysis confirmed that Mn@BC can activate PI to produce iodate (IO3•), singlet oxygen (1O2), and hydroxyl radical (•OH), which can degrade MB during the reaction. Response surface methodology (RSM) based on Box-Behnken Design (BBD) was used to determine the interaction between pH, Mn@BC and PI concentration in the Mn@BC/PI system, and the optimum technological parameters were determined. When pH = 5.4, Mn@BC concentration 0.56 mg/L, PI concentration 1.1 mmol/L, MB removal rate can reach 98.05%. The cyclic experiments show that Mn@BC can be reused. After four consecutive runs, the removal rate of MB by the Mn@BC/PI system is still 82%, and the Mn@BC/PI system also shows high performance in treating MB in actual water bodies and degrading other pollutants. This study provides a practical method for degrading dyes in natural sewage.
Collapse
Affiliation(s)
- Jiamin Gong
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, PR China
| | - Honghui Jiang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, PR China
| | - Xiang Li
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, PR China
| | - Hao Cheng
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, PR China
| | - Ziqi Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, PR China
| | - Jingju Cai
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, PR China
| | - Meifang Li
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, PR China
| | - Ping Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, PR China
| | - Hui Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, PR China.
| | - Xi Hu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, PR China.
| | - Xinjiang Hu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, PR China
| |
Collapse
|