1
|
Wesley SR, Gallo M, Apata T, Dis JV, Hollenbach SJ. Impact of Endocrine-Disrupting Chemicals, Climate, and Air Pollution on Pregnancy Outcomes: A Scoping Review. Semin Reprod Med 2024. [PMID: 39694048 DOI: 10.1055/s-0044-1800961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Environmental pollutants, including endocrine-disrupting chemicals (EDCs), air pollution, and climate change, are increasingly recognized for their potential impact on pregnancy outcomes. EDCs, found in pesticides, industrial chemicals, and personal care products, are associated with preterm birth and fetal growth restriction, primarily through hormonal interference. Air pollution, notably PM2.5, NO2, and O3, has been linked to increased rates of preterm birth, low birth weight, and stillbirth. Climate factors, such as extreme heat, elevate risks of pregnancy loss and preterm birth, with significant impacts on vulnerable populations across diverse socioeconomic and geographic regions. These exposures contribute to adverse pregnancy outcomes through mechanisms involving oxidative stress, inflammation, and endocrine disruption. The interplay among these environmental factors underscores the need for integrated, longitudinal studies to understand their combined effects on pregnancy outcomes better. Future research should focus on region-specific impacts, cumulative exposure, and policy-driven interventions to mitigate these environmental risks, especially in vulnerable populations disproportionately affected by these hazards. This scoping review synthesizes recent findings from 2019 to 2024 to highlight these associations and identify research gaps.
Collapse
Affiliation(s)
- Shaun R Wesley
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, New York
| | - Mary Gallo
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, New York
| | - Tejumola Apata
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, New York
| | - Jane van Dis
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, New York
| | - Stefanie J Hollenbach
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, New York
- Department of Biomedical Engineering, University of Rochester, Rochester, New York
| |
Collapse
|
2
|
Barrett ES, Skrill D, Zhou E, Thurston SW, Girardi T, Brunner J, Liang HW, Miller RK, Salafia CM, O'Connor TG, Adibi JJ. Prenatal exposure to phthalates and phthalate replacements in relation to chorionic plate surface vasculature at delivery. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 958:178116. [PMID: 39693655 DOI: 10.1016/j.scitotenv.2024.178116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/20/2024]
Abstract
Pregnant people are ubiquitously exposed to endocrine-disrupting phthalates through consumer products and food. The placenta may be particularly vulnerable to the adverse effects of phthalates, with evidence from animal models suggesting impacts on placental development and vascularization. We translate this research to humans, examining gestational exposure to phthalates and phthalate replacements in relation to novel markers of chorionic plate surface vascularization. Phthalate and phthalate replacement metabolites were measured in first trimester urine from pregnant participants in the Understanding Pregnancy Signals and Infant Development (UPSIDE) cohort (n = 154). At delivery, placentae underwent specialized 2D and 3D digital imaging to quantify chorionic plate surface vasculature. Using weighted quantile g-computation mixtures methods as well as multivariable linear regression models examining individual metabolites, we evaluated associations with overall chorionic plate surface area and five chorionic plate surface vascular measures, adjusting for covariates. We additionally examined interactions with placental sex. Exposure to a phthalate mixture was associated with longer total arterial arc length (β = 9.64 cm; 95%CI: 1.68, 17.59), shorter mean arterial arc length (β = -0.07 cm; 95%CI: -0.14, -0.01), and more arterial branch points (β = 5.77; 95%CI: 1.56, 9.98), but not chorionic plate surface area. In models considering individual metabolites and their molar sums, results were strongest for the metabolites of Di-isobutyl phthalate (DiBP), Di-isononyl phthalate (DiNP), and Di(2-ethylhexyl) phthalate (DEHP). Associations with metabolites of phthalate replacements tended to be in the same direction but weaker. Few sex differences were observed. Gestational phthalate exposure may be associated with alterations in placental chorionic plate surface vasculature characterized by more branching and shorter segments. These alterations may have implications for placental perfusion and suggest a placental mechanism by which phthalates may impact fetal development.
Collapse
Affiliation(s)
- Emily S Barrett
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA; Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA; Department of Obstetrics and Gynecology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| | - David Skrill
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Elaine Zhou
- Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Sally W Thurston
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | | | - Jessica Brunner
- Department of Obstetrics and Gynecology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; Department of Psychiatry, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Hai-Wei Liang
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Richard K Miller
- Department of Obstetrics and Gynecology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Carolyn M Salafia
- Placental Analytics LLC, New Rochelle, NY, USA; Institute for Basic Research, Staten Island, NY, USA; New York Presbyterian - Brooklyn Methodist Hospital, Brooklyn, NY 11215, USA
| | - Thomas G O'Connor
- Department of Obstetrics and Gynecology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; Department of Psychiatry, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; Wynne Family Center University of Rochester, Rochester, NY, USA
| | - Jennifer J Adibi
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Qin M, Zhou M, Li D, Lou X, Zhu J, Tian X, Zhang N, Ma W, Lu M. Boronic acid functionalized of covalent organic framework for high performance capture of trace phthalates. J Chromatogr A 2024; 1738:465481. [PMID: 39488121 DOI: 10.1016/j.chroma.2024.465481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/21/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
In order to improve the enrichment performance of parent covalent organic frameworks (COFs), boronic acid functionalized of COF (COF-B(OH)2) was obtained by a simple standing method for the first time. The obtained COF-B(OH)2 exhibited the new characteristics that were not possessed by pure COF and was employed as the solid phase microextraction (SPME) coating material for highly efficient enrichment of trace endocrine disruptors phthalates (PAEs). Compared to pure COF, the synergistic effect of the newly emerged unique pore structure and boric acid interaction sites, and the large specific surface area and the abundant benzene ring structure inherited by original COF framework endowed COF-B(OH)2 with enhanced enrichment performance for PAEs. Combined with gas chromatography-mass spectrometry (GC-MS), COF-B(OH)2 exhibited the good linearity over a wide concentration of 0.1-3000 ng l-1 with good coefficients (R2, 0.9916-0.9998) for PAEs. The developed method was successfully employed for detection of trace PAEs in milk and water samples, demonstrating high recoveries (90.6-111.3 %). This work provides a sustainable approach to developing high-performance materials for enriching environmental pollutants.
Collapse
Affiliation(s)
- Mengjie Qin
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Mengmeng Zhou
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Dongxue Li
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Xuejing Lou
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Jiawen Zhu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Xiao Tian
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Ning Zhang
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Wende Ma
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China.
| | - Minghua Lu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China.
| |
Collapse
|
4
|
Al-Saleh I, Elkhatib R, Alghamdi R, Alrushud N, Alnuwaysir H, Alnemer M, Aldhalaan H, Shoukri M. Assessment of maternal phthalate exposure in urine across three trimesters and at delivery (umbilical cord blood and placenta) and its influence on birth anthropometric measures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174910. [PMID: 39053554 DOI: 10.1016/j.scitotenv.2024.174910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Phthalates, commonly used in plastic manufacturing, have been linked to adverse reproductive effects. Our research from the Saudi Early Autism and Environment Study (2019-2022), involving 672 participants, focused on the impacts of maternal phthalate exposure on birth anthropometric measures. We measured urinary phthalate metabolites in 390 maternal samples collected during each of the three trimesters of pregnancy and in cord serum and placental samples obtained at delivery. We employed various statistical methods to analyze our data. Intraclass correlation coefficients were used to assess the consistency of phthalate measurements, generalized estimating equations were used to explore temporal variations across the trimesters, and linear regression models, adjusted for significant confounders and Bonferroni correction, were used for each birth outcome. Exposure to six phthalates was consistently high across trimesters, with 82 %-100 % of samples containing significant levels of all metabolites, except for mono-benzyl phthalate. We found a 3.15 %-3.73 % reduction in birth weight (BWT), 1.39 %-1.69 % reduction in head circumference (HC), and 3.63 %-5.45 % reduction in placental weight (PWT) associated with a one-unit increase in certain urinary di(2-ethylhexyl) phthalate (DEHP) metabolites during the first trimester. In the second trimester, exposure to MEP, ∑7PAE, and ∑LMW correlated with a 3.15 %-4.5 % increase in the APGAR 5-min score and increases in PWT by 8.98 % for ∑7PAE and 9.09 % for ∑LMW. Our study also highlighted the maternal-to-fetal transfer of DEHP metabolites, indicating diverse impacts on birth outcomes and potential effects on developmental processes. Our study further confirmed the transfer of DEHP metabolites from mothers to fetuses, evidenced by variable rates in the placenta and cord serum, with an inverse relationship suggesting a passive transfer mechanism. Additionally, we observed distinct phthalate profiles across these matrices, adversely impacting birth outcomes. In serum, we noticed increases associated with DEHP metabolites, with birth gestational age rising by 1.01 % to 1.11 %, HC by 2.84 % to 3.67 %, and APGAR 5-min scores by 3.77 % to 3.87 %. Conversely, placental analysis revealed a different impact: BWT decreased by 3.54 % to 4.69 %, HC reductions ranged from 2.57 % to 4.69 %, and chest circumference decreased by 7.13 %. However, the cephalization index increased by 3.67 %-5.87 %. These results highlight the complex effects of phthalates on fetal development, indicating their potential influence on crucial developmental processes like sexual maturation and brain development.
Collapse
Affiliation(s)
- Iman Al-Saleh
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.
| | - Rola Elkhatib
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Reem Alghamdi
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Nujud Alrushud
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Hissah Alnuwaysir
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Maha Alnemer
- Obstetrics and Gynecology Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Hesham Aldhalaan
- Center for Autism Research, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Mohamed Shoukri
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
5
|
Rosen EM, Stevens DR, McNell EE, Wood ME, Engel SM, Keil AP, Calafat AM, Botelho JC, Sinkovskaya E, Przybylska A, Saade G, Abuhamad A, Ferguson KK. Longitudinal associations between urinary biomarkers of phthalates and replacements with novel in vivo measures of placental health. Hum Reprod 2024; 39:2104-2114. [PMID: 38970902 PMCID: PMC11373341 DOI: 10.1093/humrep/deae152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 06/10/2024] [Indexed: 07/08/2024] Open
Abstract
STUDY QUESTION What is the longitudinal association between gestational phthalate exposure and in vivo placental outcomes? SUMMARY ANSWER Phthalates were adversely associated with placental microvasculature, stiffness, and presence of calcification, with different metabolites associated with different outcomes. WHAT IS KNOWN ALREADY Phthalate exposure is ubiquitous and implicated as a contributor to adverse pregnancy outcomes, possibly through impacts on the placenta. STUDY DESIGN, SIZE, DURATION A total of 303 women were recruited in early pregnancy and prospectively followed for up to eight visits across gestation in the Human Placenta and Phthalates study. PARTICIPANTS/MATERIALS, SETTING, METHODS At each visit, women provided urine samples and underwent placental ultrasounds. Urine was analyzed for 18 metabolites of phthalates and replacements. We took the geometric mean of repeated measurements to reflect pregnancy-averaged phthalate or replacement exposure for each participant (n = 303). Placental microvasculature, stiffness, and microcalcification presence were quantified from ultrasounds at each visit. Higher scores reflected worse placental function for all measures. Generalized linear mixed models were created to estimate the association between pregnancy-averaged exposure biomarker concentrations and repeated outcome measurements for microvasculature and stiffness. Gestational age at the time of calcification detection was modeled using Cox proportional hazards models. MAIN RESULTS AND THE ROLE OF CHANCE Monocarboxyisononyl phthalate and summed di(2-ethylhexyl) phthalate metabolites were associated with impaired microvasculature development, such that an interquartile range increase in concentration was associated with 0.11 standard deviation increase in the microvasculature ratio, indicating poorer vascularization (95% CI: 0.00, 0.22); 0.11 [95% CI: -0.01, 0.22], respectively. Monoethyl phthalate was associated with increased placental stiffness (0.09 [95% CI: -0.01, 0.19]) while summed di-iso-butyl phthalate metabolites and monobenzyl phthalate were associated with increased hazard of calcification detection (hazard ratios: 1.18 [95% CI: 0.98, 1.42]; 1.13 [95% CI: 0.96, 1.34]). LIMITATIONS, REASONS FOR CAUTION Outcomes used in this study are novel and further investigation is needed to provide clinical context and relevance. WIDER IMPLICATIONS OF THE FINDINGS We found evidence of associations between select phthalate biomarkers and various aspects of in vivo placental health, although we did not observe consistency across placental outcomes. These findings could illustrate heterogeneous effects of phthalate exposure on placental function. STUDY FUNDING/COMPETING INTEREST(S) This research was supported in part by the Intramural Research Program of the NIH, National Institute of Environmental Health Sciences (ZIA ES103344), and NIEHS T32ES007018. The authors declare that they have no competing interests to disclose. The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention. Use of trade names is for identification only and does not imply endorsement by the CDC, the Public Health Service, or the US Department of Health and Human Services. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Emma M Rosen
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA
- Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Danielle R Stevens
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Erin E McNell
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Mollie E Wood
- Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Stephanie M Engel
- Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Alexander P Keil
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Julianne Cook Botelho
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Elena Sinkovskaya
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Ann Przybylska
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, VA, USA
| | - George Saade
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA
| | - Alfred Abuhamad
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Kelly K Ferguson
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA
| |
Collapse
|
6
|
Rosen EM, Stevens DR, Ramos AM, McNell EE, Wood ME, Engel SM, Keil AP, Calafat AM, Botelho JC, Sinkovskaya E, Przybylska A, Saade G, Abuhamad A, Ferguson KK. Personal care product use patterns in association with phthalate and replacement biomarkers across pregnancy. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:591-600. [PMID: 38177334 PMCID: PMC11303244 DOI: 10.1038/s41370-023-00627-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Humans are exposed to phthalates, a class of non-persistent chemicals, through multiple products, including personal care and cosmetics. Associations between specific phthalates and product use have been inconsistent. However, determining these connections could provide avenues for exposure reduction. OBJECTIVE Examine the association between patterns of personal care product use and associations with phthalate and replacement biomarkers. METHODS In the Human Placenta and Phthalates Study, 303 women were enrolled in early pregnancy and followed for up to 8 visits across gestation. At each visit, women completed a questionnaire about product use in the prior 24 hours and contributed urine samples, subsequently analyzed for 18 phthalate and replacement metabolites. At early, mid-, and late pregnancy, questionnaire responses were condensed and repeated metabolite concentrations were averaged. Latent class analysis (LCA) was used to determine groups of women with similar use patterns, and weighted associations between group membership and biomarker concentrations were assessed. RESULTS LCA sorted women into groups which largely corresponded to: (1) low fragranced product use (16-23% of women); (2) fragranced product and low body wash use (22-26%); 3) fragranced product and low bar soap use (26-51%); and (4) low product use (7-34%). Monoethyl phthalate (MEP) urinary concentrations were 7-10% lower and concentrations of summed di(2-ethylhexyl) terephthalate metabolites were 15-21% lower among women in the "low fragranced product use" group compared to the population mean. Few other consistent associations between group and biomarker concentrations were noted. IMPACT STATEMENT Personal care products and cosmetics are a known exposure source for phthalates and potentially represent one of the most accessible intervention targets for exposure reduction. However, in this analysis accounting for concurrent use and fragranced status of products, we did not find any use patterns that corresponded to universally lower levels.
Collapse
Affiliation(s)
- Emma M Rosen
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA
- Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Danielle R Stevens
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Amanda M Ramos
- Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Erin E McNell
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Mollie E Wood
- Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Stephanie M Engel
- Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Alexander P Keil
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Julianne Cook Botelho
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Elena Sinkovskaya
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Ann Przybylska
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Eastern Virginia Medical School, Norfolk, VA, USA
| | - George Saade
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA
| | - Alfred Abuhamad
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Kelly K Ferguson
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA.
| |
Collapse
|
7
|
Zhang X, Xu C, Li Y, Chen Z, Xu F, Zhang H, Ding L, Lin Y, Zhao N. Association between phthalate metabolite mixture in neonatal cord serum and birth outcomes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170614. [PMID: 38316308 DOI: 10.1016/j.scitotenv.2024.170614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/07/2024]
Abstract
Prenatal exposure to phthalates (PAEs) is ubiquitous among Chinese neonates. PAEs entering the body will be transformed to various hydrolyzed and oxidated PAE metabolites (mPAEs). PAEs and mPAEs exposure may lead to adverse birth outcomes through disruption of multiple hormone signaling pathways, induction of oxidative stress, and alterations in intracellular signaling processes. In this study, the concentrations of 11 mPAEs in 318 umbilical cord serum samples from neonates in Jinan were quantified with HPLC-ESI-MS. Multiple linear regression, Bayesian kernel machine regression, and quantile g-computation models were utilized to investigate the effects of both individual mPAE and mPAE mixture on birth outcomes. Stratified analysis was performed to explore whether these effects were gender-specific. mPAE mixture was negatively associated with birth length (BL) z-score, birth weight (BW) z-score, head circumference (HC) z-score, and ponderal index (PI). Mono(2-ethylhexyl) phthalate (MEHP) manifested negative associations with BL(z-score), BW(z-score), HC(z-score), and PI, whereas mono(2-carboxymethylhexyl) phthalate (MCMHP) was negatively associated with BW(z-score) and PI within the mPAE mixture. Stratified analysis revealed that the negative associations between mPAE mixture and four birth outcomes were attenuated in female infants, while the positive impact of mono(2-ethyl-5carboxypentyl) phthalate (MECPP) on BL(z-score) and BW(z-score) could be detected only in females. In summary, our findings suggest that prenatal exposure to phthalates may be associated with intrauterine growth restriction, and these effects vary according to the gender of the infant.
Collapse
Affiliation(s)
- Xiaozhen Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Caihong Xu
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yahui Li
- Jinan Digital Application Center of Ecology and Environment (Jinan Grid Supervision Center of Ecological and Environmental Protection), Jinan 250102, China
| | - Zhongkai Chen
- Jinan Digital Application Center of Ecology and Environment (Jinan Grid Supervision Center of Ecological and Environmental Protection), Jinan 250102, China
| | - Fei Xu
- School of Environmental Research Institute, Shandong University, Qingdao 266237, China
| | - Haoyu Zhang
- School of Environmental Research Institute, Shandong University, Qingdao 266237, China
| | - Lei Ding
- School of Environmental Research Institute, Shandong University, Qingdao 266237, China
| | - Yongfeng Lin
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Nan Zhao
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, Shandong, China.
| |
Collapse
|
8
|
Ouidir M, Jedynak P, Rolland M, Lyon-Caen S, Thomsen C, Sakhi AK, Sabaredzovic A, Bayat S, Slama R, Philippat C. Analyzing the impact of phthalate and DINCH exposure on fetal growth in a cohort with repeated urine collection. ENVIRONMENT INTERNATIONAL 2024; 186:108584. [PMID: 38513557 DOI: 10.1016/j.envint.2024.108584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/15/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND Most previous studies investigating the associations between prenatal exposure to phthalates and fetal growth relied on measurements of phthalate metabolites at a single time point. They also focused on weight at birth without assessing growth over pregnancy, preventing the identification of potential periods of fetal vulnerability. We examined the associations between pregnancy urinary phthalate metabolites and fetal growth outcomes measured twice during pregnancy and at birth. METHODS For 484 pregnant women, we assessed 13 phthalate and two 1,2-cyclohexane dicarboxylic acid, diisononyl ester (DINCH) metabolite concentrations from two within-subject weekly pools of up to 21 urine samples (median of 18 and 34 gestational weeks, respectively). Fetal biparietal diameter, femur length, head and abdominal circumferences were measured during two routine pregnancy follow-up ultrasonographies (median 22 and 32 gestational weeks, respectively) and estimated fetal weight (EFW) was calculated. Newborn weight, length, and head circumference were measured at birth. Associations between phthalate/DINCH metabolite and growth parameters were investigated using adjusted linear regression and Bayesian kernel machine regression models. RESULTS Detection rates were above 99 % for all phthalate/DINCH metabolites. While no association was observed with birth measurements, mono-iso-butyl phthalate (MiBP) and mono-n-butyl phthalate (MnBP) were positively associated with most fetal growth parameters measured at the second trimester. Specifically, MiBP was positively associated with biparietal diameter, head and abdominal circumferences, while MnBP was positively associated with EFW, head and abdominal circumferences, with stronger associations among males. Pregnancy MnBP was positively associated with biparietal diameter and femur length at third trimester. Mixture of phthalate/DINCH metabolites was positively associated with EFW at second trimester. CONCLUSIONS In this pregnancy cohort using repeated urine samples to assess exposure, MiBP and MnBP were associated with increased fetal growth parameters. Further investigation on the effects of phthalates on child health would be relevant for expanding current knowledge on their long-term effects.
Collapse
Affiliation(s)
- Marion Ouidir
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, 38000, Grenoble, France.
| | - Paulina Jedynak
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Matthieu Rolland
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Sarah Lyon-Caen
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, 38000, Grenoble, France
| | | | | | | | - Sam Bayat
- Department of Pulmonology and Physiology, Grenoble University Hospital, La Tronche, France; Synchrotron Radiation for Biomedicine Laboratory (STROBE), Inserm UA07, Grenoble Alpes University, Grenoble, France
| | - Rémy Slama
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Claire Philippat
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, 38000, Grenoble, France
| |
Collapse
|
9
|
Pang L, Chen D, Wei H, Lan L, Li J, Xu Q, Li H, Lu C, Tang Q, Hu W, Wu W. Effect of prenatal exposure to phthalates on birth weight of offspring: A meta-analysis. Reprod Toxicol 2024; 124:108532. [PMID: 38181866 DOI: 10.1016/j.reprotox.2023.108532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/24/2023] [Accepted: 12/27/2023] [Indexed: 01/07/2024]
Abstract
Prenatal exposure to phthalates is common. However, its effect on birth weight has always been met with conflicting conclusions. To explore the effects of prenatal phthalate exposure on neonatal weight, we searched PubMed, Web of Science (WOS), Cochrane Library, and Embase databases for articles published up to October 24, 2023. Observational studies with 95% confidence intervals (CI) were included. Our findings indicate no significant association between either mixed exposure effects or single phthalate metabolites and offspring birth weight when monitoring maternal urine phthalate metabolites. When stratified by sex, ΣHMWPs and MMP significantly reduced the birth weight of female offspring (ΣHMWPs: Pooled β = -62.08, 95%CI: -123.11 to -1.05, P = 0.046; MMP: Pooled β = -10.77, 95%CI: -18.74 to -2.80, P = 0.008). The results of subgroup analysis showed that ΣPAEs and ΣDEHP significantly decreased birth weight in the specific gravity correction group (ΣPAEs: Pooled estimates = -29.31, 95%CI: -58.52 to -0.10, P = 0.049; ΣDEHP: Pooled estimates = -18.25, 95%CI: -33.03 to -3.47, P = 0.016), and MECPP showed a positive correlation in the creatinine correction group (MECPP: Pooled estimates = 18.45, 95%CI: 0.13 to 36.77, P = 0.048). MEP and MBzP were negatively associated with birth weight in the no adjustment for gestational age group (MEP: Pooled estimates = -7.70, 95%CI: -14.19 to -1.21, P = 0.020; MBzP: Pooled estimates = -9.55, 95%CI: -16.08 to -3.03, P = 0.004). To make the results more convincing, more high-quality studies with large samples are urgently required.
Collapse
Affiliation(s)
- Liya Pang
- The affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China; State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Danrong Chen
- The affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China; State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hongcheng Wei
- The affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China; State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Linchen Lan
- The affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China; State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jinhui Li
- Department of Urology, Stanford University Medical Center, Stanford, CA, USA
| | - Qiaoqiao Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Huijun Li
- School of Public Health, Xinxiang Medical University, Henan, China
| | - Chuncheng Lu
- The affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China; State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qiuqin Tang
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China.
| | - Weiyue Hu
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Wei Wu
- The affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China; State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
10
|
Rosen EM, Stevens DR, McNell EE, Wood ME, Engel SM, Keil AP, Calafat AM, Botelho JC, Sinkovskaya E, Przybylska A, Saade G, Abuhamad A, Ferguson KK. Variability and Longitudinal Trajectories of Phthalate and Replacement Biomarkers across Pregnancy in the Human Placenta and Phthalates Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13036-13046. [PMID: 37607343 PMCID: PMC10513743 DOI: 10.1021/acs.est.3c04043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Human exposure to phthalates is widespread, but assessment of variability across pregnancy has been hampered by short half-lives of phthalate biomarkers and a few repeated measures in prior studies. We aimed to characterize the variability and longitudinal profiles of phthalate and replacement biomarkers across pregnancy. Within the Human Placenta and Phthalates Study, 303 pregnant women provided urine samples at up to 8 visits across gestation. Concentrations of 14 metabolites of phthalates and 4 metabolites of replacements were quantified in each sample, and subject-specific averages within each trimester were calculated. We examined variability in individual biomarker concentrations across the 8 visits, within trimesters, and across trimester-specific averages using intraclass correlation coefficients (ICCs). To explore longitudinal exposure biomarker profiles, we applied group-based trajectory modeling to trimester-specific averages over pregnancy. Pooling multiple visits into trimester-specific averages improved the ICCs for all biomarkers. Most biomarkers generally showed stable concentrations across gestation, i.e., high-, medium-, and low-concentration profiles, with small proportions of participants falling into the "high"-exposure groups. Variability over pregnancy is likely attributable to random fluctuations around a baseline exposure rather than true changes in concentrations over time.
Collapse
Affiliation(s)
- Emma M. Rosen
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, North Carolina 27709, USA
- Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Danielle R. Stevens
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, North Carolina 27709, USA
| | - Erin E. McNell
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, North Carolina 27709, USA
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Mollie E. Wood
- Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Stephanie M. Engel
- Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Alexander P. Keil
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia 30341, USA
| | - Julianne Cook Botelho
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia 30341, USA
| | - Elena Sinkovskaya
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Eastern Virginia Medical School, Norfolk, Virginia 23507, USA
| | - Ann Przybylska
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Eastern Virginia Medical School, Norfolk, Virginia 23507, USA
| | - George Saade
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Eastern Virginia Medical School, Norfolk, Virginia 23507, USA
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Alfred Abuhamad
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Eastern Virginia Medical School, Norfolk, Virginia 23507, USA
| | - Kelly K. Ferguson
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, North Carolina 27709, USA
| |
Collapse
|