1
|
Mazzoli E, Parashar A, D'Odorico P, Branca G. Greening the city: A holistic assessment of waste management alternatives in India. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176894. [PMID: 39427902 DOI: 10.1016/j.scitotenv.2024.176894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/17/2024] [Accepted: 10/10/2024] [Indexed: 10/22/2024]
Abstract
Waste is one of the major urban challenges faced globally today, and the severity of the challenge is further exacerbated by rapid urbanisation, growing populations and increasing per capita waste generation. As one of the largest urban agglomerations in the world, Delhi collects 11,352 t of waste every day. Without adequate segregation, most of this waste is sent to dumpsites and waste-to-energy plants, often associated with significant capital costs and environmental externalities. This paper conducts a life cycle assessment of the current waste management system and a comparative analysis with a suggested alternative scenario, where the share of recyclables and compostables going to landfills and waste-to-energy plants is reduced through adequate segregation. Our results revealed that landfills and waste-to-energy plants are associated with significant adverse environmental impacts such as climate change, soil and water acidification, freshwater eutrophication, human toxicity, and respiratory health. In comparison, compost plants showed negligible emissions per tonne of waste. The alternative scenario (i.e. reduce waste to landfill through adequate segregation) can help reduce the negative impact on all environmental indicators by an average of 23 %. We posit that the prevailing narrative of addressing the waste issue through waste-to-energy plants in Delhi goes against the country's climate neutrality targets. Instead, the circular economy approach offers simpler, faster, and more cost-effective solutions that policymakers should consider to reduce the financial and environmental load of the current and future waste management issue.
Collapse
Affiliation(s)
- Enrico Mazzoli
- Economy, Engineering, Society and Business Department, University of Tuscia, Viterbo, Italy; Environmental Biology Department, Sapienza University of Rome, Italy.
| | | | - Paolo D'Odorico
- Department of Environmental Science, Policy, & Management, University of California, Berkeley, CA, USA
| | - Giacomo Branca
- Economy, Engineering, Society and Business Department, University of Tuscia, Viterbo, Italy
| |
Collapse
|
2
|
Zhang S, Xing Z, Li Y, Jiang L, Shi W, Zhao Y, Fang L. Plastic film from the source of anaerobic digestion: Surface degradation, biofilm and UV response characteristics. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135793. [PMID: 39276739 DOI: 10.1016/j.jhazmat.2024.135793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/04/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
This study simulates a major environmental scenario involving "organic fertilizer source" plastics, by exploring the key factors influencing the changes in plastic-films during anaerobic digestion (AD), as well as the responses of the anaerobically digested plastics to ultraviolet (UV) radiation exposure. The results demonstrate that the degradation effect of AD on plastics is reflected by their yellowish and ruptured appearance, slightly worn surfaces, hardening and opacity, and fragmentation. AD significantly increases the content of oxygen-containing functional groups and the degree of unsaturation in plastic films, with thermophilic temperature processes proving more effective than those conducted at mesophilic temperatures. Exposure to UV light has been found to amplify the degradative effects, suggesting the potential cumulative impact of AD and UV. Both AD and UV irradiation reduced the hydrophilicity of plastics. In particular, the hydrophobicity of polylactic acid films was completely disrupted under overlay-exposure. Furthermore, microbial populations on plastic surfaces were mainly bacterial. These bacterial populations were primarily influenced by temperature, and moderately by the plastic types. In contrast, archaea were predominantly affected by both temperature and digested substrate. This study offers a theoretical foundation for strategies aimed at preventing and controlling plastic pollution derived from organic fertilizers.
Collapse
Affiliation(s)
- Shengwei Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Zhijie Xing
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Yanxia Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China.
| | - Linshu Jiang
- Beijing Key Laboratory of Dairy Cow Nutrition, Beijing University of Agriculture, Beijing 102206, PR China.
| | - Wenzhuo Shi
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Yan Zhao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Luoyun Fang
- Beijing Key Laboratory of Dairy Cow Nutrition, Beijing University of Agriculture, Beijing 102206, PR China
| |
Collapse
|
3
|
Perman E, Karlsson A, Westerholm M, Isaksson S, Schnürer A. High-solid digestion - A comparison of completely stirred and plug-flow reactor systems. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 189:265-275. [PMID: 39217801 DOI: 10.1016/j.wasman.2024.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
High-solid digestion (HSD) for biogas production is a resource-efficient and sustainable method to treat organic wastes with high total solids content and obtain renewable energy and an organic fertiliser, using a lower dilution rate than in the more common wet digestion process. This study examined the effect of reactor type on the performance of an HSD process, comparing plug-flow (PFR) type reactors developed for continuous HSD processes, and completely stirred-tank reactors (CSTRs) commonly used for wet digestion. The HSD process was operated in thermophilic conditions (52 °C), with a mixture of household waste, garden waste and agricultural residues (total solids content 27-28 %). The PFRs showed slightly better performance, with higher specific methane production and nitrogen mineralisation than the CSTRs, while the reduction of volatile solids was the same in both reactor types. Results from 16S rRNA gene sequencing showed a significant difference in the microbial population, potentially related to large differences in stirring speed between the reactor types (1 rpm in PFRs and 70-150 rpm in CSTRs, respectively). The bacterial community was dominated by the genus Defluviitoga in the PFRs and order MBA03 in the CSTRs. For the archaeal community, there was a predominance of the genus Methanoculleus in the PFRs, and of the genera Methanosarcina and Methanothermobacter in the CSTRs. Despite these shifts in microbiology, the results showed that stable digestion of substrates with high total solids content can be achieved in both reactor types, indicating flexibility in the choice of technique for HSD processes.
Collapse
Affiliation(s)
- Ebba Perman
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden; Biogas Solutions Research Center, Linköping, Sweden
| | - Anna Karlsson
- Biogas Solutions Research Center, Linköping, Sweden; Biokraft International AB, Kungsbron 1, 111 22 Stockholm, Sweden
| | - Maria Westerholm
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden; Biogas Solutions Research Center, Linköping, Sweden
| | - Simon Isaksson
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Anna Schnürer
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden; Biogas Solutions Research Center, Linköping, Sweden.
| |
Collapse
|
4
|
Ponzelli M, Koch K, Drewes JE, Radjenovic J, Vinardell S. The ambivalent role of graphene oxide in anaerobic digestion: A review. BIORESOURCE TECHNOLOGY 2024; 414:131663. [PMID: 39424011 DOI: 10.1016/j.biortech.2024.131663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
The capability of graphene oxide (GO) to enhance direct interspecies electron transfer (DIET) and improve anaerobic digestion (AD) performance is gaining attention in AD literature. The present review discusses the implications of GO and its ambivalent role in AD. Under anaerobic conditions, GO is rapidly converted to biologically reduced graphene oxide (bioRGO) through microbial respiration. GO addition could promote the release of extracellular polymeric substances and lead to toxic effects on anaerobic microorganisms. However, further research is needed to determine the GO toxic concentration thresholds. GO application can impact biogas production and organic micropollutants removal of anaerobic digesters. Nevertheless, most of the studies have been conducted at batch scale and further work in continuously operated anaerobic digesters is still needed. Finally, the review evaluates the economic potential of GO application in AD systems. Overall, this review lays the foundations to improve the applicability of GO in future full-scale digesters.
Collapse
Affiliation(s)
- Michele Ponzelli
- Catalan Institute for Water Research (ICRA), Emili Grahit 101, 17003 Girona, Spain; University of Girona, 17003 Girona, Spain; Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748 Garching, Germany
| | - Konrad Koch
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748 Garching, Germany.
| | - Jörg E Drewes
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748 Garching, Germany
| | - Jelena Radjenovic
- Catalan Institute for Water Research (ICRA), Emili Grahit 101, 17003 Girona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Sergi Vinardell
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, Campus Diagonal-Besòs, 08930 Barcelona, Spain; Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain
| |
Collapse
|
5
|
El Achkar JH, Al Radhwan S, Al-Otaibi AM, Mazid AM. Optimizing food waste anaerobic digestion in Kuwait: Experimental insights and empirical modelling using artificial neural networks. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2024:734242X241294247. [PMID: 39534954 DOI: 10.1177/0734242x241294247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
This study investigates, for the first time, the anaerobic digestion of food waste in Kuwait to optimize methane production through a combination of artificial neural network (ANN) modelling and continuous reactor experiments. The ANN model, utilizing eight hidden neurons and a 70-20-10 split for training, validation and testing sets, yielded mean squared error values of 0.0056, 0.0048 and 0.0059 and coefficient of determination (R²) values of 0.9942, 0.9986 and 0.9892, respectively. Methane percentages in biogas were predicted using six parameters: biomass type, pH, organic loading rate (OLR), hydraulic retention time (HRT), temperature and reactor volume. To validate the ANN results, continuous reactor experiments were conducted under an OLR of 3 kg VS m⁻³ d⁻¹ and HRT of 20 days at varying temperatures (35°C, 40°C, 45°C, 50°C and 55°C). The experiments demonstrated optimal methane production in the mesophilic range, with ANN predictions closely aligning with experimental data up to 45°C. However, deviations were observed at higher temperatures, particularly under thermophilic conditions beyond 50°C. This study provides novel insights into waste-to-energy initiatives in Kuwait and highlights the potential of integrating computational models with empirical data to enhance biogas production processes.
Collapse
Affiliation(s)
- Jean H El Achkar
- Petroleum Engineering Department, College of Engineering, Australian University, West Mishref, Safat, Kuwait
| | - Suad Al Radhwan
- Petroleum Engineering Department, College of Engineering, Australian University, West Mishref, Safat, Kuwait
| | - Ahmed M Al-Otaibi
- Petroleum Research Centre, Kuwait Institute for Scientific Research, Safat, Kuwait
| | - Abdul Md Mazid
- School of Engineering and Technology, Central Queensland University, Melbourne, VIC, Australia
| |
Collapse
|
6
|
Ostos I, Flórez-Pardo LM, Camargo C. A metagenomic approach to demystify the anaerobic digestion black box and achieve higher biogas yield: a review. Front Microbiol 2024; 15:1437098. [PMID: 39464396 PMCID: PMC11502389 DOI: 10.3389/fmicb.2024.1437098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/23/2024] [Indexed: 10/29/2024] Open
Abstract
The increasing reliance on fossil fuels and the growing accumulation of organic waste necessitates the exploration of sustainable energy alternatives. Anaerobic digestion (AD) presents one such solution by utilizing secondary biomass to produce biogas while reducing greenhouse gas emissions. Given the crucial role of microbial activity in anaerobic digestion, a deeper understanding of the microbial community is essential for optimizing biogas production. While metagenomics has emerged as a valuable tool for unravelling microbial composition and providing insights into the functional potential in biodigestion, it falls short of interpreting the functional and metabolic interactions, limiting a comprehensive understanding of individual roles in the community. This emphasizes the significance of expanding the scope of metagenomics through innovative tools that highlight the often-overlooked, yet crucial, role of microbiota in biomass digestion. These tools can more accurately elucidate microbial ecological fitness, shared metabolic pathways, and interspecies interactions. By addressing current limitations and integrating metagenomics with other omics approaches, more accurate predictive techniques can be developed, facilitating informed decision-making to optimize AD processes and enhance biogas yields, thereby contributing to a more sustainable future.
Collapse
Affiliation(s)
- Iván Ostos
- Grupo de Investigación en Ingeniería Electrónica, Industrial, Ambiental, Metrología GIEIAM, Universidad Santiago de Cali, Cali, Colombia
| | - Luz Marina Flórez-Pardo
- Grupo de Investigación en Modelado, Análisis y Simulación de Procesos Ambientales e Industriales PAI+, Universidad Autónoma de Occidente, Cali, Colombia
| | - Carolina Camargo
- Centro de Investigación de la Caña de Azúcar, CENICAÑA, Cali, Colombia
| |
Collapse
|
7
|
Sakurai R, Yokoyama Y, Fukuda Y, Kawakami M, Hashimoto S, Tada C. Discovery of a Microbial Carrier with High Adsorption Affinity for Syntrophic Long-Chain Fatty Acid-Degrading Microorganisms. ACS OMEGA 2024; 9:39643-39651. [PMID: 39346836 PMCID: PMC11425828 DOI: 10.1021/acsomega.4c03998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 10/01/2024]
Abstract
Long-chain fatty acid (LCFA) degradation primarily involves several species of Syntrophomonas and hydrogenotrophic methanogens, constituting the rate-limiting step in anaerobic digestion. It is crucial to augment their abundance to enhance LCFA degradation. Utilizing microbial carriers presents an effective strategy to maintain the microorganisms on the surface and prevent their washout from the digester. In this study, we aimed to identify a suitable microbial carrier with a superior adsorption capacity for LCFA-degrading microorganisms. We tested various polymers, poly(vinyl alcohol) (PVA), polypropylene (PP), polyethylene glycol (PEG), and polyvinylidene chloride (PVDC), adding them to the sludge at the concentration of 28.25 g L-1 and incubating with olive oil. The amplicon sequencing analysis revealed that PVDC retained Syntrophomonas more abundantly than the other polymers. Remarkably, PVDC predominantly adsorbed LCFA-degrading S. sapovorans and S. zehnderi, whereas medium- to short-chain fatty acid-degrading S. wolfei was abundant in the sludge. Moreover, hydrogenotrophic Methanospirillum hungatei was detected at 2.3-9.5 times higher abundance on PVDC compared to the sludge. Further analysis indicated that not only these LCFA-degrading syntrophic microbial communities but also Propionispira and Anaerosinus, which are capable of lipid hydrolysis and glycerol degradation, became dominant on PVDC. Actually, chemical analysis confirmed that adding PVDC promoted the olive oil degradation. These results underscore the potential of PVDC in promoting anaerobic LCFA degradation.
Collapse
Affiliation(s)
- Riku Sakurai
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-8572, Japan
- Japan Society for the Promotion of Science, Tokyo 980-8577, Japan
| | - Yoshimi Yokoyama
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-8572, Japan
| | - Yasuhiro Fukuda
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-8572, Japan
| | - Masaki Kawakami
- Asahi Kasei Home Products Corporation, Tokyo 100-0006, Japan
| | | | - Chika Tada
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-8572, Japan
| |
Collapse
|
8
|
Zhang G, Shi P, Zhai C, Jin Y, Han M, Liu S, Liu Y, Liu H, Zhou Q, Li J, Wu D, Xu H, Luo H. Review of energy self-circulation systems integrating biogas utilization with Powerfuels production in global livestock industry. BIORESOURCE TECHNOLOGY 2024; 408:131193. [PMID: 39094963 DOI: 10.1016/j.biortech.2024.131193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
Energy self-circulation systems, defined as energy systems incorporating the recycling utilization of waste biomass, have been proposed to reduce greenhouse gases emissions from livestock sector. In this study, a comprehensive review of the situation and challenges of biogas utilization in the livestock industry was provided. Moreover, two technological routes were proposed for a circular livestock system combined with Powerfuels production (CP-CLS), starting from biogas combustion for power generation and steam reforming to the sustainable development path of synthesizing, storing, and utilizing Powerfuels. The self-circulation capability and comprehensive benefits of the CP-CLS life cycle was discussed, along with future application scenarios and proposed standards for Powerfuels. To realize this potential, continuous research, development, and policy support are crucial. This study envisions the next generation of energy self-circulation systems, which expects to reduce the negative effect of livestock industry on climate change and promote sustainable development.
Collapse
Affiliation(s)
- Gengxin Zhang
- Department of Mechanical Engineering, School of Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom; Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Penghua Shi
- Mechanical Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Chang Zhai
- Mechanical Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Yu Jin
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, PR China
| | - Mengyao Han
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China; Centre for Environment, Energy and Natural Resource Governance (C-EENRG), University of Cambridge, Cambridge CB2 3QZ, United Kingdom.
| | - Siyuan Liu
- Hebei Provincial Key Laboratory of Heavy Machinery Fluid Power Transmission and Control, Yanshan University, Qinhuangdao 066004, PR China
| | - Yaowei Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Haoye Liu
- State Key Laboratory of Engines, Tianjin University, Tianjin 300073, PR China
| | - Quan Zhou
- School of Automotive Studies, Tongji University, Shanghai 201804, PR China
| | - Ji Li
- Department of Mechanical Engineering, School of Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Dawei Wu
- Department of Mechanical Engineering, School of Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Hongming Xu
- Department of Mechanical Engineering, School of Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.
| | - Hongliang Luo
- College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, PR China
| |
Collapse
|
9
|
Ye Y, Guo W, Ngo HH, Wei W, Cheng D, Bui XT, Hoang NB, Zhang H. Biofuel production for circular bioeconomy: Present scenario and future scope. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:172863. [PMID: 38788387 DOI: 10.1016/j.scitotenv.2024.172863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/22/2024] [Accepted: 04/27/2024] [Indexed: 05/26/2024]
Abstract
In recent years, biofuel production has attracted considerable attention, especially given the increasing worldwide demand for energy and emissions of greenhouse gases that threaten this planet. In this case, one possible solution is to convert biomass into green and sustainable biofuel, which can enhance the bioeconomy and contribute to sustainable economic development goals. Due to being in large quantities and containing high organic content, various biomass sources such as food waste, textile waste, microalgal waste, agricultural waste and sewage sludge have gained significant attention for biofuel production. Also, biofuel production technologies, including thermochemical processing, anaerobic digestion, fermentation and bioelectrochemical systems, have been extensively reported, which can achieve waste valorization through producing biofuels and re-utilizing wastes. Nevertheless, the commercial feasibility of biofuel production is still being determined, and it is unclear whether biofuel can compete equally with other existing fuels in the market. The concept of a circular economy in biofuel production can promote the environmentally friendly and sustainable valorization of biomass waste. This review comprehensively discusses the state-of-the-art production of biofuel from various biomass sources and the bioeconomy perspectives associated with it. Biofuel production is evaluated within the framework of the bioeconomy. Further perspectives on possible integration approaches to maximizing waste utilization for biofuel production are discussed, and what this could mean for the circular economy. More research related to pretreatment and machine learning of biofuel production should be conducted to optimize the biofuel production process, increase the biofuel yield and make the biofuel prices competitive.
Collapse
Affiliation(s)
- Yuanyao Ye
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan 430074, PR China; Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, PR China
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, University of Technology Sydney, NSW 2007, Australia
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, University of Technology Sydney, NSW 2007, Australia.
| | - Wei Wei
- Centre for Technology in Water and Wastewater, University of Technology Sydney, NSW 2007, Australia
| | - Dongle Cheng
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Xuan Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology, Faculty of Environment & Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh (VNU-HCM), Ho Chi Minh City 70000, Viet Nam
| | - Ngoc Bich Hoang
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| | - Huiying Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
10
|
Wang J, Xu C, Zhang W, Hong Y, Shen G, Wang W, Tang H, Zhang S, Pan J, Wang W. Synergistic effect of two bacterial strains promoting anaerobic digestion of rice straw to produce methane. ENVIRONMENTAL RESEARCH 2024; 252:118974. [PMID: 38649016 DOI: 10.1016/j.envres.2024.118974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/12/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
A large amount of agricultural waste causes global environmental pollution. Biogas production by microbial pretreatment is an important way to utilize agricultural waste resources. In this study, Sporocytophaga CG-1 (A, cellulolytic strain) was co-cultured with Bacillus clausii HP-1 (B, non-cellulolytic strain) to analyze the effect of pretreatment of rice straw on methanogenic capacity of anaerobic digestion (AD). The results showed that weight loss rate of filter paper of co-culture combination is 53.38%, which is 29.37% higher than that of A. The synergistic effect of B on A can promote its degradation of cellulose. The cumulative methane production rate of the co-culture combination was the highest (93.04 mL/g VS substrate), which was significantly higher than that of A, B and the control group (82.38, 67.28 and 67.70 mL/g VS substrate). Auxiliary bacteria can improve cellulose degradation rate by promoting secondary product metabolism. These results provide data support for the application of co-culture strategies in the field of anaerobic digestion practices.
Collapse
Affiliation(s)
- Jinghong Wang
- Key Laboratory of Low -Carbon Green Agriculture in Northeast China, Ministry of Agriculture and Rural Affairs, College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China; College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Congfeng Xu
- Key Laboratory of Low -Carbon Green Agriculture in Northeast China, Ministry of Agriculture and Rural Affairs, College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China; College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Wei Zhang
- Key Laboratory of Low -Carbon Green Agriculture in Northeast China, Ministry of Agriculture and Rural Affairs, College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Yanhua Hong
- Key Laboratory of Low -Carbon Green Agriculture in Northeast China, Ministry of Agriculture and Rural Affairs, College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Guinan Shen
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Weiwei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Hongzhi Tang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Shenglong Zhang
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China; Heilongjiang Guohong Environmental Co., LTD, Harbin, 150028, PR China
| | - Junting Pan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Weidong Wang
- Key Laboratory of Low -Carbon Green Agriculture in Northeast China, Ministry of Agriculture and Rural Affairs, College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China; College of Life Science, Northeast Forestry University, Harbin, 150040, PR China; College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China.
| |
Collapse
|
11
|
Ao TJ, Liu CG, Sun ZY, Zhao XQ, Tang YQ, Bai FW. Anaerobic digestion integrated with microbial electrolysis cell to enhance biogas production and upgrading in situ. Biotechnol Adv 2024; 73:108372. [PMID: 38714276 DOI: 10.1016/j.biotechadv.2024.108372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/22/2024] [Accepted: 05/01/2024] [Indexed: 05/09/2024]
Abstract
Anaerobic digestion (AD) is an effective and applicable technology for treating organic wastes to recover bioenergy, but it is limited by various drawbacks, such as long start-up time for establishing a stable process, the toxicity of accumulated volatile fatty acids and ammonia nitrogen to methanogens resulting in extremely low biogas productivities, and a large amount of impurities in biogas for upgrading thereafter with high cost. Microbial electrolysis cell (MEC) is a device developed for electrosynthesis from organic wastes by electroactive microorganisms, but MEC alone is not practical for production at large scales. When AD is integrated with MEC, not only can biogas production be enhanced substantially, but also upgrading of the biogas product performed in situ. In this critical review, the state-of-the-art progress in developing AD-MEC systems is commented, and fundamentals underlying methanogenesis and bioelectrochemical reactions, technological innovations with electrode materials and configurations, designs and applications of AD-MEC systems, and strategies for their enhancement, such as driving the MEC device by electricity that is generated by burning the biogas to improve their energy efficiencies, are specifically addressed. Moreover, perspectives and challenges for the scale up of AD-MEC systems are highlighted for in-depth studies in the future to further improve their performance.
Collapse
Affiliation(s)
- Tian-Jie Ao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chen-Guang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Zhao-Yong Sun
- College of Architecture & Environment, Sichuan University, Chengdu 610000, China
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Yue-Qin Tang
- College of Architecture & Environment, Sichuan University, Chengdu 610000, China
| | - Feng-Wu Bai
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
12
|
Izydorczyk G, Skrzypczak D, Mironiuk M, Mikula K, Samoraj M, Gil F, Taf R, Moustakas K, Chojnacka K. Lignocellulosic biomass fertilizers: Production, characterization, and agri-applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171343. [PMID: 38438048 DOI: 10.1016/j.scitotenv.2024.171343] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/29/2024] [Accepted: 02/27/2024] [Indexed: 03/06/2024]
Abstract
The growing focus on sustainable agriculture and optimal resource utilization has spurred investigations into lignocellulosic biomass as a potential source for producing environmentally friendly fertilizers. This paper reviews recent advancements in the production and application of innovative fertilizers derived from lignocellulose. It highlights potential in enhancing agricultural productivity and reducing environmental impacts such as carbon footprint and water pollution. The paper outlines various methods for conversion, highlighting the unique advantages of chemical, enzymatic, and microbiological processes, for converting lignocellulosic biomass into nutrient-rich fertilizers. The study compares the efficacy of lignocellulosic fertilizers to traditional fertilizers in promoting crop growth, enhancing soil health, and reducing nutrient losses. The results demonstrate the potential of lignocellulosic biomass-derived fertilizers in promoting resource efficiency and sustainable agriculture. While this research significantly contributes to the existing body of knowledge, further studies on long-term impacts and scalability are recommended for the development of innovative and sustainable agricultural practices.
Collapse
Affiliation(s)
- Grzegorz Izydorczyk
- Department of Advanced Material Technologies, Wroclaw University of Science and Technology, Wroclaw, Lower Silesia 50-370, Poland.
| | - Dawid Skrzypczak
- Department of Advanced Material Technologies, Wroclaw University of Science and Technology, Wroclaw, Lower Silesia 50-370, Poland
| | - Małgorzata Mironiuk
- Department of Advanced Material Technologies, Wroclaw University of Science and Technology, Wroclaw, Lower Silesia 50-370, Poland
| | - Katarzyna Mikula
- Department of Advanced Material Technologies, Wroclaw University of Science and Technology, Wroclaw, Lower Silesia 50-370, Poland
| | - Mateusz Samoraj
- Department of Advanced Material Technologies, Wroclaw University of Science and Technology, Wroclaw, Lower Silesia 50-370, Poland
| | - Filip Gil
- Department of Advanced Material Technologies, Wroclaw University of Science and Technology, Wroclaw, Lower Silesia 50-370, Poland
| | - Rafał Taf
- Department of Advanced Material Technologies, Wroclaw University of Science and Technology, Wroclaw, Lower Silesia 50-370, Poland
| | - Konstantinos Moustakas
- School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zographou Campus, GR-15780 Athens, Greece
| | - Katarzyna Chojnacka
- Department of Advanced Material Technologies, Wroclaw University of Science and Technology, Wroclaw, Lower Silesia 50-370, Poland
| |
Collapse
|
13
|
Tomczak W, Gryta M, Daniluk M, Żak S. Biogas Upgrading Using a Single-Membrane System: A Review. MEMBRANES 2024; 14:80. [PMID: 38668108 PMCID: PMC11051867 DOI: 10.3390/membranes14040080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024]
Abstract
In recent years, the use of biogas as a natural gas substitute has gained great attention. Typically, in addition to methane (CH4), biogas contains carbon dioxide (CO2), as well as small amounts of impurities, e.g., hydrogen sulfide (H2S), nitrogen (N2), oxygen (O2) and volatile organic compounds (VOCs). One of the latest trends in biogas purification is the application of membrane processes. However, literature reports are ambiguous regarding the specific requirement for biogas pretreatment prior to its upgrading using membranes. Therefore, the main aim of the present study was to comprehensively examine and discuss the most recent achievements in the use of single-membrane separation units for biogas upgrading. Performing a literature review allowed to indicate that, in recent years, considerable progress has been made on the use of polymeric membranes for this purpose. For instance, it has been documented that the application of thin-film composite (TFC) membranes with a swollen polyamide (PA) layer ensures the successful upgrading of raw biogas and eliminates the need for its pretreatment. The importance of the performed literature review is the inference drawn that biogas enrichment performed in a single step allows to obtain upgraded biogas that could be employed for household uses. Nevertheless, this solution may not be sufficient for obtaining high-purity gas at high recovery efficiency. Hence, in order to obtain biogas that could be used for applications designed for natural gas, a membrane cascade may be required. Moreover, it has been documented that a significant number of experimental studies have been focused on the upgrading of synthetic biogas; meanwhile, the data on the raw biogas are very limited. In addition, it has been noted that, although ceramic membranes demonstrate several advantages, experimental studies on their applications in single-membrane systems have been neglected. Summarizing the literature data, it can be concluded that, in order to thoroughly evaluate the presented issue, the long-term experimental studies on the upgrading of raw biogas with the use of polymeric and ceramic membranes in pilot-scale systems are required. The presented literature review has practical implications as it would be beneficial in supporting the development of membrane processes used for biogas upgrading.
Collapse
Affiliation(s)
- Wirginia Tomczak
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, ul. Seminaryjna 3, 85-326 Bydgoszcz, Poland; (M.D.); (S.Ż.)
| | - Marek Gryta
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, ul. Pułaskiego 10, 70-322 Szczecin, Poland
| | - Monika Daniluk
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, ul. Seminaryjna 3, 85-326 Bydgoszcz, Poland; (M.D.); (S.Ż.)
| | - Sławomir Żak
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, ul. Seminaryjna 3, 85-326 Bydgoszcz, Poland; (M.D.); (S.Ż.)
| |
Collapse
|
14
|
González-Arias J, Torres-Sempere G, Arroyo-Torralvo F, Reina TR, Odriozola JA. Optimizing biogas methanation over nickel supported on ceria-alumina catalyst: Towards CO 2-rich biomass utilization for a negative emissions society. ENVIRONMENTAL RESEARCH 2024; 242:117735. [PMID: 38000630 DOI: 10.1016/j.envres.2023.117735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/11/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
Biogas methanation emerges as a prominent technology for converting biogas into biomethane in a single step. Furthermore, this technology can be implemented at biogas plant locations, supporting local economies and reducing dependence on large energy producers. However, there is a lack of comprehensive studies on biogas methanation, particularly regarding the technical optimization of operational parameters and the profitability analysis of the overall process. To address this gap, our study represents a seminal work on the technical optimization of biogas methanation obtaining an empirical model to predict the performance of biogas methanation. We investigate the influence of operational parameters, such as reaction temperature, H2/CO2 ratio, space velocity, and CO2 share in the biogas stream through an experimental design. Based on previous research we selected a nickel supported on ceria-alumina catalyst; being nickel a benchmark system for methanation process such selection permits a reliable data extrapolation to commercial units. We showcase the remarkable impact of studied key operation parameters, being the temperature, the most critical factor affecting the reaction performance (ca. 2 to 5 times higher than the second most influencing parameter). The impact of the H2/CO2 ratio is also noticeable. The response surfaces and contour maps suggest that a temperature between 350 and 450 °C and an H2/CO2 ratio between 2.5 and 3.2 optimize the reaction performance. Further experimental tests were performed for model validation and optimization leading to a reliable predictive model. Overall, this study provides validated equations for technology scaling-up and techno-economic analysis, thus representing a step ahead towards real-world applications for bio-methane production.
Collapse
Affiliation(s)
- J González-Arias
- Inorganic Chemistry Department and Materials Sciences Institute, University of Seville-CSIC, Seville, Spain.
| | - G Torres-Sempere
- Inorganic Chemistry Department and Materials Sciences Institute, University of Seville-CSIC, Seville, Spain
| | - F Arroyo-Torralvo
- Chemical and Environmental Engineering Department, Technical School of Engineering, University of Seville, C/ Camino de los Descubrimientos s/n, Sevilla, 41092, Spain
| | - T R Reina
- Inorganic Chemistry Department and Materials Sciences Institute, University of Seville-CSIC, Seville, Spain
| | - J A Odriozola
- Inorganic Chemistry Department and Materials Sciences Institute, University of Seville-CSIC, Seville, Spain
| |
Collapse
|