1
|
Sun C, Yang T, Zhang S, Wen Q, Gao B, Liu Q, Cheng H, Wang Y, Chen Z, Zhou H. Regulation of carbon metabolic fluxes to enhance lipid and succinate production in oleaginous fungus Mortierella alpina. World J Microbiol Biotechnol 2024; 40:298. [PMID: 39128979 DOI: 10.1007/s11274-024-04082-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 07/14/2024] [Indexed: 08/13/2024]
Abstract
Mortierella alpina is popular for lipid production, but the low carbon conversion rate and lipid yield are major obstacles for its economic performance. Here, external addition of organic acids involved in tricarboxylic acid cycle was used to tune carbon flux and improve lipid production. Citrate was determined to be the best organic acid that can be used for enhancing lipid production. By the addition of citrate, the lipid titer and content were approximately 1.24 and 1.34 times higher, respectively. Meanwhile, citrate supplement also promoted the accumulation of succinate, an important value-added platform chemical. Owing to the improved lipid and succinate production through adding citrate, the carbon conversion rate of M. alpina reached up to 52.17%, much higher than that of the control group (14.11%). The addition of citrate could redistribute carbon flux by regulating the expression level of genes related to tricarboxylic acid cycle metabolism. More carbon fluxes flow to lipid and succinate synthesis, which greatly improved the carbon conversion efficiency of M. alpina. This study provides an effective and straightforward strategy with potential economic benefits to improve carbon conversion efficiency in M. alpina.
Collapse
Affiliation(s)
- Chongran Sun
- Department of Bioengineering, School of Minerals Processing and Bioengineering, Central South University, 932 South Lushan Road, Changsha, 410083, Hunan, P.R. China
| | - Tao Yang
- Department of Bioengineering, School of Minerals Processing and Bioengineering, Central South University, 932 South Lushan Road, Changsha, 410083, Hunan, P.R. China
| | - Shuangfei Zhang
- Department of Bioengineering, School of Minerals Processing and Bioengineering, Central South University, 932 South Lushan Road, Changsha, 410083, Hunan, P.R. China
| | - Qikun Wen
- Department of Bioengineering, School of Minerals Processing and Bioengineering, Central South University, 932 South Lushan Road, Changsha, 410083, Hunan, P.R. China
| | - Binyuan Gao
- Department of Bioengineering, School of Minerals Processing and Bioengineering, Central South University, 932 South Lushan Road, Changsha, 410083, Hunan, P.R. China
| | - Qianzi Liu
- Department of Bioengineering, School of Minerals Processing and Bioengineering, Central South University, 932 South Lushan Road, Changsha, 410083, Hunan, P.R. China
| | - Haina Cheng
- Department of Bioengineering, School of Minerals Processing and Bioengineering, Central South University, 932 South Lushan Road, Changsha, 410083, Hunan, P.R. China
- Key Laboratory of Biometallurgy, Ministry of Education, Changsha, Hunan, China
| | - Yuguang Wang
- Department of Bioengineering, School of Minerals Processing and Bioengineering, Central South University, 932 South Lushan Road, Changsha, 410083, Hunan, P.R. China
- Key Laboratory of Biometallurgy, Ministry of Education, Changsha, Hunan, China
| | - Zhu Chen
- Department of Bioengineering, School of Minerals Processing and Bioengineering, Central South University, 932 South Lushan Road, Changsha, 410083, Hunan, P.R. China.
- Key Laboratory of Biometallurgy, Ministry of Education, Changsha, Hunan, China.
| | - Hongbo Zhou
- Department of Bioengineering, School of Minerals Processing and Bioengineering, Central South University, 932 South Lushan Road, Changsha, 410083, Hunan, P.R. China.
- Key Laboratory of Biometallurgy, Ministry of Education, Changsha, Hunan, China.
| |
Collapse
|
2
|
|
3
|
Mahmoodi M, Nassireslami E. Control algorithms and strategies of feeding for fed-batch fermentation of Escherichia coli: a review of 40 years of experience. Prep Biochem Biotechnol 2021; 52:823-834. [PMID: 34730470 DOI: 10.1080/10826068.2021.1998112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Fed-batch cultivation is a well-known type of submerged fermentation that is frequently used in manufacture of recombinant proteins and various kinds of enzymes, owing to its ability to produce products with high concentrations and high efficiency. In fed-batch culture, several issues must be considered; most of them are also presented in batch culture. However, feed flow rate calculation only corresponds to fed-batch fermentation and its value has a significant impact on productivity, efficiency, final concentration of product, formation of by-products, and viscosity of the culture. From this background, the present review article is an effort to gather the information on feeding strategies for fed-batch cultivation of Escherichia coli, which is a well-known microorganism in the production of recombinant proteins and industrial enzymes, especially for therapeutic applications. Moreover, this review is an aid to comprehend and compare the fundamental concept of different feeding strategies and their advantages and drawbacks.
Collapse
Affiliation(s)
- Mohammad Mahmoodi
- Department of Pharmacology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Ehsan Nassireslami
- Department of Pharmacology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran.,Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Abstract
There is an increasing need for the development of alternative energy sources with a focus on reducing greenhouse gas emissions and striving toward a sustainable economy. Bioethanol and biodiesel are currently the primary choices of alternative transportation fuels. At present, biodiesel is not competitive with conventional fuel due to its high price, and the only way to compete with conventional fuel is to improve the quality, reduce the costs, and coproduce value-added products. With the high demand for lipids in the energy sector and other industrial applications, microbial lipids accumulated from microorganisms, especially oleaginous fungi and yeasts have been the important topic of many recent research studies. This chapter summarizes the current status of knowledge and technology about lipid production by oleaginous fungi and yeasts for biofuel applications and other value-added products. The chapter focuses on several aspects such as the most promising oleaginous strains, strain development, improvement of lipid production, methods and protocols to cultivate oleaginous fungi, substrate utilization, fermentation process design, and downstream processing. The feasibility and challenges during the large-scale commercial production of microbial lipids as fuel sources are also discussed. It provides an overview of microbial lipid production biorefinery and also future development directions.
Collapse
|
5
|
Lu H, Chen H, Tang X, Yang Q, Zhang H, Chen YQ, Chen W. Ultra Performance Liquid Chromatography-Q Exactive Orbitrap/Mass Spectrometry-Based Lipidomics Reveals the Influence of Nitrogen Sources on Lipid Biosynthesis of Mortierella alpina. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10984-10993. [PMID: 31525294 DOI: 10.1021/acs.jafc.9b04455] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The objective of the present study was to reveal the effects of four types of nitrogen sources (soymeal, yeast extract, KNO3, and ammonium tartrate) on the lipid metabolism of the oleaginous fungus Mortierella alpina using untargeted lipidomics, targeted fatty acid, and reverse transcription quantitative polymerase chain reaction (RT-qPCR) analysis. Our results showed clear differences in the contents and compositions of lipids between four types of nitrogen sources. Soymeal and ammonium tartrate supplementation favored the accumulation of triglycerides with arachidonic acid (ARA) and C16-18 fatty acids, respectively. These results were further validated by our targeted fatty acid analysis. RT-qPCR analysis of related genes in M. alpina between the four nitrogen source conditions found that soymeal supplementation dramatically increased the expression of GPAT, ELOVL, and Δ12/Δ6 desaturase. Our findings provided new insights into the regulation of lipid biosynthesis in M. alpina and potential avenues for genetic manipulation and highlighted the importance of an optimal nitrogen source for ARA-rich oil production.
Collapse
Affiliation(s)
| | - Haiqin Chen
- (Yangzhou) Institute of Food Biotechnology , Jiangnan University , Yangzhou , Jiangsu 225004 , People's Republic of China
| | | | | | - Hao Zhang
- (Yangzhou) Institute of Food Biotechnology , Jiangnan University , Yangzhou , Jiangsu 225004 , People's Republic of China
| | | | - Wei Chen
- Beijing Innovation Centre of Food Nutrition and Human Health , Beijing Technology and Business University (BTBU) , Beijing 100048 , People's Republic of China
| |
Collapse
|
6
|
Samadlouie HR, Nurmohamadi S, Moradpoor F, Gharanjik S. Effect of low-cost substrate on the fatty acid profiles of Mortierella alpina CBS 754.68 and Wickerhamomyces siamensis SAKSG. BIOTECHNOL BIOTEC EQ 2018. [DOI: 10.1080/13102818.2018.1471360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Affiliation(s)
- Hamid Reza Samadlouie
- Department of Food Science and Technology, Faculty of Agricultural Engineering, Shahrood University of Technology, Shahrood, Iran
| | - Sanaz Nurmohamadi
- Department of Food Science and Technology, Faculty of Agricultural Engineering, Ayat Ollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Fatemeh Moradpoor
- Department of Food Science and Technology, Faculty of Agricultural Engineering, Ayat Ollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Shahrokh Gharanjik
- Department of Biotechnology, Faculty of Agricultural Engineering, Shahrood University of Technology, Shahrood, Iran
| |
Collapse
|
7
|
A two-stage fed-batch heterotrophic culture of Chlorella protothecoides that combined nitrogen depletion with hyperosmotic stress strategy enhanced lipid yield and productivity. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.05.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Lee JV, Furman R, Axelsen PH. Biosynthesis of uniformly labeled 13C- and 14C-arachidonic acid in Mortierella alpina. BIORESOURCE TECHNOLOGY 2017; 227:142-146. [PMID: 28013130 PMCID: PMC5237611 DOI: 10.1016/j.biortech.2016.12.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 12/10/2016] [Accepted: 12/12/2016] [Indexed: 06/06/2023]
Abstract
Arachidonic acid (ARA) is one of the most abundant polyunsaturated fatty acids (PUFAs) in the mammalian brain. Many enzymatically- and nonenzymatically-produced metabolic products have important and potent pharmacological properties. However, uniformly isotope labeled forms of ARA are not commercially available for studying the metabolic fates of ARA. This study describes a simple and efficient protocol for the biosynthesis of U-13C-ARA from U-13C-glucose, and U-14C-ARA from U-14C-glucose by Mortierella alpina. The protocols yield approximately 100nmol quantities of U-13C-ARA with an isotopic purity of 95% from a 500μl batch volume, and approximately 2μCi quantities of U-14C-ARA with an apparent specific activity in excess of 1200Ci/mol from a 250μl batch volume.
Collapse
Affiliation(s)
- Jin V Lee
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Ran Furman
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Paul H Axelsen
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104, United States; Departments of Biochemistry and Biophysics, and Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
9
|
Wu WJ, Zhang AH, Peng C, Ren LJ, Song P, Yu YD, Huang H, Ji XJ. An efficient multi-stage fermentation strategy for the production of microbial oil rich in arachidonic acid in Mortierella alpina. BIORESOUR BIOPROCESS 2017; 4:8. [PMID: 28163995 PMCID: PMC5243910 DOI: 10.1186/s40643-017-0138-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 12/28/2016] [Accepted: 01/10/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fungal morphology and aeration play a significant role in the growth process of Mortierella alpina. The production of microbial oil rich in arachidonic acid (ARA) in M. alpina was enhanced by using a multi-stage fermentation strategy which combined fed-batch culture with precise control of aeration and agitation rates at proper times. RESULTS The fermentation period was divided into four stages according to the cultivation characteristics of M. alpina. The dissolved oxygen concentration was well suited for ARA biosynthesis. Moreover, the ultimate dry cell weight (DCW), lipid, and ARA yields obtained using this strategy reached 41.4, 22.2, 13.5 g/L, respectively. The respective values represent 14.8, 25.8, and 7.8% improvements over traditional fed-batch fermentation processes. CONCLUSIONS This strategy provides promising control insights for the mass production of ARA-rich oil on an industrial scale. Pellet-like fungal morphology was transformed into rice-shaped particles which were beneficial for oxygen transfer and thus highly suitable for biomass accumulation.
Collapse
Affiliation(s)
- Wen-Jia Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
| | - Ai-Hui Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
| | - Chao Peng
- Beijing Key Laboratory of Nutrition Health and Food Safety, COFCO Nutrition and Health Research Institute, Beijing, 102209 People’s Republic of China
| | - Lu-Jing Ren
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), No. 5 Xinmofan Road, Nanjing, 210009 People’s Republic of China
| | - Ping Song
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
| | - Ya-Dong Yu
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), No. 5 Xinmofan Road, Nanjing, 210009 People’s Republic of China
| | - He Huang
- School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 5 Xinmofan Road, Nanjing, 210009 People’s Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), No. 5 Xinmofan Road, Nanjing, 210009 People’s Republic of China
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), No. 5 Xinmofan Road, Nanjing, 210009 People’s Republic of China
| |
Collapse
|
10
|
Morgunov IG, Kamzolova SV, Dedyukhina EG, Chistyakova TI, Lunina JN, Mironov AA, Stepanova NN, Shemshura ON, Vainshtein MB. Application of organic acids for plant protection against phytopathogens. Appl Microbiol Biotechnol 2016; 101:921-932. [PMID: 28040844 DOI: 10.1007/s00253-016-8067-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/13/2016] [Accepted: 12/14/2016] [Indexed: 12/23/2022]
Abstract
The basic tendency in the field of plant protection concerns with reducing the use of pesticides and their replacement by environmentally acceptable biological preparations. The most promising approach to plant protection is application of microbial metabolites. In the last years, bactericidal, fungicidal, and nematodocidal activities were revealed for citric, succinic, α-ketoglutaric, palmitoleic, and other organic acids. It was shown that application of carboxylic acids resulted in acceleration of plant development and the yield increase. Of special interest is the use of arachidonic acid in very low concentrations as an inductor (elicitor) of protective functions in plants. The bottleneck in practical applications of these simple, nontoxic, and moderately priced preparations is the absence of industrial production of the mentioned organic acids of required quality since even small contaminations of synthetic preparations decrease their quality and make them dangerous for ecology and toxic for plants, animals, and human. This review gives a general conception on the use of organic acids for plant protection against the most dangerous pathogens and pests, as well as focuses on microbiological processes for production of these microbial metabolites of high quality from available, inexpensive, and renewable substrates.
Collapse
Affiliation(s)
- Igor G Morgunov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospect Nauki 5, Pushchino, Moscow region, Russia, 142290. .,Pushchino State Institute of Natural Sciences, Pushchino, Russia, 142290.
| | - Svetlana V Kamzolova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospect Nauki 5, Pushchino, Moscow region, Russia, 142290
| | - Emilia G Dedyukhina
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospect Nauki 5, Pushchino, Moscow region, Russia, 142290
| | - Tatiana I Chistyakova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospect Nauki 5, Pushchino, Moscow region, Russia, 142290
| | - Julia N Lunina
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospect Nauki 5, Pushchino, Moscow region, Russia, 142290
| | - Alexey A Mironov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospect Nauki 5, Pushchino, Moscow region, Russia, 142290
| | - Nadezda N Stepanova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospect Nauki 5, Pushchino, Moscow region, Russia, 142290.,Pushchino State Institute of Natural Sciences, Pushchino, Russia, 142290
| | - Olga N Shemshura
- Institute of Microbiology and Virology, Ministry of Education and Science of the Republic of Kazakhstan, Almaty, Kazakhstan, 050510
| | - Mikhail B Vainshtein
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospect Nauki 5, Pushchino, Moscow region, Russia, 142290.,Pushchino State Institute of Natural Sciences, Pushchino, Russia, 142290
| |
Collapse
|
11
|
Ling XP, Zeng SY, Chen CX, Liu XT, Lu YH. Enhanced arachidonic acid production using a bioreactor culture of Mortierella alpina with a combined organic nitrogen source. BIORESOUR BIOPROCESS 2016. [DOI: 10.1186/s40643-016-0121-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
12
|
Arachidonic Acid Synthesis in Mortierella alpina: Origin, Evolution and Advancements. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s40011-016-0714-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Bai Y, Zhang L, Jin W, Wei M, Zhou P, Zheng G, Niu L, Nie L, Zhang Y, Wang H, Yu L. In situ high-valued utilization and transformation of sugars from Dioscorea zingiberensis C.H. Wright for clean production of diosgenin. BIORESOURCE TECHNOLOGY 2015; 196:642-647. [PMID: 26299979 DOI: 10.1016/j.biortech.2015.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 06/04/2023]
Abstract
The industrial production of diosgenin in China generates a large amount of high-sugar wastes with low bioavailability, which causes serious pollution to the environment. In this study, a new clean and efficient process for the production of diosgenin was developed using sugars through in situ high-valued transformation. The sugar mixture from Dioscorea zingiberensis C.H. Wright contained abundant beneficial components. Nine typical microorganisms that produced intracellular products were evaluated. Saccharopolyspora spinosa was selected for recursive protoplast fusion to increase the spinosad yield by 46.3% compared with that of the wildtype. Diosgenin and spinosad co-production was conducted in a 100L bioreactor, with pH controlled by adding glucose. The biological oxygen demand of the effluent water decreased from 15,000mg/L to 450mg/L; hence, the proposed process is environment friendly.
Collapse
Affiliation(s)
- Yun Bai
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Liwei Zhang
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wenwen Jin
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Mi Wei
- Key Laboratory for Quality Control of Characteristic Fruits and Vegetables of Hubei Province, College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China
| | - Pengpeng Zhou
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guihua Zheng
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lili Niu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lin Nie
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yongliang Zhang
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Haiyan Wang
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Longjiang Yu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China; Wuhan Institute of Biotechnology, Wuhan 430075, China.
| |
Collapse
|
14
|
Li X, Liu R, Li J, Chang M, Liu Y, Jin Q, Wang X. Enhanced arachidonic acid production from Mortierella alpina combining atmospheric and room temperature plasma (ARTP) and diethyl sulfate treatments. BIORESOURCE TECHNOLOGY 2015; 177:134-140. [PMID: 25484124 DOI: 10.1016/j.biortech.2014.11.051] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/09/2014] [Accepted: 11/11/2014] [Indexed: 06/04/2023]
Abstract
To obtain mutant strains with higher arachidonic acid (ARA) yields, the oleaginous fungus Mortierella alpina was mutated using atmospheric and room temperature plasma (ARTP) coupled with diethyl sulfate (DES). A visual compound filter operation was used in which a screening medium was supplemented with cerulenin, an inhibitor of fatty acid synthase (FAS), and triphenyltetrazolium chloride (TTC). The mutant strain D20 with an ARA production of 5.09 g/L, a 40.61% increase over the original strain (3.62 g/L), was isolated. The relative ARA content increased from 38.99% to 45.64% of total fatty acids. After optimizing fermentation conditions, the maximum ARA yield (6.82 g/L) for strain D20 was obtained in shake flasks. This work provides an appropriate strategy for obtaining high ARA-yield strains by conventional random mutation methods with an efficient screening assay.
Collapse
Affiliation(s)
- Xiangyu Li
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Ruijie Liu
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Jing Li
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Ming Chang
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China.
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Qingzhe Jin
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Xingguo Wang
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| |
Collapse
|
15
|
Ji XJ, Zhang AH, Nie ZK, Wu WJ, Ren LJ, Huang H. Efficient arachidonic acid-rich oil production by Mortierella alpina through a repeated fed-batch fermentation strategy. BIORESOURCE TECHNOLOGY 2014; 170:356-360. [PMID: 25151081 DOI: 10.1016/j.biortech.2014.07.098] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 07/21/2014] [Accepted: 07/23/2014] [Indexed: 06/03/2023]
Abstract
Arachidonic acid (ARA)-rich oil production by Mortierella alpina is a long fermentation period needed process due to the low growth rate of the filamentous fungus used. This causes the low productivity of ARA-rich oil and hinders its industrial mass scale production. In the present study, different fed-batch strategies were conducted to shorten the fermentation period. The result showed that compared with the batch culture, the fermentation period was shortened from 7days to 5days with the productivity of ARA-rich oil increased from 0.9g/(L·d) to 1.3g/(L·d) by using the fed-batch fermentation strategy. Furthermore, repeated fed-batch fermentation strategy was adopted to achieve the purpose of continuous production. By using this strategy, the fermentation period was shortened from 40days to 26days in a four cycle repeated fed-batch fermentation. This strategy proved to be convenient and economical for ARA-rich oil commercial production process.
Collapse
Affiliation(s)
- Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| | - Ai-Hui Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Zhi-Kui Nie
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Wen-Jia Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Lu-Jing Ren
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - He Huang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| |
Collapse
|
16
|
Dedyukhina EG, Chistyakova TI, Mironov AA, Kamzolova SV, Morgunov IG, Vainshtein MB. Arachidonic acid synthesis from biodiesel-derived waste byMortierella alpina. EUR J LIPID SCI TECH 2014. [DOI: 10.1002/ejlt.201300358] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Emiliya G. Dedyukhina
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences; Pushchino Moscow Region Russia
| | - Tatyana I. Chistyakova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences; Pushchino Moscow Region Russia
| | - Aleksei A. Mironov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences; Pushchino Moscow Region Russia
- Pushchino State Institute of Natural Sciences; Pushchino Moscow Region Russia
| | - Svetlana V. Kamzolova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences; Pushchino Moscow Region Russia
| | - Igor G. Morgunov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences; Pushchino Moscow Region Russia
- Pushchino State Institute of Natural Sciences; Pushchino Moscow Region Russia
| | - Mikhail B. Vainshtein
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences; Pushchino Moscow Region Russia
- Pushchino State Institute of Natural Sciences; Pushchino Moscow Region Russia
| |
Collapse
|
17
|
Efficient arachidonic acid-rich oil production by Mortierella alpina through a three-stage fermentation strategy. Bioprocess Biosyst Eng 2013; 37:505-11. [DOI: 10.1007/s00449-013-1015-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 07/09/2013] [Indexed: 10/26/2022]
|
18
|
Ji XJ, Ren LJ, Nie ZK, Huang H, Ouyang PK. Fungal arachidonic acid-rich oil: research, development and industrialization. Crit Rev Biotechnol 2013; 34:197-214. [PMID: 23631634 DOI: 10.3109/07388551.2013.778229] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Fungal arachidonic acid (ARA)-rich oil is an important microbial oil that affects diverse physiological processes that impact normal health and chronic disease. In this article, the historic developments and technological achievements in fungal ARA-rich oil production in the past several years are reviewed. The biochemistry of ARA, ARA-rich oil synthesis and the accumulation mechanism are first introduced. Subsequently, the fermentation and downstream technologies are summarized. Furthermore, progress in the industrial production of ARA-rich oil is discussed. Finally, guidelines for future studies of fungal ARA-rich oil production are proposed in light of the current progress, challenges and trends in the field.
Collapse
Affiliation(s)
- Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology , Nanjing , People's Republic of China
| | | | | | | | | |
Collapse
|
19
|
Enhancing the value of nitrogen from rapeseed meal for microbial oil production. Enzyme Microb Technol 2012; 50:337-42. [PMID: 22500902 DOI: 10.1016/j.enzmictec.2012.03.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 03/12/2012] [Accepted: 03/12/2012] [Indexed: 11/24/2022]
Abstract
Rapeseed meal, a major byproduct of biodiesel production, has been used as a low-cost raw material for the production of a generic microbial feedstock through a consolidated bioconversion process. Various strategies were tested for the production of a novel fermentation medium, rich in free amino nitrogen (FAN): commercial enzymes (CEs) (2.7 mg g⁻¹ dry meal), liquid state fungal pre-treatment (LSF) using Aspergillus oryzae (4.6 mg g⁻¹), liquid state fungal pre-treatment followed by fungal autolysis (LSFA) (9.13 mg g⁻¹), liquid state pre-treatment using fungal enzymatic broth (EB) (2.1 mg g⁻¹), but the best strategy was a solid state fungal pre-treatment followed by fungal autolysis (34.5 mg g⁻¹). The bioavailability of the nitrogen sources in the novel medium was confirmed in fed-batch bioreactor studies, in which 82.3g dry cell L⁻¹ of the oleaginous yeast Rhodosporidium toruloides Y4 was obtained with a lipid content of 48%. The dry cell weight obtained was higher than that obtained using conventional yeast extract, due to a higher total nitrogen content in the novel biomedium. The fatty acids obtained from the microbial oil were similar to those derived from rapeseed oil.
Collapse
|
20
|
You JY, Peng C, Liu X, Ji XJ, Lu J, Tong Q, Wei P, Cong L, Li Z, Huang H. Enzymatic hydrolysis and extraction of arachidonic acid rich lipids from Mortierella alpina. BIORESOURCE TECHNOLOGY 2011; 102:6088-94. [PMID: 21377361 DOI: 10.1016/j.biortech.2011.01.074] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 01/22/2011] [Accepted: 01/24/2011] [Indexed: 05/06/2023]
Abstract
A novel method for efficient arachidonic acid rich lipids extraction was investigated. Six different enzymes (papain, pectinase, snailase, neutrase, alcalase and cellulase) were used to extract lipids from Mortierella alpina. The effects of enzyme concentration, temperature and hydrolysis time on oil recovery were evaluated using factorial experimental design and polynomial regression for each enzyme. Hydrolysis time is found to be the most important parameter for all enzymes. The ratios of enzyme mixtures were also studied. It showed that the mixtures of pectinase and papain (5:3, v/v), pectinase and alcalase (5:1, v/v) were better combined effects on oil yields. The effects of hydrolysis time and temperature were then analyzed by response surface methodology, and oil recoveries were satisfactory (104.6% for pectinase and papain and 101.3% for pectinase and alcalase). In the whole process, the lipid composition was not affected by the enzyme treatments according to fatty acid profile.
Collapse
Affiliation(s)
- Jiang-Ying You
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing University of Technology, No. 5, Xinmofan Road, Nanjing 210009, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Optimization of media components for enhanced arachidonic acid production by Mortierella alpina under submerged cultivation. BIOTECHNOL BIOPROC E 2011. [DOI: 10.1007/s12257-010-0294-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Dedyukhina EG, Chistyakova TI, Vainshtein MB. Biosynthesis of arachidonic acid by micromycetes (review). APPL BIOCHEM MICRO+ 2011. [DOI: 10.1134/s0003683811020037] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
23
|
Fermentation Characteristics of Mortierella alpina in Response to Different Nitrogen Sources. Appl Biochem Biotechnol 2011; 164:979-90. [DOI: 10.1007/s12010-011-9189-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 01/25/2011] [Indexed: 10/18/2022]
|
24
|
Potential use of oleaginous red yeast Rhodotorula glutinis for the bioconversion of crude glycerol from biodiesel plant to lipids and carotenoids. Process Biochem 2011. [DOI: 10.1016/j.procbio.2010.08.009] [Citation(s) in RCA: 239] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Peng C, Huang H, Ji X, Liu X, You J, Lu J, Cong L, Xu X, Ouyang P. A temperature-shift strategy for efficient arachidonic acid fermentation by Mortierella alpina in batch culture. Biochem Eng J 2010. [DOI: 10.1016/j.bej.2010.09.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Pimenta EF, Vita-Marques AM, Tininis A, Seleghim MHR, Sette LD, Veloso K, Ferreira AG, Williams DE, Patrick BO, Dalisay DS, Andersen RJ, Berlinck RGS. Use of experimental design for the optimization of the production of new secondary metabolites by two Penicillium species. JOURNAL OF NATURAL PRODUCTS 2010; 73:1821-1832. [PMID: 21053938 DOI: 10.1021/np100470h] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A fractional factorial design approach has been used to enhance secondary metabolite production by two Penicillium strains. The method was initially used to improve the production of bioactive extracts as a whole and subsequently to optimize the production of particular bioactive metabolites. Enhancements of over 500% in secondary metabolite production were observed for both P. oxalicum and P. citrinum. Two new alkaloids, citrinalins A (5) and B (6), were isolated and identified from P. citrinum cultures optimized for production of minor metabolites.
Collapse
Affiliation(s)
- Eli F Pimenta
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Optimization of Biomass and Arachidonic Acid Production by Aureispira maritima Using Response Surface Methodology. J AM OIL CHEM SOC 2010. [DOI: 10.1007/s11746-010-1710-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Venegas-Venegas E, Rincón-Cervera MA, Guil-Guerrero JL. Triarachidonoyl Glycerol Purification Process. J AM OIL CHEM SOC 2010. [DOI: 10.1007/s11746-010-1680-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Chen N, Du J, Liu H, Xu Q. Elementary mode analysis and metabolic flux analysis of L-glutamate biosynthesis byCorynebacterium glutamicum. ANN MICROBIOL 2009. [DOI: 10.1007/bf03178334] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
30
|
Optimization of Fermentation Conditions for the Biosynthesis of l-Threonine by Escherichia coli. Appl Biochem Biotechnol 2008; 158:595-604. [DOI: 10.1007/s12010-008-8385-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Accepted: 09/25/2008] [Indexed: 11/30/2022]
|
31
|
Ho SY, Chen F. Lipid characterization of Mortierella alpina grown at different NaCl concentrations. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:7903-7909. [PMID: 18683947 DOI: 10.1021/jf801404y] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Effects of sodium chloride (NaCl) concentration on the lipid and fatty acid profiles of the polyunsaturated fatty acid (PUFA)-producing fungus, Mortierella alpina SC9, were investigated. The cells were cultivated in the medium with 4 different NaCl concentrations (0, 1, 2, 4%) for 6 days. The lipid and fatty acid profiles were analyzed by thin layer chromatography and gas chromatography. In the cultures with NaCl concentration up to 2%, PUFAs accounted for over 50% of the total fatty acids (TFAs) of the cells. Triacylglycerol (TAG) was the major lipid class, followed by monoacylglycerol (MAG) and diacylglycerol (DAG). TAG was found to contain the highest proportion of arachidonic acid (C20:4n-6, AA), suggesting that AA was mainly stored in the TAG. Comparing cultures at different NaCl concentrations indicated that TFA and TAG contents were higher in the cells grown at 2% NaCl. Similar results were found when 2% NaCl was added at day 3 of cultivation (late-log phase). In addition, the gene expression level of a TAG biosynthesis enzyme, diacylglycerol acyltransferase 2 (DGAT2), was also higher in the NaCl treated cells. This suggested that the increase of TFA and TAG contents might be related to the NaCl-stimulated DGAT2 expression.
Collapse
Affiliation(s)
- Sze-Yuen Ho
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | | |
Collapse
|