1
|
Hu Y, Cao Y, Shen Y, Shan Y, Liu J, Song Y, Yang Y, Zhao J. Research progress of edible mushroom polysaccharide-metal trace element complexes. Food Chem X 2024; 24:101711. [PMID: 39310894 PMCID: PMC11414690 DOI: 10.1016/j.fochx.2024.101711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 09/25/2024] Open
Abstract
Metal trace elements are crucial for human health, and the complexes of edible mushroom polysaccharides with metal trace elements are currently a research hotspot in the field of food science. This article reviews the preparation methods, structural characterization, and physiological activities of edible mushroom polysaccharide-metal trace element complexes, including iron, selenium, and zinc. Research has shown that iron complexes obtained through Co-thermal synthesis of the FeCl3 method exhibit excellent antioxidant and anti-anemia functions; selenium complexes prepared via selenium-enriched cultivation significantly enhance immunological and anti-cancer properties; zinc complexes improve lipid-lowering, liver protection, and antioxidant capabilities. However, there is an imbalance in research among different metal elements, particularly with a high density of studies on selenium complexes. These studies provide a foundation for the future development of edible mushroom polysaccharide-metal trace element complexes.
Collapse
Affiliation(s)
- Yanbo Hu
- School of Food Sciences and Engineering, Changchun University, Changchun 130024, China
| | - Yi Cao
- School of Food Sciences and Engineering, Changchun University, Changchun 130024, China
| | - Yuzhu Shen
- School of Food Sciences and Engineering, Changchun University, Changchun 130024, China
| | - Yakun Shan
- School of Food Sciences and Engineering, Changchun University, Changchun 130024, China
| | - Jiaxin Liu
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun, 130012, China
| | - Yudi Song
- School of Food Sciences and Engineering, Changchun University, Changchun 130024, China
| | - Yue Yang
- School of Food Sciences and Engineering, Changchun University, Changchun 130024, China
| | - Jun Zhao
- School of Food Sciences and Engineering, Changchun University, Changchun 130024, China
| |
Collapse
|
2
|
Zhang B, Tan W, Zhou J, Ye L, Jia D, Li X. Physiological changes and gene responses during Ganoderma lucidum growth with selenium supplementation. PeerJ 2022; 10:e14488. [PMID: 36570003 PMCID: PMC9784338 DOI: 10.7717/peerj.14488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 11/09/2022] [Indexed: 12/24/2022] Open
Abstract
Ganoderma lucidum basidiomycota is highly appreciated for its health and nutrition value. In the present study, Ganoderma lucidum was cultivated as selenium transformation carrier, and the physiological changes and gene responses by selenium supplementation were revealed through high-throughput RNA-Seq technology. As a result, selenium supplementation increased the stipe length and the cap size, but decreased the cap thickness of G. lucidum. Mineral salt supplementation could greatly promote the formation of triterpene acids and selenium in G. lucidum. The highest yield was gained in the treatment with selenium content of 200 µg/g. Subsequently, the tissues of G. lucidum at budding and mature stages in this treatment group were sampled for transcriptome analysis and compared to those of a control group without selenium supplementation. A total of 16,113 expressed genes were obtained from the transcriptome of G. lucidum, and GO-annotated unigenes were mainly involved in molecular functions and KEGG-annotated ones were highly expressed in ribosomal pathway. Furthermore, genes involved in carbon metabolism pathway were most promoted by selenium at budding stage of G. lucidum, while gene expression was the highest in the pathway of amino acid biosynthesis at mature stage of G. lucidum. Specially, selenium-related genes in G. lucidum, such as GL23172-G, GL29881-G and GL28298-G, played a regulatory role in oxidoreductase, antioxidant activity and tryptophan synthesis. The results provide a theoretical basis for further study of selenium-enriched mushrooms and aid to development of Se-enriched foodstuff and health products made from fungi.
Collapse
|
3
|
Tabibzadeh F, Alvandi H, Hatamian-Zarmi A, Kalitukha L, Aghajani H, Ebrahimi-Hosseinzadeh B. Antioxidant activity and cytotoxicity of exopolysaccharide from mushroom Hericium coralloides in submerged fermentation. BIOMASS CONVERSION AND BIOREFINERY 2022:1-11. [PMID: 36277811 PMCID: PMC9579569 DOI: 10.1007/s13399-022-03386-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/04/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Mushrooms of the genus Hericium spp. represent a series of delicious edible mushrooms with medicinal value. Here, for the first time, the species native to Iran, the mushroom Hericium coralloides, was collected in Mazandaran province, identified, and registered with the NCBI under accession number MW136052. The production of exopolysaccharides (EPS) in submerged culture was optimized using the response surface method. Among the physicochemical and culture medium conditions tested, rotation speed and concentration of maltose and peptone of soybean significantly affected the production of EPS. The proposed model predicts maximum EPS production (0.13 g/L) at 50 g/L maltose, 3 g/L soy peptone, and 1 g/L yeast extract, pH = 6.5, 200 rpm, inoculum at 5% v/v, and 22 °C. The molecular weight of the EPS chains was 413 and 1578 Da. EPS has antioxidant action (EC50 = 6.59 mg/mL) and cytotoxic activity against cancer cells. The viability of AGS and MKN-45 cancer cell lines declined to 20 and 30% after 48 h of the EPS treatment. H. coralloides EPS could be considered a natural dietary anti-cancer supplement. Further studies are necessary to understand the mechanism of the H. coralloides EPS activity on the cell cycle of cancer cells and to prove its action in vivo. Supplementary Information The online version contains supplementary material available at 10.1007/s13399-022-03386-0.
Collapse
Affiliation(s)
- Firouzeh Tabibzadeh
- Department of Molecular and Cellular Biology, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Hale Alvandi
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Ashrafalsadat Hatamian-Zarmi
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | | | - Hamed Aghajani
- Department of Forestry, Sari Agriculture Science and Natural Resources University, Sari, Iran
| | - Bahman Ebrahimi-Hosseinzadeh
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| |
Collapse
|
4
|
Duan WX, Yang XH, Zhang HF, Feng J, Zhang MY. Chemical Structure, Hypoglycemic Activity, and Mechanism of Action of Selenium Polysaccharides. Biol Trace Elem Res 2022; 200:4404-4418. [PMID: 34843085 PMCID: PMC8628488 DOI: 10.1007/s12011-021-03035-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/14/2021] [Indexed: 12/14/2022]
Abstract
Selenium polysaccharides (Se-polysaccharides) are one of important forms of organic Se, in which selenium (Se) and polysaccharides are joined by covalent bonds. In the present review, recent progress in chemical structure and hypoglycemic activity of Se-polysaccharides is summarized. In particular, the mechanism underlying hypoglycemic capacity of Se-polysaccharides is discussed, and the relationship between hypoglycemic activity and chemical structure is analyzed. Besides, strategies for further research into chemical structure and hypoglycemic activity of Se-polysaccharides are proposed. Hypoglycemic activity of Se-polysaccharides is closely related to their inhibitory effect on α-amylase and α-glucosidase, influence on insulin signal pathway especially IRS-PI3K-Akt signaling pathway, and protection capacity against oxidative stress.
Collapse
Affiliation(s)
- Wen-Xia Duan
- Provincial Research Station of Se-Enriched Foods in Hanyin County of Shaanxi Province, International Joint Research Center of Shaanxi Province for Food and Health Sciences, National Engineering Laboratory for Resources Development of Endangered Crude Drugs in Northwest China, Shaanxi Normal University, Xi'an, 710062, People's Republic of China
| | - Xiao-Hua Yang
- Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Hua-Feng Zhang
- Provincial Research Station of Se-Enriched Foods in Hanyin County of Shaanxi Province, International Joint Research Center of Shaanxi Province for Food and Health Sciences, National Engineering Laboratory for Resources Development of Endangered Crude Drugs in Northwest China, Shaanxi Normal University, Xi'an, 710062, People's Republic of China.
- Municipal Expert Workstation for Hua-Feng Zhang, Academician and Expert Workstation in Pu'er City of Yunnan Province, Pu'er, 665600, People's Republic of China.
| | - Jing Feng
- Agrarian and Technological Institute, Peoples' Friendship University of Russia, Moscow, 119991, Russia
| | - Meng-Yuan Zhang
- Provincial Research Station of Se-Enriched Foods in Hanyin County of Shaanxi Province, International Joint Research Center of Shaanxi Province for Food and Health Sciences, National Engineering Laboratory for Resources Development of Endangered Crude Drugs in Northwest China, Shaanxi Normal University, Xi'an, 710062, People's Republic of China
- Municipal Expert Workstation for Hua-Feng Zhang, Academician and Expert Workstation in Pu'er City of Yunnan Province, Pu'er, 665600, People's Republic of China
| |
Collapse
|
5
|
Selenium-Containing Exopolysaccharides Isolated from the Culture Medium of Lentinula edodes: Structure and Biological Activity. Int J Mol Sci 2021; 22:ijms222313039. [PMID: 34884845 PMCID: PMC8657480 DOI: 10.3390/ijms222313039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 12/22/2022] Open
Abstract
In continuation of our research on the influence of selenium incorporation on the biosynthesis, structure, and immunomodulatory and antioxidant activities of polysaccharides of fungal origin, we have isolated from a post-culture medium of Lentinula edodes a selenium (Se)-containing exopolysaccharide fraction composed mainly of a highly branched 1-6-α-mannoprotein of molecular weight 4.5 × 106 Da, with 15% protein component. The structure of this fraction resembled mannoproteins isolated from yeast and other mushroom cultures, but it was characterized by a significantly higher molecular weight. X-ray absorption fine structure spectral analysis in the near edge region (XANES) suggested that selenium in the Se-exopolysaccharide structure was present mainly at the IV oxidation state. The simulation analysis in the EXAFS region suggested the presence of two oxygen atoms in the region surrounding the selenium. On the grounds of our previous studies, we hypothesized that selenium-enriched exopolysaccharides would possess higher biological activity than the non-Se-enriched reference fraction. To perform structure-activity studies, we conducted the same tests of biological activity as for previously obtained mycelial Se-polyglucans. The Se-enriched exopolysaccharide fraction significantly enhanced cell viability when incubated with normal (human umbilical vein endothelial cells (HUVEC)) cells (but this effect was absent for malignant human cervical HeLa cells) and this fraction also protected the cells from oxidative stress conditions. The results of tests on the proliferation of human peripheral blood mononuclear cells suggested a selective immunosuppressive activity, like previously tested Se-polyglucans isolated from L. edodes mycelium. The Se-exopolysaccharide fraction, in concentrations of 10-100 µg/mL, inhibited human T lymphocyte proliferation induced by mitogens, without significant effects on B lymphocytes. As with previously obtained Se-polyglucans, in the currently tested Se-polymannans, the selenium content increased the biological activity. However, the activity of selenium exopolysaccharides in all tests was significantly lower than that of previously tested mycelial isolates, most likely due to a different mode of selenium binding and its higher degree of oxidation.
Collapse
|
6
|
Alvandi H, Hatamian-Zarmi A, Hosseinzadeh BE, Mokhtari-Hosseini ZB, Langer E, Aghajani H. Improving the biological properties of Fomes fomentarius MG835861 exopolysaccharide by bioincorporating selenium into its structure. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
7
|
|
8
|
Ślusarczyk J, Adamska E, Czerwik-Marcinkowska J. Fungi and Algae as Sources of Medicinal and Other Biologically Active Compounds: A Review. Nutrients 2021; 13:3178. [PMID: 34579055 PMCID: PMC8464797 DOI: 10.3390/nu13093178] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/04/2021] [Accepted: 09/08/2021] [Indexed: 12/26/2022] Open
Abstract
Many species of fungi including lichenized fungi (lichens) and algae have the ability to biosynthesize biologically active compounds. They produce, among others, polysaccharides with anticancer and immunostimulatory properties: (1) Background: This paper presents the characteristics of the most important bioactive compounds produced by fungi and algae; (2) Methods: Based on the example of the selected species of mushrooms, lichens and algae, the therapeutic properties of the secondary metabolites that they produce and the possibilities of their use are presented; (3) Results: The importance of fungi, especially large-fruited mushrooms, lichens and algae, in nature and human life is discussed, in particular, with regard to their use in the pharmaceutical industry and their nutritional value; (4) Conclusions: The natural organisms, such as fungi, lichenized fungi and algae, could be used as supplementary medicine, in the form of pharmaceutical preparations and food sources. Further advanced studies are required on the pharmacological properties and bioactive compounds of these organisms.
Collapse
Affiliation(s)
- Joanna Ślusarczyk
- Institute of Biology, Jan Kochanowski University, 25-420 Kielce, Poland;
| | - Edyta Adamska
- Department of Geobotany and Landscape Planning, Faculty of Biology and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Toruń, Poland;
| | | |
Collapse
|
9
|
Identification of the Primary Structure of Selenium-Containing Polysaccharides Selectively Inhibiting T-Cell Proliferation. Molecules 2021; 26:molecules26175404. [PMID: 34500837 PMCID: PMC8434567 DOI: 10.3390/molecules26175404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/22/2021] [Accepted: 08/26/2021] [Indexed: 11/19/2022] Open
Abstract
We previously described the biosynthesis, isolation, and immunosuppressive activity of the selenium-containing polysaccharide fraction isolated from the mycelial culture of Lentinula edodes. Structural studies have shown that the fraction was a protein-containing mixture of high molar mass polysaccharides α- and β-glucans. However, which of the components of the complex fraction is responsible for the immunosuppressive activity non-typical for polysaccharides of fungal origin has not been explained. In the current study, we defined four-polysaccharide components of the Se-containing polysaccharide fraction determined their primary structure and examined the effect on T- and B-cell proliferation. The isolated Se-polysaccharides, α-1,4-glucan (Mw 2.25 × 106 g/mol), unbranched β-1,6-d-glucan, unbranched β-1,3-d-glucan and β-1,3-branched β-1,6-d-glucan (Mw 1.10 × 105 g/mol), are not typical as components of the cell wall of L. edodes. All are biologically active, but the inhibitory effect of the isolated polysaccharides on lymphocyte proliferation was weaker, though more selective than that of the crude fraction.
Collapse
|
10
|
Production of bioactive selenium enriched crude exopolysaccharides via selenourea and sodium selenite bioconversion using Trametes versicolor. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Simsek M, Asiyanbi-Hammed TT, Rasaq N, Hammed AM. Progress in Bioactive Polysaccharide-Derivatives: A Review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1935998] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Miray Simsek
- Department of Plant Sciences, North High School, Fargo ND and North Dakota State University, Fargo, North Dakota, United States
| | | | - Nurudeen Rasaq
- Department of Agricultural and Biosystems Engineering, North Dakota State University, Fargo, North Dakota, United States
| | - Ademola Monsur Hammed
- Department of Agricultural and Biosystems Engineering, North Dakota State University, Fargo, North Dakota, United States
| |
Collapse
|
12
|
Selenium-Containing Polysaccharides—Structural Diversity, Biosynthesis, Chemical Modifications and Biological Activity. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11083717] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Selenosugars are a group of sugar derivatives of great structural diversity (e.g., molar masses, selenium oxidation state, and selenium binding), obtained as a result of biosynthesis, chemical modification of natural compounds, or chemical synthesis. Seleno-monosaccharides and disaccharides are known to be non-toxic products of the natural metabolism of selenium compounds in mammals. In the case of the selenium-containing polysaccharides of natural origin, their formation is also postulated as a form of detoxification of excess selenium in microorganisms, mushroom, and plants. The valency of selenium in selenium-containing polysaccharides can be: 0 (encapsulated nano-selenium), IV (selenites of polysaccharides), or II (selenoglycosides or selenium built into the sugar ring to replace oxygen). The great interest in Se-polysaccharides results from the expected synergy between selenium and polysaccharides. Several plant- and mushroom-derived polysaccharides are potent macromolecules with antitumor, immunomodulatory, antioxidant, and other biological properties. Selenium, a trace element of fundamental importance to human health, has been shown to possess several analogous functions. The mechanism by which selenium exerts anticancer and immunomodulatory activity differs from that of polysaccharide fractions, but a similar pharmacological effect suggests a possible synergy of these two agents. Various functions of Se-polysaccharides have been explored, including antitumor, immune-enhancement, antioxidant, antidiabetic, anti-inflammatory, hepatoprotective, and neuroprotective activities. Due to being non-toxic or much less toxic than inorganic selenium compounds, Se-polysaccharides are potential dietary supplements that could be used, e.g., in chemoprevention.
Collapse
|
13
|
Tung SY, Lee KC, Lee KF, Yang YL, Huang WS, Lee LY, Chen WP, Chen CC, Teng CC, Shen CH, Hsieh MC, Huang CY, Sheen JM, Kuo HC. Apoptotic mechanisms of gastric cancer cells induced by isolated erinacine S through epigenetic histone H3 methylation of FasL and TRAIL. Food Funct 2021; 12:3455-3468. [PMID: 33900313 DOI: 10.1039/d0fo03089a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Erinacine S, the new bioactive diterpenoid compound isolated from the ethanol extract of the mycelia of Hericium erinaceus, displays great health-promoting properties. However, the effects of erinacine S on inductive apoptosis in cancer cells such as gastric cancer and its molecular mechanisms remain unclear. Our results demonstrated that erinacine S treatment significantly induces cell apoptosis with increased ROS production in gastric cancer cells, but not in normal cells. Significantly, erinacine S also showed its inhibitory effects on tumor growth in an in vivo xenograft mouse model. Furthermore, immunohistochemical analyses revealed that erinacine S treatment significantly increases the FasL and TRAIL protein, whereas it decreases the levels of PCNA and cyclin D1 in the gastric cancer xenograft mice. Consistently, in AGS cells, erinacine S treatment not only triggers the activation of extrinsic apoptosis pathways (TRAIL, Fas-L and caspase-8, -9, -3), but it also suppresses the expression of the anti-apoptotic molecules Bcl-2 and Bcl-XL in a time-dependent manner. In addition, erinacine S also causes cell cycle G1 arrest by the inactivation of CDKs/cyclins. Moreover, our data revealed that activation of the ROS-derived and AKT/FAK/PAK1 pathways is involved in the erinacine S-mediated transcriptional activation of Fas-L and TRAIL through H3K4 trimethylation on their promoters. Together, this study sheds light on the anticancer effects of erinacine S on gastric cancer and its molecular mechanism in vitro and in vivo.
Collapse
Affiliation(s)
- Shui-Yi Tung
- Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital, Chiayi, Taiwan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Kumar A, Prasad KS. Role of nano-selenium in health and environment. J Biotechnol 2020; 325:152-163. [PMID: 33157197 DOI: 10.1016/j.jbiotec.2020.11.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 08/08/2020] [Accepted: 11/01/2020] [Indexed: 12/13/2022]
Abstract
In recent years, researches on selenium nanoparticle have gained more attention due to its important role in many physiological processes. Generally, selenium nanoparticle has a high level of absorption in regular supplementation comparative to selenium. Therefore it is all-important to develop new techniques to elevate the transportation of selenium compounds (selenoproteins, selenoenzymes, etc.) by increasing their bioavailability, bioactivity, and controlled release. SeNPs have special attention regarding their application as food additives and therapeutic agents. Selenium nanoparticle has biomedical and pharmaceutical uses due to its antioxidant, antimicrobial, antidiabetic, and anticancer effects. Selenium nanoparticle is also used to antagonize the toxic effect of chemical and heavy metals. SeNPs are beneficial for the treatment of water and soil contaminated with metals and heavy metals as it has adsorption capability. Selenium nanoparticle is synthesized by the bioreduction of selenium species (sodium selenate, sodium selenite, selenium dioxide, and selenium tetrachloride, etc.) by using bacteria, fungi, plant, and plant extracts, which have given hope for the bioremediation of selenium contaminated water and soils. This article reviews the procedure of selenium nanoparticle synthesis (physical, chemical and biological methods), characterization (UV-vis spectroscopy, transmission electron microscopy, Scanning electron microscopy, electron dispersive X-ray spectroscopy, X-ray diffraction, Fourier transform-infrared spectroscopy, etc.), with the emphasis on its role and application in health and environment.
Collapse
Affiliation(s)
- Awanish Kumar
- Centre of Environmental Science, Institute of Interdisciplinary Studies, University of Allahabad (A Central University), Allahabad, Uttar Pradesh, India
| | - Kumar Suranjit Prasad
- Centre of Environmental Science, Institute of Interdisciplinary Studies, University of Allahabad (A Central University), Allahabad, Uttar Pradesh, India.
| |
Collapse
|
15
|
Wang K, Zhao Y, Wang X, Qu C, Miao J. Complete genome sequence of Bacillus sp. N1-1, a κ-selenocarrageenan degrading bacterium isolated from the cold seep in the South China Sea. Mar Genomics 2020; 54:100771. [PMID: 32273179 DOI: 10.1016/j.margen.2020.100771] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/25/2020] [Accepted: 03/29/2020] [Indexed: 11/29/2022]
Abstract
κ-Selenocarrageenan is made from natural κ-carrageenan, in which Se partially replaces Sulfur (S). The underlying mechanism of κ-selenocarrageenan degradation remain unreported so far. Here, we describe the complete genome of a cold seep bacterium, Bacillus sp. N1-1, which can degrade κ-selenocarrageenan. The strain has a circular genome of 4,497,340 bp and 40.48 mol% G + C content, consisting of 4272 protein-coding sequences (CDSs), 87 tRNAs, as well as 28 rRNA operons as 5S-16S-23S rRNA. N1-1 genome contains several protein-coding genes relating to polysaccharide degradation and the potential of this bacterium to produce enzymes for the hydrolysis of κ-selenocarrageenan on the basis of complete genome analysis could be discovered.
Collapse
Affiliation(s)
- Kai Wang
- The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Yang Zhao
- The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Xixi Wang
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Changfeng Qu
- The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Jinlai Miao
- The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
16
|
Bi D, Li X, Li T, Li X, Lin Z, Yao L, Li H, Xu H, Hu Z, Zhang Z, Liu Q, Xu X. Characterization and Neuroprotection Potential of Seleno-Polymannuronate. Front Pharmacol 2020; 11:21. [PMID: 32153394 PMCID: PMC7044149 DOI: 10.3389/fphar.2020.00021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/08/2020] [Indexed: 12/22/2022] Open
Abstract
Seleno-polymannuronate (Se-PM) was prepared from alginate-derived polymannuronate (PM) through a sulfation followed by a selenylation replacement reaction. The organic selenium content of Se-PM was 437.25 μg/g and its average molecular weight was 2.36 kDa. The neuroprotection effect of Se-PM and corresponding molecular mechanisms were investigated. Our results showed that, comparing to both sulfated PM (S-PM) and PM, Se-PM remarkably inhibited the aggregation of Aβ1-42 oligomer in vitro and significantly reduced the APP and BACE1 protein expression in N2a-sw cells, highlighting the critical function of the selenium presented in Se-PM. Moreover, Se-PM decreased the expression of cytochrome c and the ratio of Bax to Bcl-2, and enhanced the mitochondrial membrane potential in N2a-sw cells. These results suggested that Se-PM treatment can markedly inhibit N2a-sw cell apoptosis and promote N2a-sw cell survival and that Se-PM might be a potential therapeutic agent for the prevention of neurodegeneration owing to its remarkable neuroprotection effect.
Collapse
Affiliation(s)
- Decheng Bi
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Xiaofan Li
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Tong Li
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China
| | - Zhijian Lin
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Lijun Yao
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Hui Li
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Hong Xu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Zhangli Hu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Zhenqing Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Xu Xu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| |
Collapse
|
17
|
Post-Treatment with Erinacine A, a Derived Diterpenoid of H. erinaceus, Attenuates Neurotoxicity in MPTP Model of Parkinson's Disease. Antioxidants (Basel) 2020; 9:antiox9020137. [PMID: 32033220 PMCID: PMC7070543 DOI: 10.3390/antiox9020137] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/30/2020] [Accepted: 02/02/2020] [Indexed: 12/11/2022] Open
Abstract
Hericium erinaceus, a valuable pharmaceutical and edible mushroom, contains potent bioactive compounds such as H. erinaceus mycelium (HEM) and its derived ethanol extraction of erinacine A, which have been found to regulate physiological functions in our previous study. However, HEM or erinacine A with post-treatment regimens also shows effects on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity, but its mechanisms remain unknown. By using annexin-V–fluorescein-isothiocyanate (FITC)/propidium iodide staining and a 2’,7’ –dichlorofluorescin diacetate (DCFDA) staining assay, the cell death, cell viability, and reactive oxygen species (ROS) of 1-methyl-4-phenylpyridinium (MMP+)-treated Neuro-2a (N2a) cells with or without erinacine A addition were measured, respectively. Furthermore, signaling molecules for regulating the p21/GADD45 cell death pathways and PAKalpha, p21 (RAC1) activated kinase 1 (PAK1) survival pathways were also detected in the cells treated with MPP+ and erinacine A by Western blots. In neurotoxic animal models of MPTP induction, the effects of HEM or erinacine A and its mechanism in vivo were determined by measuring the TH-positive cell numbers and the protein level of the substantia nigra through a brain histological examination. Our results demonstrated that post-treatment with erinacine A was capable of preventing the cytotoxicity of neuronal cells and the production of ROS in vitro and in vivo through the neuroprotective mechanism for erinacine A to rescue the neurotoxicity through the disruption of the IRE1α/TRAF2 interaction and the reduction of p21 and GADD45 expression. In addition, erinacine A treatment activated the conserved signaling pathways for neuronal survival via the phosphorylation of PAK1, AKT, LIM domain kinase 2 (LIMK2), extracellular signal-regulated kinases (ERK), and Cofilin. Similar changes in the signal molecules also were found in the substantia nigra of the MPTP, which caused TH+ neuron damage after being treated with erinacine A in the post-treatment regimens in a dose-dependent manner. Taken together, our data indicated a novel mechanism for post-treatment with erinacine A to protect from neurotoxicity through regulating neuronal survival and cell death pathways.
Collapse
|
18
|
Miletić D, Pantić M, Sknepnek A, Vasiljević I, Lazović M, Nikšić M. Influence of selenium yeast on the growth, selenium uptake and mineral composition of Coriolus versicolor mushroom. J Basic Microbiol 2020; 60:331-340. [PMID: 32003038 DOI: 10.1002/jobm.201900520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/17/2020] [Accepted: 01/18/2020] [Indexed: 11/07/2022]
Abstract
The ability of Coriolus versicolor medicinal mushroom to grow and accumulate selenium during submerged cultivation in a selenium-fortified medium is examined in this paper. For selenium supplementation, commercial selenium yeast was used. Control, nonenriched sample and reference cultures cultivated in the medium enriched with commercial yeast Saccharomyces cerevisiae were also prepared. The mushroom demonstrated a high ability to accumulate selenium from the added source (around 970 and 1,300 µg/g of dry mycelium weight for samples enriched with selenium in a concentration of 10 and 20 mg Se/L, respectively). The addition of selenium significantly (p ≤ .05) increased the biomass yield, whereas the addition of nonenriched yeast had no significant (p ≤ .05) impact. Furthermore, regression analysis showed statistically significant (p ≤ .05) and positive correlations between the content of Se and Fe (r = .92), Se and Cu (r = .92), Se and Mn (r = .98), and Se and Sr (r = .96), suggesting that selenium incorporation was followed by incorporation of these elements, and led to mineral enrichment of the obtained mycelium. Methanol extracts prepared from mycelium biomass demonstrated a better inhibitory effect on Gram-positive bacterial strains with minimal inhibitory concentrations between <0.3125 and 40 mg/ml. The obtained results showed that selenium yeast could be used for obtaining a potential novel food supplement: mushroom biomass with high selenium content and enhanced mineral composition.
Collapse
Affiliation(s)
- Dunja Miletić
- Department of Food and Industrial Microbiology, Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
| | - Milena Pantić
- Department of Food and Industrial Microbiology, Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Sknepnek
- Department of Food and Industrial Microbiology, Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
| | | | - Milana Lazović
- A Bio Tech Lab, Educons University, Sremska Kamenica, Serbia
| | - Miomir Nikšić
- Department of Food and Industrial Microbiology, Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
19
|
Velez MEV, da Luz JMR, da Silva MDCS, Cardoso WS, Lopes LDS, Vieira NA, Kasuya MCM. Production of bioactive compounds by the mycelial growth of Pleurotus djamor in whey powder enriched with selenium. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
20
|
Miletić D, Turło J, Podsadni P, Pantić M, Nedović V, Lević S, Nikšić M. Selenium-enriched Coriolus versicolor mushroom biomass: potential novel food supplement with improved selenium bioavailability. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:5122-5130. [PMID: 30993725 DOI: 10.1002/jsfa.9756] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/26/2019] [Accepted: 04/14/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The ability of Coriolus versicolor medicinal mushroom to accumulate and transform selenium from selenourea and sodium selenite into an organic form - l-selenomethionine - during growth in liquid medium is examined in this paper. Additionally, the impact of supplementation on biological activity of the selenated mushroom methanol extracts, as well as their chemical composition, is studied. RESULTS Selenium accumulation was more efficient with sodium selenite application, but biomass yield was significantly lower (1.89 g DW L-1 ) compared to samples enriched with selenourea (4.48 g DW L-1 ). Mushroom sample obtained after growing in liquid medium with selenourea had significantly higher l-selenomethionine content compared to the sample grown in medium with sodium selenite. Selenium-enriched methanol extracts of C. versicolor mushroom showed improved antimicrobial and antioxidant activities compared to non-enriched extract. CONCLUSION Our results suggest that C. versicolor mushroom cultivated in liquid culture enriched with selenourea can be used for the production of novel food supplements with improved selenium bioavailability. More than 30% of total accumulated selenium from selenourea is transformed into l-selenomethionine. Differences in biological activity of methanol extracts can be explained not only by different selenium content but also by the differences in chemical composition of extracts. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dunja Miletić
- Department of Food and Industrial Microbiology, Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
| | - Jadwiga Turło
- Department of Drug Technology and Pharmaceutical Biotechnology, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Podsadni
- Department of Drug Technology and Pharmaceutical Biotechnology, Medical University of Warsaw, Warsaw, Poland
| | - Milena Pantić
- Department of Food and Industrial Microbiology, Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
| | - Viktor Nedović
- Department of Food and Industrial Microbiology, Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
| | - Steva Lević
- Department of Food and Industrial Microbiology, Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
| | - Miomir Nikšić
- Department of Food and Industrial Microbiology, Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
21
|
Milovanovic I, Lajin B, Braeuer S, Steiner O, Lisa F, Goessler W. Simultaneous selenium and sulfur speciation analysis in cultivated Pleurotus pulmonarius mushroom. Food Chem 2019; 279:231-236. [DOI: 10.1016/j.foodchem.2018.12.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 11/07/2018] [Accepted: 12/06/2018] [Indexed: 12/13/2022]
|
22
|
Li X, Yan L, Li Q, Tan H, Zhou J, Miao R, Ye L, Peng W, Zhang X, Tan W, Zhang B. Transcriptional profiling of Auricularia cornea in selenium accumulation. Sci Rep 2019; 9:5641. [PMID: 30948778 PMCID: PMC6449350 DOI: 10.1038/s41598-019-42157-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 03/26/2019] [Indexed: 01/26/2023] Open
Abstract
Auricularia cornea is a widely cultivated edible fungus with substantial nutritive value. This study aimed to enrich the multifunctional bionutrient element selenium in A. cornea to improve its quality and explore the accumulation of selenium in the fungus using high-throughput RNA-Seq technology. In general, the treatment group with a 100 µg/g supply of selenium outperformed the other treatment groups in terms of high yield, rich crude polysaccharides and a high total selenium concentration. Additional evidences demonstrated the budding and mature phases were two typical growth stages of A. cornea and were important for the accumulation of selenium. Therefore, the budding and mature phase tissues of A. cornea in the treatment group with a 100 µg/g supply of selenium were used for transcriptome analysis and compared to those of a control group that lacked additional selenium. A total of 2.56 × 105 unigenes from A. cornea transcriptome were assembled and annotated to five frequently used databases including NR, GO, KEGG, eggNOG and SwissProt. GO and KEGG pathway analysis revealed that genes involved in metabolic process and translation were up-expressed at the budding stage in response to selenium supplementation, including amino acid metabolism, lipid metabolism, ribosome. In addition, the differential gene expression patterns of A. cornea suggested that the up-expressed genes were more likely to be detected at the budding stage than at the mature stage. These results provide insights into the transcriptional response of A. cornea to selenium accumulation.
Collapse
Affiliation(s)
- Xiaolin Li
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China.
| | - Lijuan Yan
- Chair for Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University Jena, Jena, D-07743, Germany
| | - Qiang Li
- Research Center of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
- College of Life Science, Sichuan University, Chengdu, 610065, China
| | - Hao Tan
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Jie Zhou
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Renyun Miao
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Lei Ye
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Weihong Peng
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Xiaoping Zhang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei Tan
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China.
| | - Bo Zhang
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China.
| |
Collapse
|
23
|
Selenylation Modification of Atractylodes macrocephala Polysaccharide and Evaluation of Antioxidant Activity. ADVANCES IN POLYMER TECHNOLOGY 2019. [DOI: 10.1155/2019/8191385] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Atractylodes macrocephala polysaccharide (AMP) was extracted by water extracting-alcohol precipitating method and further purified by DEAE column. After that, the polysaccharides were modified by nitric acid-sodium selenite method, and nine kinds of selenizing AMPs (sAMPs) were obtained, namely, from sAMP1 to sAMP9. AMP and sAMP were characterized using FTIR spectrometry. Then their antioxidant activities in vitro were measured by free radical-scavenging test. Among these, sAMP6 presented the strongest antioxidant effect. For the test in vivo, the chickens at day 14 vaccinated with ND vaccine were repeatedly vaccinated at day 28. The chickens in sAMP and AMP were injected respectively with 1 mg of sAMP6 and AMP and, in vaccination control (VC) and BC groups, injected with equal volume of normal saline. Respectively, after the first vaccine, on days 7, 14, 21, and 28, the serum GSH-Px and SOD activities and MDA content were determined. The results suggested that sAMP6 could significantly promote GSH-Px and SOD activities and decrease MDA content. All these results indicated that selenylation modification could significantly enhance the antioxidant activity of AMP.
Collapse
|
24
|
Biological and chemical diversity go hand in hand: Basidiomycota as source of new pharmaceuticals and agrochemicals. Biotechnol Adv 2019; 37:107344. [PMID: 30738916 DOI: 10.1016/j.biotechadv.2019.01.011] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 12/20/2022]
Abstract
The Basidiomycota constitutes the second largest higher taxonomic group of the Fungi after the Ascomycota and comprises over 30.000 species. Mycelial cultures of Basidiomycota have already been studied since the 1950s for production of antibiotics and other beneficial secondary metabolites. Despite the fact that unique and selective compounds like pleuromutilin were obtained early on, it took several decades more until they were subjected to a systematic screening for antimicrobial and anticancer activities. These efforts led to the discovery of the strobilurins and several hundreds of further compounds that mainly constitute terpenoids. In parallel the traditional medicinal mushrooms of Asia were also studied intensively for metabolite production, aimed at finding new therapeutic agents for treatment of various diseases including metabolic disorders and the central nervous system. While the evaluation of this organism group has in general been more tedious as compared to the Ascomycota, the chances to discover new metabolites and to develop them further to candidates for drugs, agrochemicals and other products for the Life Science industry have substantially increased over the past decade. This is owing to the revolutionary developments in -OMICS techniques, bioinformatics, analytical chemistry and biotechnological process technology, which are steadily being developed further. On the other hand, the new developments in polythetic fungal taxonomy now also allow a more concise selection of previously untapped organisms. The current review is dedicated to summarize the state of the art and to give an outlook to further developments.
Collapse
|
25
|
Cheng L, Wang Y, He X, Wei X. Preparation, structural characterization and bioactivities of Se-containing polysaccharide: A review. Int J Biol Macromol 2018; 120:82-92. [DOI: 10.1016/j.ijbiomac.2018.07.106] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 07/11/2018] [Accepted: 07/16/2018] [Indexed: 12/17/2022]
|
26
|
Wang XY, Zhang DD, Yin JY, Nie SP, Xie MY. Recent developments in Hericium erinaceus polysaccharides: extraction, purification, structural characteristics and biological activities. Crit Rev Food Sci Nutr 2018; 59:S96-S115. [DOI: 10.1080/10408398.2018.1521370] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Xiao-Yin Wang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, China
| | - Duo-duo Zhang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, China
| | - Jun-Yi Yin
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, China
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, China
| | - Ming-Yong Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, China
| |
Collapse
|
27
|
Constantinescu-Aruxandei D, Frîncu RM, Capră L, Oancea F. Selenium Analysis and Speciation in Dietary Supplements Based on Next-Generation Selenium Ingredients. Nutrients 2018; 10:E1466. [PMID: 30304813 PMCID: PMC6213372 DOI: 10.3390/nu10101466] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 12/27/2022] Open
Abstract
Selenium is essential for humans and the deficit of Se requires supplementation. In addition to traditional forms such as Se salts, amino acids, or selenium-enriched yeast supplements, next-generation selenium supplements, with lower risk for excess supplementation, are emerging. These are based on selenium forms with lower toxicity, higher bioavailability, and controlled release, such as zerovalent selenium nanoparticles (SeNPs) and selenized polysaccharides (SPs). This article aims to focus on the existing analytical systems for the next-generation Se dietary supplement, providing, at the same time, an overview of the analytical methods available for the traditional forms. The next-generation dietary supplements are evaluated in comparison with the conventional/traditional ones, as well as the analysis and speciation methods that are suitable to reveal which Se forms and species are present in a dietary supplement. Knowledge gaps and further research potential in this field are highlighted. The review indicates that the methods of analysis of next-generation selenium supplements should include a step related to chemical species separation. Such a step would allow a proper characterization of the selenium forms/species, including molecular mass/dimension, and substantiates the marketing claims related to the main advantages of these new selenium ingredients.
Collapse
Affiliation(s)
- Diana Constantinescu-Aruxandei
- National Research & Development Institute for Chemistry and Petrochemistry ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania.
| | - Rodica Mihaela Frîncu
- INCDCP-ICECHIM Calarasi Subsidiary, 7A Nicolae Titulescu St., 915300 Lehliu Gara, Romania.
| | - Luiza Capră
- National Research & Development Institute for Chemistry and Petrochemistry ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania.
| | - Florin Oancea
- National Research & Development Institute for Chemistry and Petrochemistry ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania.
| |
Collapse
|
28
|
Malinowska E, Klimaszewska M, Strączek T, Schneider K, Kapusta C, Podsadni P, Łapienis G, Dawidowski M, Kleps J, Górska S, Pisklak DM, Turło J. Selenized polysaccharides – Biosynthesis and structural analysis. Carbohydr Polym 2018; 198:407-417. [DOI: 10.1016/j.carbpol.2018.06.057] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/13/2018] [Accepted: 06/13/2018] [Indexed: 11/30/2022]
|
29
|
Fiorito S, Epifano F, Preziuso F, Taddeo VA, Genovese S. Selenylated plant polysaccharides: A survey of their chemical and pharmacological properties. PHYTOCHEMISTRY 2018; 153:1-10. [PMID: 29803859 DOI: 10.1016/j.phytochem.2018.05.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/30/2018] [Accepted: 05/10/2018] [Indexed: 06/08/2023]
Abstract
Polysaccharides from plants and fungi are considered nowadays as powerful pharmacological tools with a great therapeutic potential. In the meantime, efforts have been addressed to set up effective chemical modifications of naturally occurring polysaccharides to improve their biological effects as well as to positively modify some key parameters like solubility, bioavailability, pharmacokinetic, and similar. To this concern much attention has been focused during the last decade to the selenylation of natural polysaccharides from plants, algae, and fungi, the use of which is already encoded in ethnomedical traditions. The aim of this review article is to provide a detailed survey of the in so far reported literature data and a deeper knowledge about the state of the art on the chemical and pharmacological properties of selenylated polysaccharides of plant, algal, and fungal origin in terms of anti-oxidant, anti-cancer, anti-diabetic, and immunomodulatory activities. In all cases, literature data revealed that selenylation greatly improved such properties respect to the parent polysaccharides, indicating that selenylation is a valid, alternative, and effective chemical modification of naturally occurring carbohydrates.
Collapse
Affiliation(s)
- Serena Fiorito
- Dipartimento di Farmacia, Università"G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti Scalo, CH, Italy; Dipartimento di Scienze Farmaceutiche, Università degli Studi di Perugia, Via del Liceo, 06123, Perugia, Italy
| | - Francesco Epifano
- Dipartimento di Farmacia, Università"G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti Scalo, CH, Italy.
| | - Francesca Preziuso
- Dipartimento di Farmacia, Università"G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti Scalo, CH, Italy
| | - Vito Alessandro Taddeo
- Dipartimento di Farmacia, Università"G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti Scalo, CH, Italy
| | - Salvatore Genovese
- Dipartimento di Farmacia, Università"G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti Scalo, CH, Italy
| |
Collapse
|
30
|
Bi D, Lai Q, Cai N, Li T, Zhang Y, Han Q, Peng Y, Xu H, Lu J, Bao W, Liu Q, Xu X. Elucidation of the Molecular-Mechanisms and In Vivo Evaluation of the Anti-inflammatory Effect of Alginate-Derived Seleno-polymannuronate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:2083-2091. [PMID: 29406745 DOI: 10.1021/acs.jafc.7b05719] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Alginate-derived polymannuronate (PM) is a type of polysaccharide found in edible brown seaweeds. Seleno-polymannuronate (Se-PM) was prepared from PM via synthesis using sulfation- and selenation-replacement reactions. The anti-inflammatory activity of Se-PM and its corresponding molecular mechanisms were investigated. In lipopolysaccharide (LPS)-activated murine macrophage RAW264.7 cells, Se-PM significantly attenuated the production of nitric oxide (NO), prostaglandin E2 (PGE2), and reactive oxygen species (ROS); the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2); and the secretion of proinflammatory cytokines. Moreover, Se-PM remarkably suppressed the LPS-induced activation of the nuclear-factor (NF)-κB and mitogen-activated-protein-kinase (MAPK) signaling pathways in RAW264.7 cells. Furthermore, Se-PM also decreased the production of proinflammatory mediators in LPS-triggered primary murine macrophages. Additionally, Se-PM inhibited the inflammatory response in the air-pouch inflammation model. These results might contribute to the overall understanding of the potential health benefits of Se-PM for food and drug applications.
Collapse
Affiliation(s)
- Decheng Bi
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Marine Bioresources and Ecology , Shenzhen University , Shenzhen 518060 , PR China
| | - Qiuxian Lai
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Marine Bioresources and Ecology , Shenzhen University , Shenzhen 518060 , PR China
| | - Nan Cai
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Marine Bioresources and Ecology , Shenzhen University , Shenzhen 518060 , PR China
| | - Tong Li
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Marine Bioresources and Ecology , Shenzhen University , Shenzhen 518060 , PR China
| | - Yiyao Zhang
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Marine Bioresources and Ecology , Shenzhen University , Shenzhen 518060 , PR China
| | - Qingguo Han
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Marine Bioresources and Ecology , Shenzhen University , Shenzhen 518060 , PR China
| | - Yanwen Peng
- Cell-Gene Therapy Translational Medicine Research Center , The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou 510630 , PR China
| | - Hong Xu
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Marine Bioresources and Ecology , Shenzhen University , Shenzhen 518060 , PR China
| | - Jun Lu
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Marine Bioresources and Ecology , Shenzhen University , Shenzhen 518060 , PR China
- School of Science and School of Interprofessional Health Studies, Faculty of Health and Environmental Sciences, and Institute of Biomedical Technology , Auckland University of Technology , Auckland 1142 , New Zealand
| | - Weiyang Bao
- College of Fisheries and Life , Dalian Ocean University , Dalian 116023 , PR China
| | - Qiong Liu
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Marine Bioresources and Ecology , Shenzhen University , Shenzhen 518060 , PR China
| | - Xu Xu
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Marine Bioresources and Ecology , Shenzhen University , Shenzhen 518060 , PR China
| |
Collapse
|
31
|
Wang M, Kanako N, Zhang Y, Xiao X, Gao Q, Tetsuya K. A unique polysaccharide purified from Hericium erinaceus mycelium prevents oxidative stress induced by H2O2 in human gastric mucosa epithelium cell. PLoS One 2017; 12:e0181546. [PMID: 28742114 PMCID: PMC5524341 DOI: 10.1371/journal.pone.0181546] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 07/03/2017] [Indexed: 11/19/2022] Open
Abstract
Hericium erinaceus (HE) has been used both as a traditional Chinese medicine and home remedy for treatment of gastric and duodenal ulcers and gastritis. EP-1, a purified polysaccharide isolated from HE mycelium, has recently been identified as the active component responsible for HE anti-gastritis activity. Because oxidative stress has been implicated as a pathogenic cause of gastritis and gastric ulcers, EP-1 antioxidant properties were systematically examined in vitro using the human gastric mucosal epithelial cell line, GES-1. Results showed that EP-1 possessed higher oxygen radical absorbance capacity (ORAC) and 2-3 times higher ability to scavenge 2,2-diphenyl-1-picrylhydrazyl (DPPH), superoxide and hydroxyl radicals than a hot water extract of commercially available HE fruiting body. A crude mycelial polysaccharide (CMPS) extract of HE, from which EP-1 was purified, showed slightly stronger radical scavenging activity and ORAC than EP-1, with the exception of DPPH-scavenging activity. Antioxidant activities of these extracts were further studied using hydrogen peroxide (H2O2)-abused GES-1 cells; EP-1 dose-dependently preserved cell viability of abused cells as assessed via MTT assay. Moreover, FACS analysis revealed that EP-1 prevented H2O2-induced apoptotic cell death by inhibiting activation of apoptotic cellular signals within mitochondria-dependent apoptotic pathways. CMPS also prevented H2O2-induced oxidative stress, but to a lesser degree than did EP-1, even though CMPS exhibited comparable or stronger in vitro antioxidant activity than did EP-1.
Collapse
Affiliation(s)
- Mingxing Wang
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin, PR China
| | - Nakajima Kanako
- Liaison R/D Center, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Yanqiu Zhang
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin, PR China
| | - Xulang Xiao
- Research and Development Center, Changchun University of Chinese Medicine, Changchun, Jilin Province, PR China
| | - Qipin Gao
- Research and Development Center, Changchun University of Chinese Medicine, Changchun, Jilin Province, PR China
| | - Konishi Tetsuya
- Liaison R/D Center, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| |
Collapse
|
32
|
Construction of a Cordyceps sinensis exopolysaccharide-conjugated selenium nanoparticles and enhancement of their antioxidant activities. Int J Biol Macromol 2017; 99:483-491. [PMID: 28274870 DOI: 10.1016/j.ijbiomac.2017.03.016] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 02/16/2017] [Accepted: 03/03/2017] [Indexed: 01/16/2023]
Abstract
A Cordyceps sinensis exopolysaccharide (EPS)-conjugated selenium nanoparticles (SeNPs) were successfully constructed through the reduction of SeO32-. The EPS-SeNPs were characterized in terms of formation, morphology, size, Se distribution and phase by UV-vis, FT-IR, transmission electron microscopy (TEM), dynamic light scattering (DLS), energy dispersive X-ray (EDX) and wide angle X-ray diffraction (WAXD) measurements. Results revealed that the SeNPs conjugated to EPS were amorphous and could be well dispersed at a size range of 80-125nm. The interactions between the OH groups of EPS and SeNPs substituted for intermolecular interaction in native EPS to form new CO⋯Se bonds, resulting in good dispersion of SeNPs in the EPS matrix. Besides, the EPS-SeNPs at different Se/P ratios exhibited significant scavenging ability on superoxide anion radical (O2-) and ABTS radical cation (ABTS+) when compared to pure EPS, indicating that the conjugated SeNPs reinforced antioxidant effect of EPS. This work not only provides a simple and efficient way to construct well-dispersed SeNPs in aqueous system, and demonstrates the vital role of the EPS as a biopolymer template for dispersion, stabilization and size control of SeNPs, but also finds the EPS-SeNPs can potentially serve as a good antioxidant towards O2- and ABTS+.
Collapse
|
33
|
Li Q, Wang W, Zhu Y, Chen Y, Zhang W, Yu P, Mao G, Zhao T, Feng W, Yang L, Wu X. Structural elucidation and antioxidant activity a novel Se-polysaccharide from Se-enriched Grifola frondosa. Carbohydr Polym 2016; 161:42-52. [PMID: 28189245 DOI: 10.1016/j.carbpol.2016.12.041] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/26/2016] [Accepted: 12/18/2016] [Indexed: 10/20/2022]
Abstract
Se-GFP-22, a heteropolysaccharide, with a weight-average Mw of 4.13×106Da, was purified from the crude Se-polysaccharide (Se-GFP) isolated from fruit bodies of Se-enriched Grifola frondosa. Selenium was accumulated efficiently in Grifola frondosa during cultivation with Na2SeO3. The structure was investigated through FT-IR, GC, GC-MS, NMR, HPSEC-MALL-RI, particle size, Conge-red test, CD, AFM and SEM. Se-GFP-22 was deduced as a backbone chain of 1,4-α-d-Glcp units with a branched point at C6 of both 1,3,6-β-d-Manp and 1,4,6-α-d-Galp units. A typical absorption for selenium ester was existed in Se-GFP-22. Se-GFP-22 adopted as a spherical conformation with random coils. A novel Se-polysaccharide of different monosaccharide constituents, molecular weight, linkage types and high content of selenium has been isolated from G. frondosa. The antioxidant effect of Se-GFP-22 was more potent than that of G. frondosa polysaccharide (GFP-22), which may be influenced by the co-effect of polysaccharide and Se, molecular weight, degree of branching and configuration.
Collapse
Affiliation(s)
- Qian Li
- School of Food and Biological Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Wei Wang
- School of Food and Biological Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Yun Zhu
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Yao Chen
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China
| | - Weijie Zhang
- School of Food and Biological Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Ping Yu
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Guanghua Mao
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China
| | - Ting Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Weiwei Feng
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China
| | - Liuqing Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China.
| | - Xiangyang Wu
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
34
|
Li H, Wang Y, Wang C, Zhang S, Li S, Zhou G, Wang S, Zhang J. Extraction, selenylation modification and antitumor activity of the glucan from Castanea mollissima Blume. Glycoconj J 2016; 34:207-217. [DOI: 10.1007/s10719-016-9753-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/06/2016] [Accepted: 11/25/2016] [Indexed: 01/04/2023]
|
35
|
Zhu ZY, Liu F, Gao H, Sun H, Meng M, Zhang YM. Synthesis, characterization and antioxidant activity of selenium polysaccharide from Cordyceps militaris. Int J Biol Macromol 2016; 93:1090-1099. [DOI: 10.1016/j.ijbiomac.2016.09.076] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/07/2016] [Accepted: 09/20/2016] [Indexed: 01/16/2023]
|
36
|
Hilszczańska D, Siebyła M, Horak J, Król M, Podsadni P, Steckiewicz P, Bamburowicz-Klimkowska M, Szutowski M, Turło J. Comparison of Chemical Composition inTuber aestivumVittad. of Different Geographical Origin. Chem Biodivers 2016; 13:1617-1629. [DOI: 10.1002/cbdv.201600041] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 09/05/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Dorota Hilszczańska
- Department of Forest Ecology; Forest Research Institute; Braci Leśnej 3 Str. PL-05-090 Sękocin Stary
| | - Marta Siebyła
- Department of Forest Protection; Forest Research Institute; PL-05-090 Sękocin Stary
| | - Jakub Horak
- Department of Forest Protection and Entomology; Faculty of Forestry and Wood Sciences; Czech University of Life Sciences; CZ-165 21 Prague
| | - Marek Król
- Department of Drug Technology and Pharmaceutical Biotechnology; Medical University of Warsaw; PL-02-097 Warsaw
| | - Piotr Podsadni
- Department of Drug Technology and Pharmaceutical Biotechnology; Medical University of Warsaw; PL-02-097 Warsaw
| | - Piotr Steckiewicz
- Department of Drug Technology and Pharmaceutical Biotechnology; Medical University of Warsaw; PL-02-097 Warsaw
| | | | - Mirosław Szutowski
- Department of Drug Technology and Pharmaceutical Biotechnology; Medical University of Warsaw; PL-02-097 Warsaw
| | - Jadwiga Turło
- Department of Drug Technology and Pharmaceutical Biotechnology; Medical University of Warsaw; PL-02-097 Warsaw
| |
Collapse
|
37
|
Cheng JH, Tsai CL, Lien YY, Lee MS, Sheu SC. High molecular weight of polysaccharides from Hericium erinaceus against amyloid beta-induced neurotoxicity. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:170. [PMID: 27266872 PMCID: PMC4895996 DOI: 10.1186/s12906-016-1154-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 05/28/2016] [Indexed: 01/10/2023]
Abstract
Background Hericium erinaceus (HE) is a well-known mushroom in traditional Chinese food and medicine. HE extracts from the fruiting body and mycelia not only exhibit immunomodulatory, antimutagenic and antitumor activity but also have neuroprotective properties. Here, we purified HE polysaccharides (HEPS), composed of two high molecular weight polysaccharides (1.7 × 105 Da and 1.1 × 105 Da), and evaluated their protective effects on amyloid beta (Aβ)-induced neurotoxicity in rat pheochromocytoma PC12 cells. Methods HEPS were prepared and purified using a 95 % ethanol extraction method. The components of HEPS were analyzed and the molecular weights of the polysaccharides were determined using high-pressure liquid chromatography (HPLC). The neuroprotective effects of the polysaccharides were evaluated through a 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay and an MTT assay and by quantifying reactive oxygen species (ROS) and mitochondrial membrane potentials (MMP) of Aβ-induced neurotoxicity in cells. Result Our results showed that 250 μg/ml HEPS was harmless and promoted cell viability with 1.2 μM Aβ treatment. We observed that the free radical scavenging rate exceeded 90 % when the concentration of HEPS was higher than 1 mg/mL in cells. The HEPS decreased the production of ROS from 80 to 58 % in a dose-dependent manner. Cell pretreatment with 250 μg/mL HEPS significantly reduced Aβ-induced high MMPs from 74 to 51 % and 94 to 62 % at 24 and 48 h, respectively. Finally, 250 μg/mL of HEPS prevented Aβ-induced cell shrinkage and nuclear degradation of PC12 cells. Conclusion Our results demonstrate that HEPS exhibit antioxidant and neuroprotective effects on Aβ-induced neurotoxicity in neurons.
Collapse
|
38
|
Analogy in selenium enrichment and selenium speciation between selenized yeast Saccharomyces cerevisiae and Hericium erinaceus (lion's mane mushroom). Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2015.12.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
39
|
Ren G, Yu M, Li K, Hu Y, Wang Y, Xu X, Qu J. Seleno-lentinan prevents chronic pancreatitis development and modulates gut microbiota in mice. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.01.035] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
40
|
Zhang W, Lu Y, Zhang Y, Ding Q, Hussain S, Wu Q, Pan W, Chen Y. Antioxidant and antitumour activities of exopolysaccharide from liquid-culturedGrifola frondosaby chemical modification. Int J Food Sci Technol 2016. [DOI: 10.1111/ijfs.13059] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wenna Zhang
- School of Life Sciences; Anhui University; 111 Jiulong Road Hefei 230601 Anhui China
| | - Yongming Lu
- School of Life Sciences; Anhui University; 111 Jiulong Road Hefei 230601 Anhui China
| | - Yaping Zhang
- School of Life Sciences; Anhui University; 111 Jiulong Road Hefei 230601 Anhui China
| | - Qiuying Ding
- School of Life Sciences; Anhui University; 111 Jiulong Road Hefei 230601 Anhui China
| | - Sajid Hussain
- School of Life Sciences; Anhui University; 111 Jiulong Road Hefei 230601 Anhui China
| | - Qingxi Wu
- School of Life Sciences; Anhui University; 111 Jiulong Road Hefei 230601 Anhui China
| | - Wenjuan Pan
- School of Life Sciences; Anhui University; 111 Jiulong Road Hefei 230601 Anhui China
| | - Yan Chen
- School of Life Sciences; Anhui University; 111 Jiulong Road Hefei 230601 Anhui China
| |
Collapse
|
41
|
Biosynthesis of selenium rich exopolysaccharide (Se-EPS) by Pseudomonas PT-8 and characterization of its antioxidant activities. Carbohydr Polym 2016; 142:230-9. [PMID: 26917395 DOI: 10.1016/j.carbpol.2016.01.058] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 01/14/2016] [Accepted: 01/25/2016] [Indexed: 02/06/2023]
Abstract
Biosynthesis of organo-selenium is achieved by submerged fermentation of selenium-tolerant Pseudomonas PT-8. The end product of metabolic process is selenium-bearing exopolysaccharide (Se-EPS), which contains a higher content of uronic acid than the exopolysaccharide (EPS) by the strain without selenium in the culture medium. Selenium content in Se-EPS reached a maximum yield of 256.7 mg/kg when using an optimized culture condition. Crude Se-EPS was purified into two fractions-a pH neutral Se-EPS-1 and an acidic Se-EPS-2. Structure and chemical composition of Se-EPS-2 were investigated by chromatographic analyses. Results showed that Se-EPS-2 was a homogenous polysaccharide with molecular weight of 7.3 kDa, consisting of monosaccharides, rhamnose, arabinose, xylose, mannose, glucose and galactose with a molar ratio of 19.58:19.28:5.97:18.99:23.70:12.48, respectively. Compared to the EPS, the content of rhamnose in Se-EPS increased and molecular weight decreased. The Se-EPS had strong scavenging actions on DPPH•, •OH and •O2(-), which is much higher than the EPS.
Collapse
|
42
|
Gao Z, Chen J, Qiu S, Li Y, Wang D, Liu C, Li X, Hou R, Yue C, Liu J, Li H, Hu Y. Optimization of selenylation modification for garlic polysaccharide based on immune-enhancing activity. Carbohydr Polym 2016; 136:560-9. [DOI: 10.1016/j.carbpol.2015.09.065] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 09/11/2015] [Accepted: 09/21/2015] [Indexed: 01/17/2023]
|
43
|
Chen W, Gou Y, Li W, Zhang P, Chen J, Wu H, Hu F, Cheng W. Activation of Intrinsic Apoptotic Signaling Pathway in A549 Cell by a Pectin Polysaccharide Isolated from Codonopsis pilosula and Its Selenized Derivative. J Carbohydr Chem 2015. [DOI: 10.1080/07328303.2015.1095924] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Wenxia Chen
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, P.R. China
| | - Yuqiang Gou
- Lanzhou Military Command Center for Disease Prevention and Control, Lanzhou, 730020, China
| | - Wen Li
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, P.R. China
| | - Pei Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, P.R. China
| | - Jiayu Chen
- Department of Gastroenterology, Lanzhou General Hospital of People Liberation ArmyLanzhou, 730050, China
| | - Hongmei Wu
- School of Traditional Chinese Medicine, Lanzhou, 730050, China
| | - Fangdi Hu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, P.R. China
| | - Weidong Cheng
- College of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
44
|
Thongbai B, Rapior S, Hyde KD, Wittstein K, Stadler M. Hericium erinaceus, an amazing medicinal mushroom. Mycol Prog 2015. [DOI: 10.1007/s11557-015-1105-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
45
|
Wei D, Chen T, Yan M, Zhao W, Li F, Cheng W, Yuan L. Synthesis, characterization, antioxidant activity and neuroprotective effects of selenium polysaccharide from Radix hedysari. Carbohydr Polym 2015; 125:161-8. [DOI: 10.1016/j.carbpol.2015.02.029] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/10/2015] [Accepted: 02/13/2015] [Indexed: 01/04/2023]
|
46
|
Woraharn S, Lailerd N, Sivamaruthi BS, Wangcharoen W, Peerajan S, Sirisattha S, Chaiyasut C. Development of fermentedHericium erinaceusjuice with high content of L-glutamine and L-glutamic acid. Int J Food Sci Technol 2015. [DOI: 10.1111/ijfs.12873] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Sasimar Woraharn
- Department of Pharmaceutical Sciences; Faculty of Pharmacy; Chiang Mai University; Chiang Mai 50200 Thailand
| | - Narissara Lailerd
- Department of Physiology; Faculty of Medicine; Chiang Mai University; Chiang Mai 50200 Thailand
| | | | - Wiwat Wangcharoen
- Faculty of Engineering and agro-industry; Maejo University; Sansai Chiang Mai 50290 Thailand
| | | | - Sophon Sirisattha
- Department of Bioscience; Thailand Institute of Scientific and Technological Research; Pathumthani 12120 Thailand
| | - Chaiyavat Chaiyasut
- Department of Pharmaceutical Sciences; Faculty of Pharmacy; Chiang Mai University; Chiang Mai 50200 Thailand
| |
Collapse
|
47
|
Improvement of zinc bioaccumulation and biomass yield in the mycelia and fruiting bodies of Pleurotus florida cultured on liquid media. Appl Biochem Biotechnol 2015; 175:3387-96. [PMID: 25686560 DOI: 10.1007/s12010-015-1510-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 01/21/2015] [Indexed: 10/24/2022]
Abstract
The effect of different concentrations of zinc on the bioaccumulation of zinc and biomass yield in both mycelium and fruiting body of Pleurotus florida cultivated in liquid medium was studied. The results showed that the optimum yield of mycelia (11.33 ± 0.44 g/L) and fruiting bodies (7.70 ± 0.19 g/L) dry biomass was obtained in a liquid medium containing 100 mg/L of zinc. At a zinc concentration of 200 mg/L, the highest concentration of zinc in the mycelia and fruiting bodies reached 1.869 ± 0.115 and 0.151 ± 0.008 mg/g dry weight, respectively. The addition of zinc to the culture media significantly reduced zinc bioaccumulation factor in mycelia (from 24.64 ± 0.52 to 3.35 ± 0.24) and fruiting bodies (from 36.71 ± 0.30 to 0.49 ± 0.02) dry weight. Our findings indicated that the ability of zinc bioaccumulation in the mycelia is much higher than in the fruiting bodies. The fundamental information obtained in this study will be useful for the improvement of zinc bioaccumulation and biomass yield in mycelia and fruiting bodies of P. florida cultivated in liquid media to obtain maximum zinc-enriched biomass.
Collapse
|
48
|
Ślusarczyk J, Kuraś M, Malinowska E, Skalicka-Woźniak K, Głowniak K. Ultrastructural changes in the mycelium of Hericium erinaceum (Bull.; Fr.) Pers. under selenium-induced oxidative stress. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2014; 94:2718-2725. [PMID: 24532295 DOI: 10.1002/jsfa.6616] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 02/05/2014] [Accepted: 02/11/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND In this study we examined the influence of various forms of selenium (organic and inorganic) on the vivacity of Hericium erinaceum mycelium and structural changes and ultrastructure occurring during its development in submerged culture. RESULTS The mycelium was grown on sodium selenite (Na₂SeO₃), Selol (with 20 and 50 g kg⁻¹ Se, respectively) and a mixture of Na₂SeO₃ and Selol. Samples of the mycelium were collected on day 3 and day 24 of the incubation and viewed under an electron microscope. Selol at concentration 20 g kg⁻¹ did not cause any damage to the cell ultrastructure, but it contributed to the thickening of the cell wall, which implied an influence on polysaccharide production. In the other cases, degradation changes appeared in the protoplasm and the thickness of the cell wall did not increase. CONCLUSION The nature of the effect exerted by various sources of selenium in the culture medium on the formation of polysaccharides probably results from the differences in their chemical composition and differences in the toxicity of these compounds towards the cells, but is also connected with the decomposition of the wall surrounding degraded fungal cells.
Collapse
Affiliation(s)
- Joanna Ślusarczyk
- Department of Ecology and Environmental Protection, Jan Kochanowski University, 25-406, Kielce, Poland
| | | | | | | | | |
Collapse
|
49
|
Optimization of selenylation conditions for a pectic polysaccharide and its structural characteristic. Int J Biol Macromol 2014; 69:244-51. [DOI: 10.1016/j.ijbiomac.2014.05.046] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/08/2014] [Accepted: 05/14/2014] [Indexed: 02/01/2023]
|
50
|
Lü H, Gao Y, Shan H, Lin Y. Preparation and antibacterial activity studies of degraded polysaccharide selenide from Enteromorpha prolifera. Carbohydr Polym 2014; 107:98-102. [DOI: 10.1016/j.carbpol.2014.02.045] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 01/28/2014] [Accepted: 02/14/2014] [Indexed: 10/25/2022]
|