1
|
Aziz M, Palariya D, Mehtab S, Zaidi MGH, Vasseghian Y. Enhanced production of bioethanol through supercritical carbon dioxide-mediated pretreatment and saccharification of dewaxed bagasse. Sci Rep 2024; 14:21450. [PMID: 39271743 PMCID: PMC11399341 DOI: 10.1038/s41598-024-70727-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
The pretreatment and saccharification of dewaxed bagasse (DWB) has been investigated under various reaction conditions ranging 2000 to 3200 psi, at 70 ± 1 °C in supercritical carbon dioxide (SCC). This has been in attempt to transform the DWB into fermentable sugar and bioethanol in high yields. The effect of SCC mediated pretreatment and enzymatic hydrolysis on structural and morphological alterations in DWB has been ascertained through diverse analytical methods. The sugar has been released through cellulase (40 FPU/mL) mediated enzymatic hydrolysis of pretreated DWB in sodium acetate buffer (pH 4.7) within 1 h at SCC 2800 psi, 70 ± 1 °C. The released sugar was subsequently fermented in the presence of yeast (Saccharomyces crevices, 135 CFU) at 28 ± 1 °C over 72 h to afford the bioethanol. The SCC mediated process conducted in acetic acid:water media (1:1) at 2800 psi, 70 ± 1 °C over 6 h has afforded the pretreated DWB with maximum yield towards the production of fermentable sugar and bioethanol. The production of fermentable sugar and bioethanol has been electrochemically estimated through cyclic voltammetry (CV) and square wave voltammetry (SWV) over glassy carbon electrode in KOH (0.1 M). The electrochemical methods were found selective and in close agreement for estimation of the yields (%) of fermentable sugars and bioethanol. The yield (%) of fermentable sugar estimated from CV and SWV were 80.10 ± 5.34 and 79.00 ± 5.09 respectively. Whereas the yield (%) of bioethanol estimated from CV and SWV were 81.30 ± 2.78% and 78.6 ± 1.25% respectively. Present investigation delivers a SCC mediated green and sustainable method of pretreatment of DWB to afford the enhanced saccharification, to produce bioethanol in high yields.
Collapse
Affiliation(s)
- Mohammad Aziz
- Department of Chemistry, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology Pantnagar, U.S Nagar, Uttarakhand, 263145, India
| | - Diksha Palariya
- Department of Chemistry, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology Pantnagar, U.S Nagar, Uttarakhand, 263145, India
| | - Sameena Mehtab
- Department of Chemistry, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology Pantnagar, U.S Nagar, Uttarakhand, 263145, India.
| | - M G H Zaidi
- Department of Chemistry, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology Pantnagar, U.S Nagar, Uttarakhand, 263145, India.
| | - Yasser Vasseghian
- Department of Chemical Engineering and Material Science, Yuan Ze University, Taoyuan, Taiwan.
| |
Collapse
|
2
|
Wang J, Ma D, Lou Y, Ma J, Xing D. Optimization of biogas production from straw wastes by different pretreatments: Progress, challenges, and prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166992. [PMID: 37717772 DOI: 10.1016/j.scitotenv.2023.166992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/09/2023] [Accepted: 09/09/2023] [Indexed: 09/19/2023]
Abstract
Lignocellulosic biomass (LCB) presents a promising feedstock for carbon management due to enormous potential for achieving carbon neutrality and delivering substantial environmental and economic benefit. Bioenergy derived from LCB accounts for about 10.3 % of the global total energy supply. The generation of bioenergy through anaerobic digestion (AD) in combination with carbon capture and storage, particularly for methane production, provides a cost-effective solution to mitigate greenhouse gas emissions, while concurrently facilitating bioenergy production and the recovery of high-value products during LCB conversion. However, the inherent recalcitrant polymer crystal structure of lignocellulose impedes the accessibility of anaerobic bacteria, necessitating lignocellulosic residue pretreatment before AD or microbial chain elongation. This paper seeks to explore recent advances in pretreatment methods for LCB biogas production, including pulsed electric field (PEF), electron beam irradiation (EBI), freezing-thawing pretreatment, microaerobic pretreatment, and nanomaterials-based pretreatment, and provide a comprehensive overview of the performance, benefits, and drawbacks of the traditional and improved treatment methods. In particular, physical-chemical pretreatment emerges as a flexible and effective option for methane production from straw wastes. The burgeoning field of nanomaterials has provoked progress in the development of artificial enzyme mimetics and enzyme immobilization techniques, compensating for the intrinsic defect of natural enzyme. However, various complex factors, such as economic effectiveness, environmental impact, and operational feasibility, influence the implementation of LCB pretreatment processes. Techno-economic analysis (TEA), life cycle assessment (LCA), and artificial intelligence technologies provide efficient means for evaluating and selecting pretreatment methods. This paper addresses current issues and development priorities for the achievement of the appropriate and sustainable utilization of LCB in light of evolving economic and environmentally friendly social development demands, thereby providing theoretical basis and technical guidance for improving LCB biogas production of AD systems.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dongmei Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yu Lou
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Defeng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
3
|
Pendse DS, Deshmukh M, Pande A. Different pre-treatments and kinetic models for bioethanol production from lignocellulosic biomass: A review. Heliyon 2023; 9:e16604. [PMID: 37260877 PMCID: PMC10227349 DOI: 10.1016/j.heliyon.2023.e16604] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/14/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023] Open
Abstract
Lignocellulosic biomass is the generally explored substrate to produce bioethanol for environmental sustainability due to its availability in abundance. However, the complex network of cellulose-hemicellulose-lignin present in it makes its hydrolysis as a challenging task. To boost the effectiveness of conversion, biomass is pre-treated before enzymatic hydrolysis to alter or destroy its original composition. Enzymes like Cellulases are widely used for breaking down cellulose into fermentable sugars. Enzymatic hydrolysis is a complex process involving many influencing factors such as pH, temperature, substrate concentration. This review presents major four pre-treatment methods used for hydrolysing different substrates under varied reaction conditions along with their mechanism and limitations. A relative comparison of data analysis for most widely studied 10 kinetic models is briefly explained in terms of substrates used to get the brief insight about hydrolysis rates. The summary of pre-treatment methods and hydrolysis rates including cellulase enzyme kinetics will be the value addition for upcoming researchers for optimising the hydrolysis process.
Collapse
Affiliation(s)
- Dhanashri S Pendse
- Research Scholar, School of Chemical Engineering, Dr. Vishwanath Karad MIT World Peace University, Pune, 411038, India
| | - Minal Deshmukh
- School of Petroleum Engineering, Dr. Vishwanath Karad MIT World Peace University, Pune, 411038, India
| | - Ashwini Pande
- School of Petroleum Engineering, Dr Vishwanath Karad MIT World Peace University, Pune, 411038, India
| |
Collapse
|
4
|
Tan J, Li Y, Tan X, Wu H, Li H, Yang S. Advances in Pretreatment of Straw Biomass for Sugar Production. Front Chem 2021; 9:696030. [PMID: 34164381 PMCID: PMC8215366 DOI: 10.3389/fchem.2021.696030] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/12/2021] [Indexed: 11/29/2022] Open
Abstract
Straw biomass is an inexpensive, sustainable, and abundant renewable feedstock for the production of valuable chemicals and biofuels, which can surmount the main drawbacks such as greenhouse gas emission and environmental pollution, aroused from the consumption of fossil fuels. It is rich in organic content but is not sufficient for extensive applications because of its natural recalcitrance. Therefore, suitable pretreatment is a prerequisite for the efficient production of fermentable sugars by enzymatic hydrolysis. Here, we provide an overview of various pretreatment methods to effectively separate the major components such as hemicellulose, cellulose, and lignin and enhance the accessibility and susceptibility of every single component. This review outlines the diverse approaches (e.g., chemical, physical, biological, and combined treatments) for the excellent conversion of straw biomass to fermentable sugars, summarizes the benefits and drawbacks of each pretreatment method, and proposes some investigation prospects for the future pretreatments.
Collapse
Affiliation(s)
- Jinyu Tan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State Local Joint Engineering Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China.,Institute of Crops Germplasm Resources, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Yan Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State Local Joint Engineering Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China
| | - Xiang Tan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State Local Joint Engineering Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China
| | - Hongguo Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State Local Joint Engineering Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China
| | - Hu Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State Local Joint Engineering Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State Local Joint Engineering Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China
| |
Collapse
|
5
|
Badgujar KC, Dange R, Bhanage BM. Recent advances of use of the supercritical carbon dioxide for the biomass pre-treatment and extraction: A mini-review. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
6
|
Arshad RN, Abdul‐Malek Z, Roobab U, Qureshi MI, Khan N, Ahmad MH, Liu Z, Aadil RM. Effective valorization of food wastes and by‐products through pulsed electric field: A systematic review. J FOOD PROCESS ENG 2020. [DOI: 10.1111/jfpe.13629] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rai Naveed Arshad
- Institute of High Voltage & High Current, School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia Skudai Malaysia
| | - Zulkurnain Abdul‐Malek
- Institute of High Voltage & High Current, School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia Skudai Malaysia
| | - Ume Roobab
- School of Food Science and Engineering, South China University of Technology Guangzhou China
| | - Muhammad Imran Qureshi
- Faculty of Technology Management and Technopreneurship Technical University of Malaysia Malacca Malaysia
| | - Nohman Khan
- UNIKL Business School, University of Kuala Lumpur Kuala Lumpur Malaysia
| | - Mohammad Hafizi Ahmad
- Institute of High Voltage & High Current, School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia Skudai Malaysia
| | - Zhi‐Wei Liu
- College of Food Science and Technology, Hunan Agricultural University Changsha China
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture Faisalabad Pakistan
| |
Collapse
|
7
|
Escobar ELN, da Silva TA, Pirich CL, Corazza ML, Pereira Ramos L. Supercritical Fluids: A Promising Technique for Biomass Pretreatment and Fractionation. Front Bioeng Biotechnol 2020; 8:252. [PMID: 32391337 PMCID: PMC7191036 DOI: 10.3389/fbioe.2020.00252] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/11/2020] [Indexed: 11/17/2022] Open
Abstract
Lignocellulosic biomasses are primarily composed of cellulose, hemicelluloses and lignin and these biopolymers are bonded together in a heterogeneous matrix that is highly recalcitrant to chemical or biological conversion processes. Thus, an efficient pretreatment technique must be selected and applied to this type of biomass in order to facilitate its utilization in biorefineries. Classical pretreatment methods tend to operate under severe conditions, leading to sugar losses by dehydration and to the release of inhibitory compounds such as furfural (2-furaldehyde), 5-hydroxy-2-methylfurfural (5-HMF), and organic acids. By contrast, supercritical fluids can pretreat lignocellulosic materials under relatively mild pretreatment conditions, resulting in high sugar yields, low production of fermentation inhibitors and high susceptibilities to enzymatic hydrolysis while reducing the consumption of chemicals, including solvents, reagents, and catalysts. This work presents a review of biomass pretreatment technologies, aiming to deliver a state-of-art compilation of methods and results with emphasis on supercritical processes.
Collapse
Affiliation(s)
- Estephanie Laura Nottar Escobar
- Applied Kinetics and Thermodynamics Laboratory, Department of Chemical Engineering, Federal University of Paraná, Curitiba, Brazil
| | - Thiago Alessandre da Silva
- Department of Chemistry, Research Center in Applied Chemistry, Federal University of Paraná, Curitiba, Brazil
| | - Cleverton Luiz Pirich
- Department of Chemistry, Research Center in Applied Chemistry, Federal University of Paraná, Curitiba, Brazil
| | - Marcos Lúcio Corazza
- Applied Kinetics and Thermodynamics Laboratory, Department of Chemical Engineering, Federal University of Paraná, Curitiba, Brazil
| | - Luiz Pereira Ramos
- Department of Chemistry, Research Center in Applied Chemistry, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
8
|
Low-frequency Ultrasound with Short Application Time Improves Cellulase Activity and Reducing Sugars Release. Appl Biochem Biotechnol 2020; 191:1042-1055. [PMID: 31956958 DOI: 10.1007/s12010-019-03148-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/12/2019] [Indexed: 01/21/2023]
Abstract
In this study, we investigated the effect of ultrasound (US) on the activity of commercial cellulase (Celluclast® 1.5 L) in the absence and in the presence of a cellulosic substrate (Avicel®, 2% w.v-1) using a central composite rotatable design. Sonication time (10 to 330 s), US intensity (120.6 to 263.7 W cm-2), and reaction temperature (25 to 50 °C) were varied using a horn-type ultrasound reactor, and endoglucanase (CMCase) and total cellulase (FPase) activities were determined. US intensity had a positive effect on enzyme activity. Under optimal conditions (170 s, 180.8 W cm-2, and 25 °C), CMCase activity was 13% higher than that of the control. In the presence of substrate, CMCase activity increased by 33.87% and KM reduced by 23% in relation to that of the control. The theoretical yield of cellulose was 42.08%. Cellulase activity can be improved by US treatment to maximize productivity gains and reduce costs in second-generation ethanol production, by the action of a low-frequency ultrasound with a short ultrasonication time of application.
Collapse
|
9
|
Luft L, Confortin TC, Todero I, Ugalde G, Zabot GL, Mazutti MA. Transformation of residual starch from brewer’s spent grain into fermentable sugars using supercritical technology. J Supercrit Fluids 2018. [DOI: 10.1016/j.supflu.2018.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Bušić A, Marđetko N, Kundas S, Morzak G, Belskaya H, Ivančić Šantek M, Komes D, Novak S, Šantek B. Bioethanol Production from Renewable Raw Materials and Its Separation and Purification: A Review. Food Technol Biotechnol 2018; 56:289-311. [PMID: 30510474 PMCID: PMC6233010 DOI: 10.17113/ftb.56.03.18.5546] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Production of biofuels from renewable feedstocks has captured considerable scientific attention since they could be used to supply energy and alternative fuels. Bioethanol is one of the most interesting biofuels due to its positive impact on the environment. Currently, it is mostly produced from sugar- and starch-containing raw materials. However, various available types of lignocellulosic biomass such as agricultural and forestry residues, and herbaceous energy crops could serve as feedstocks for the production of bioethanol, energy, heat and value-added chemicals. Lignocellulose is a complex mixture of carbohydrates that needs an efficient pretreatment to make accessible pathways to enzymes for the production of fermentable sugars, which after hydrolysis are fermented into ethanol. Despite technical and economic difficulties, renewable lignocellulosic raw materials represent low-cost feedstocks that do not compete with the food and feed chain, thereby stimulating the sustainability. Different bioprocess operational modes were developed for bioethanol production from renewable raw materials. Furthermore, alternative bioethanol separation and purification processes have also been intensively developed. This paper deals with recent trends in the bioethanol production as a fuel from different renewable raw materials as well as with its separation and purification processes.
Collapse
Affiliation(s)
- Arijana Bušić
- University of Zagreb, Faculty of Food Technology and Biotechnology, Pierottijeva 6, HR-10000 Zagreb, Croatia
| | - Nenad Marđetko
- University of Zagreb, Faculty of Food Technology and Biotechnology, Pierottijeva 6, HR-10000 Zagreb, Croatia
| | - Semjon Kundas
- Belarussian National Technical University, Power Plant Construction and Engineering Services Faculty, Nezavisimosti Ave. 150, BY-220013 Minsk, Belarus
| | - Galina Morzak
- Belarussian National Technical University, Mining Engineering and Engineering Ecology Faculty, Nezavisimosti Ave. 65, BY-220013 Minsk, Belarus
| | - Halina Belskaya
- Belarussian National Technical University, Mining Engineering and Engineering Ecology Faculty, Nezavisimosti Ave. 65, BY-220013 Minsk, Belarus
| | - Mirela Ivančić Šantek
- University of Zagreb, Faculty of Food Technology and Biotechnology, Pierottijeva 6, HR-10000 Zagreb, Croatia
| | - Draženka Komes
- University of Zagreb, Faculty of Food Technology and Biotechnology, Pierottijeva 6, HR-10000 Zagreb, Croatia
| | - Srđan Novak
- University of Zagreb, Faculty of Food Technology and Biotechnology, Pierottijeva 6, HR-10000 Zagreb, Croatia
| | - Božidar Šantek
- University of Zagreb, Faculty of Food Technology and Biotechnology, Pierottijeva 6, HR-10000 Zagreb, Croatia
| |
Collapse
|
11
|
Wang X, Wang L, Chen X, Zhou D, Xiao H, Wei X, Liang J. Catalytic methyl esterification of colophony over ZnO/SFCCR with subcritical CO 2: catalytic performance, reaction pathway and kinetics. ROYAL SOCIETY OPEN SCIENCE 2018; 5:172124. [PMID: 29892399 PMCID: PMC5990756 DOI: 10.1098/rsos.172124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/22/2018] [Indexed: 06/08/2023]
Abstract
A heterogeneous catalyst (ZnO/SFCCR) composed of ZnO supported on spent fluid cracking catalyst by wet impregnation was synthesized and applied to the esterification of colophony acids with methanol under subcritical CO2 conditions. The catalyst was characterized by SEM-EDS, BET, ICP, FTIR, XRD and Py-IR. An experimental set-up involving a new injection technique was designed to promote the heterogeneous methyl esterification, and the subcritical CO2 played a role in auxiliary acid catalysis (a pH range of 3.54-3.91), increasing the lifespan of ZnO/SFCCR, reducing the viscosity of the system to promote gas-liquid mass transfer. A maximum conversion rate of 97.01% was obtained in a relatively short time of 5 h. Kinetic experiments were performed from 190 to 220°C using a special high-temperature sampling device and analysing aliquots with high-performance liquid chromatography. A new reaction pathway, involving methyl abietate, methyl dehydroabietate, methyl neoabietate and methyl palustrate along with other kinds of colophony acids, was developed. The kinetic parameters were obtained using the Levenberg-Marquardt nonlinear least-squares method, and the activation energies for the isomerizations of neoabietic and palustric acids and for the methyl esterification of neoabietic, abietic, palustric and dehydroabietic acids were found to be 107.09, 113.95, 68.99, 49.85, 75.43 and 59.20 kJ mol-1, respectively. The results from the kinetic model were in good agreement with experimental values.
Collapse
Affiliation(s)
- Xubin Wang
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China
| | - Linlin Wang
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China
| | - Xiaopeng Chen
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China
| | - Dan Zhou
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China
| | - Han Xiao
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Xiaojie Wei
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China
| | - Jiezhen Liang
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China
| |
Collapse
|
12
|
Kushwaha D, Srivastava N, Mishra I, Upadhyay SN, Mishra PK. Recent trends in biobutanol production. REV CHEM ENG 2018. [DOI: 10.1515/revce-2017-0041] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Abstract
Finite availability of conventional fossil carbonaceous fuels coupled with increasing pollution due to their overexploitation has necessitated the quest for renewable fuels. Consequently, biomass-derived fuels are gaining importance due to their economic viability and environment-friendly nature. Among various liquid biofuels, biobutanol is being considered as a suitable and sustainable alternative to gasoline. This paper reviews the present state of the preprocessing of the feedstock, biobutanol production through fermentation and separation processes. Low butanol yield and its toxicity are the major bottlenecks. The use of metabolic engineering and integrated fermentation and product recovery techniques has the potential to overcome these challenges. The application of different nanocatalysts to overcome the existing challenges in the biobutanol field is gaining much interest. For the sustainable production of biobutanol, algae, a third-generation feedstock has also been evaluated.
Collapse
Affiliation(s)
- Deepika Kushwaha
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU) , Varanasi 221005 , India
| | - Neha Srivastava
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU) , Varanasi 221005 , India
| | - Ishita Mishra
- Green Brick Eco Solutions, Okha Industrial Area , New Delhi 110020 , India
| | - Siddh Nath Upadhyay
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU) , Varanasi 221005 , India
| | - Pradeep Kumar Mishra
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU) , Varanasi 221005 , India
| |
Collapse
|
13
|
Gharib-Bibalan S. High Value-added Products Recovery from Sugar Processing By-products and Residuals by Green Technologies: Opportunities, Challenges, and Prospects. FOOD ENGINEERING REVIEWS 2018. [DOI: 10.1007/s12393-018-9174-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Bundhoo ZMA, Mohee R. Ultrasound-assisted biological conversion of biomass and waste materials to biofuels: A review. ULTRASONICS SONOCHEMISTRY 2018; 40:298-313. [PMID: 28946428 DOI: 10.1016/j.ultsonch.2017.07.025] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 07/16/2017] [Accepted: 07/17/2017] [Indexed: 05/25/2023]
Abstract
Ultrasound irradiation has been gaining increasing interests over the years to assist biological conversion of lignocellulosic biomass and waste materials to biofuels. As such, this study reviewed the different effects of sonication on pre-treatment of lignocellulosic biomass and waste materials prior to biofuel production. The mechanisms of ultrasound irradiation as a pre-treatment technique were initially described and the impacts of sonication on disruption of lignocellulosic materials, alteration of the crystalline lattice structure of cellulose molecules, solubilisation of organic matter, reducing sugar production and enzymatic hydrolysis were then reviewed. Subsequently, the influences of ultrasound irradiation on bio-methane, bio-hydrogen and bio-ethanol production were re-evaluated, with most studies reporting enhanced biofuel production from anaerobic digestion or fermentation processes. Nonetheless, despite its positive impacts on biofuel production, sonication was found to be energetically inefficient based on the lab-scale studies reviewed. To conclude, this study reviewed some of the challenges of ultrasound irradiation for enhanced biofuel production while outlining some areas for further research.
Collapse
Affiliation(s)
- Zumar M A Bundhoo
- Department of Chemical & Environmental Engineering, Faculty of Engineering, University of Mauritius, Réduit, Mauritius.
| | - Romeela Mohee
- Department of Chemical & Environmental Engineering, Faculty of Engineering, University of Mauritius, Réduit, Mauritius
| |
Collapse
|
15
|
Sun S, Sun S, Cao X, Sun R. The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. BIORESOURCE TECHNOLOGY 2016; 199:49-58. [PMID: 26321216 DOI: 10.1016/j.biortech.2015.08.061] [Citation(s) in RCA: 335] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/10/2015] [Accepted: 08/11/2015] [Indexed: 05/08/2023]
Abstract
Lignocellulosic materials are among the most promising alternative energy resources that can be utilized to produce cellulosic ethanol. However, the physical and chemical structure of lignocellulosic materials forms strong native recalcitrance and results in relatively low yield of ethanol from raw lignocellulosic materials. An appropriate pretreatment method is required to overcome this recalcitrance. For decades various pretreatment processes have been developed to improve the digestibility of lignocellulosic biomass. Each pretreatment process has a different specificity on altering the physical and chemical structure of lignocellulosic materials. In this paper, the chemical structure of lignocellulosic biomass and factors likely affect the digestibility of lignocellulosic materials are discussed, and then an overview about the most important pretreatment processes available are provided. In particular, the combined pretreatment strategies are reviewed for improving the enzymatic hydrolysis of lignocellulose and realizing the comprehensive utilization of lignocellulosic materials.
Collapse
Affiliation(s)
- Shaoni Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Shaolong Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Xuefei Cao
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Runcang Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
16
|
Silveira MHL, Morais ARC, da Costa Lopes AM, Olekszyszen DN, Bogel-Łukasik R, Andreaus J, Pereira Ramos L. Current Pretreatment Technologies for the Development of Cellulosic Ethanol and Biorefineries. CHEMSUSCHEM 2015; 8:3366-90. [PMID: 26365899 DOI: 10.1002/cssc.201500282] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 06/03/2015] [Indexed: 05/08/2023]
Abstract
Lignocellulosic materials, such as forest, agriculture, and agroindustrial residues, are among the most important resources for biorefineries to provide fuels, chemicals, and materials in such a way to substitute for, at least in part, the role of petrochemistry in modern society. Most of these sustainable biorefinery products can be produced from plant polysaccharides (glucans, hemicelluloses, starch, and pectic materials) and lignin. In this scenario, cellulosic ethanol has been considered for decades as one of the most promising alternatives to mitigate fossil fuel dependence and carbon dioxide accumulation in the atmosphere. However, a pretreatment method is required to overcome the physical and chemical barriers that exist in the lignin-carbohydrate composite and to render most, if not all, of the plant cell wall components easily available for conversion into valuable products, including the fuel ethanol. Hence, pretreatment is a key step for an economically viable biorefinery. Successful pretreatment method must lead to partial or total separation of the lignocellulosic components, increasing the accessibility of holocellulose to enzymatic hydrolysis with the least inhibitory compounds being released for subsequent steps of enzymatic hydrolysis and fermentation. Each pretreatment technology has a different specificity against both carbohydrates and lignin and may or may not be efficient for different types of biomasses. Furthermore, it is also desirable to develop pretreatment methods with chemicals that are greener and effluent streams that have a lower impact on the environment. This paper provides an overview of the most important pretreatment methods available, including those that are based on the use of green solvents (supercritical fluids and ionic liquids).
Collapse
Affiliation(s)
- Marcos Henrique Luciano Silveira
- CEPESQ, Research Center in Applied Chemistry, Department of Chemistry, Federal University of Paraná, Curitiba, PR, 81531-970, Brazil
| | - Ana Rita C Morais
- Unit of Bioenergy, National Laboratory of Energy and Geology, 1649-038, Lisbon, Portugal
- LAQV/REQUIMTE, Department of Chemistry, Faculty of Science and Technology, New University of Lisbon, 2829-516, Caparica, Portugal
| | - Andre M da Costa Lopes
- Unit of Bioenergy, National Laboratory of Energy and Geology, 1649-038, Lisbon, Portugal
- LAQV/REQUIMTE, Department of Chemistry, Faculty of Science and Technology, New University of Lisbon, 2829-516, Caparica, Portugal
| | | | - Rafał Bogel-Łukasik
- Unit of Bioenergy, National Laboratory of Energy and Geology, 1649-038, Lisbon, Portugal.
| | - Jürgen Andreaus
- Department of Chemistry, Regional University of Blumenau, Blumenau, SC, 89012 900, Brazil.
| | - Luiz Pereira Ramos
- CEPESQ, Research Center in Applied Chemistry, Department of Chemistry, Federal University of Paraná, Curitiba, PR, 81531-970, Brazil.
- INCT Energy and Environment (INCT E&A), Department of Chemistry, Federal University of Paraná.
| |
Collapse
|
17
|
Gasparotto JM, Werle LB, Mainardi MA, Foletto EL, Kuhn RC, Jahn SL, Mazutti MA. Ultrasound-assisted hydrolysis of sugarcane bagasse using cellulolytic enzymes by direct and indirect sonication. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2015. [DOI: 10.1016/j.bcab.2015.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Delgado-Povedano M, Luque de Castro M. A review on enzyme and ultrasound: A controversial but fruitful relationship. Anal Chim Acta 2015; 889:1-21. [DOI: 10.1016/j.aca.2015.05.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/02/2015] [Accepted: 05/05/2015] [Indexed: 10/23/2022]
|
19
|
Gasparotto JM, Werle LB, Foletto EL, Kuhn RC, Jahn SL, Mazutti MA. Production of cellulolytic enzymes and application of crude enzymatic extract for saccharification of lignocellulosic biomass. Appl Biochem Biotechnol 2015; 175:560-72. [PMID: 25331378 DOI: 10.1007/s12010-014-1297-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 10/14/2014] [Indexed: 10/24/2022]
Abstract
In this study, the optimal conditions for production of cellulolytic enzymes by Trichoderma reesei NRRL-6156 using the solid-state fermentation were assessed in conical flasks and validated in a packed-bed bioreactor. Afterwards, the crude enzymatic extract obtained in the optimized condition was used for hydrolysis of sugarcane bagasse in water and ultrasound baths. The enzyme activities determined in this work were filter paper, exocellulase, endocellulase, and xylanase. The optimized condition for production was moisture content 68.6 wt% and soybean bran concentration 0.9 wt%. The crude enzymatic extract was applied for hydrolysis of sugarcane bagasse, being obtained 224.0 and 229 g kg(-1) at temperature of 43.4 °C and concentration of enzymatic extract of 18.6 % in water and ultrasound baths, respectively. The yields obtained are comparable to commercial enzymes.
Collapse
Affiliation(s)
- Juliana Machado Gasparotto
- Department of Chemical Engineering, Federal University of Santa Maria, Av. Roraima, 1000, Santa Maria, 97105-900, Brazil
| | | | | | | | | | | |
Collapse
|
20
|
Morais ARC, da Costa Lopes AM, Bogel-Łukasik R. Carbon Dioxide in Biomass Processing: Contributions to the Green Biorefinery Concept. Chem Rev 2014; 115:3-27. [DOI: 10.1021/cr500330z] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ana R. C. Morais
- Unidade de Bioenergia, Laboratório Nacional de Energia e Geologia, I.P., Estrada do Paço
do Lumiar 22, 1649-038 Lisboa, Portugal
| | - Andre M. da Costa Lopes
- Unidade de Bioenergia, Laboratório Nacional de Energia e Geologia, I.P., Estrada do Paço
do Lumiar 22, 1649-038 Lisboa, Portugal
| | - Rafał Bogel-Łukasik
- Unidade de Bioenergia, Laboratório Nacional de Energia e Geologia, I.P., Estrada do Paço
do Lumiar 22, 1649-038 Lisboa, Portugal
| |
Collapse
|
21
|
Sabarez H, Oliver CM, Mawson R, Dumsday G, Singh T, Bitto N, McSweeney C, Augustin MA. Synergism between ultrasonic pretreatment and white rot fungal enzymes on biodegradation of wheat chaff. ULTRASONICS SONOCHEMISTRY 2014; 21:2084-2091. [PMID: 24713145 DOI: 10.1016/j.ultsonch.2014.03.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 03/13/2014] [Accepted: 03/15/2014] [Indexed: 06/03/2023]
Abstract
Lignocellulosic biomass samples (wheat chaff) were pretreated by ultrasound (US) (40kHz/0.5Wcm(-2)/10min and 400kHz/0.5Wcm(-2)/10min applied sequentially) prior to digestion by enzyme extracts obtained from fermentation of the biomass with white rot fungi (Phanerochaete chrysosporium or Trametes sp.). The accessibility of the cellulosic components in wheat chaff was increased, as demonstrated by the increased concentration of sugars produced by exposure to the ultrasound treatment prior to enzyme addition. Pretreatment with ultrasound increased the concentration of lignin degradation products (guaiacol and syringol) obtained from wheat chaff after enzyme addition. In vitro digestibility of wheat chaff was also enhanced by the ultrasonics pretreatment in combination with treatment with enzyme extracts. Degradation was enhanced with the use of a mixture of the enzyme extracts compared to that for a single enzyme extract.
Collapse
Affiliation(s)
- Henry Sabarez
- CSIRO Animal Food and Health Sciences, 671 Sneydes Road, Werribee, VIC 3030, Australia.
| | | | - Raymond Mawson
- CSIRO Animal Food and Health Sciences, 671 Sneydes Road, Werribee, VIC 3030, Australia
| | - Geoff Dumsday
- CSIRO Material Science and Engineering, Gate 5, Normanby Road, Clayton, VIC 3168, Australia
| | - Tanoj Singh
- CSIRO Animal Food and Health Sciences, 671 Sneydes Road, Werribee, VIC 3030, Australia
| | - Natalie Bitto
- CSIRO Material Science and Engineering, Gate 5, Normanby Road, Clayton, VIC 3168, Australia
| | - Chris McSweeney
- CSIRO Animal Food and Health Sciences, 671 Sneydes Road, Werribee, VIC 3030, Australia
| | - Mary Ann Augustin
- CSIRO Animal Food and Health Sciences, 671 Sneydes Road, Werribee, VIC 3030, Australia
| |
Collapse
|
22
|
Comparison of conventional and alternative technologies for the enzymatic hydrolysis of rice hulls to obtain fermentable sugars. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2014. [DOI: 10.1016/j.bcab.2014.07.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Enzymatic hydrolysis enhancement of corn lignocellulose by supercritical CO2 combined with ultrasound pretreatment. CHINESE JOURNAL OF CATALYSIS 2014. [DOI: 10.1016/s1872-2067(14)60040-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Reducing values: dinitrosalicylate gives over-oxidation and invalid results whereas copper bicinchoninate gives no over-oxidation and valid results. Carbohydr Res 2013; 380:118-23. [DOI: 10.1016/j.carres.2013.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 06/06/2013] [Accepted: 06/11/2013] [Indexed: 12/14/2022]
|
25
|
Gu T, Held MA, Faik A. Supercritical CO2 and ionic liquids for the pretreatment of lignocellulosic biomass in bioethanol production. ENVIRONMENTAL TECHNOLOGY 2013; 34:1735-49. [PMID: 24350431 DOI: 10.1080/09593330.2013.809777] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Owing to high petroleum prices, there has been a major push in recent years to use lignocellulosic biomass as biorefinery feedstocks. Unfortunately, by nature's design, lignocellulosic biomass is notoriously recalcitrant. Cellulose is the most abundant renewable carbon source on the planet and comprises glucan polysaccharides which self-assemble into paracrystalline microfibrils. The extent of cellulose crystallinity largely contributes to biomass recalcitrance. Additionally, cellulose microfibrils are embedded into both hemicellulose and lignin polymeric networks, making cellulose accessibility an additional obstacle. Pretreatment is necessary before enzymatic hydrolysis in order to liberate high yields of glucose and other fermentable sugars from biomass polysaccharides. This work discusses two pretreatment methods, supercritical CO2 and ionic liquids (ILs). Both methods utilize green solvents that do not emit toxic vapours. Mechanisms for destroying or weakening biomass recalcitrance have been explored. Various pretreatment operating parameters such as temperature, pressure, time, dry biomass/solvent ratio, water content, etc. have been investigated for the pretreatment of various biomass types such as corn stover, switchgrass, sugarcane bagasse, soft and hard wood. The two pretreatment methods have their pros and cons. For example, supercritical CO2 explosion pretreatment uses inexpensive CO2, but requires a high pressure. By comparison, while IL pretreatment does not require an elevated pressure, ILs are still too expensive for large-scale uses. Further research and development are needed to make the two green pretreatment methods practical.
Collapse
Affiliation(s)
- Tingyue Gu
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH 45701, USA.
| | - Michael A Held
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA
| | - Ahmed Faik
- Environmental and Plant Biology Department, Ohio University Athens, OH 45701, USA
| |
Collapse
|