1
|
Chen B, Wang F, Xie X, Liu H, Liu D, Ma L, Xiao G, Wang Q. Functional analysis of the dehydratase domains of the PUFA synthase from Emiliania huxleyi in Escherichia coli and Arabidopsis thaliana. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:123. [PMID: 36380342 PMCID: PMC9667614 DOI: 10.1186/s13068-022-02223-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Polyunsaturated fatty acid (PUFA) synthase is a multi-domain mega-enzyme that effectively synthesizes a series of PUFAs in marine microorganisms. The dehydratase (DH) domain of a PUFA synthase plays a crucial role in double bond positioning in fatty acids. Sequencing results of the coccolithophore Emiliania huxleyi (E. huxleyi, Eh) indicated that this species contains a PUFA synthase with multiple DH domains. Therefore, the current study, sought to define the functions of these DH domains (EhDHs), by cloning and overexpressing the genes encoding FabA-like EhDHs in Escherichia coli (E. coli) and Arabidopsis thaliana (A. thaliana). RESULTS A complementation test showed that the two FabA-like DH domains could restore DH function in a temperature-sensitive (Ts) mutant. Meanwhile, overexpression of FabA-like EhDH1 and EhDH2 domains increased the production of unsaturated fatty acids (UFAs) in recombinant E. coli by 43.5-32.9%, respectively. Site-directed mutagenesis analysis confirmed the authenticity of active-site residues in these domains. Moreover, the expression of tandem EhDH1-DH2 in A. thaliana altered the fatty acids content, seed weight, and germination rate. CONCLUSIONS The two FabA-like DH domains in the E. huxleyi PUFA synthase function as 3-hydroxyacyl-acyl carrier protein dehydratase in E. coli. The expression of these domains in E. coli and A. thaliana can alter the fatty acid profile in E. coli and increase the seed lipid content and germination rate in A. thaliana. Hence, introduction of DH domains controlling the dehydration process of fatty acid biosynthesis in plants might offer a new strategy to increase oil production in oilseed plants.
Collapse
Affiliation(s)
- Bihan Chen
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Feng Wang
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xi Xie
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China.
| | - Huifan Liu
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Dongjie Liu
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Lukai Ma
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Gengsheng Xiao
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Qin Wang
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
2
|
Man Y, Zhang Y, Jiang J, Zhao Q, Ren L. Identification dehydratase domains from Schizochytrium sp. and Shewanella sp. and distinct functions in biosynthesis of fatty acids. Bioprocess Biosyst Eng 2021; 45:107-115. [PMID: 34601618 DOI: 10.1007/s00449-021-02644-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/23/2021] [Indexed: 11/29/2022]
Abstract
Polyunsaturated fatty acid (PUFA) synthase is a special and effective enzyme for PUFA synthesis, and dehydratase (DH) domain played a crucial role in it. In this work, we compared four different DH domains from different strains (Schizochytrium sp. HX-308 and Shewanella sp. BR-2) and different gene clusters. First bioinformatics analysis showed that DH1, 2 and DH3 were similar to FabA and PKS-DH, respectively, and all of them got a hot-dog structure. Second, four DH domains were expressed in Escherichia coli that increased biomass. Especially, Schi-DH1,2 presented the highest dry cell weight of 2.3 g/L which was 1.62 times of that of control. Fatty acids profile analysis showed that DH1,2 could enhance the percentage of unsaturated fatty acids, especially DH1,2 from Schizochytrium sp., while DH3 benefited for the saturated fatty acid biosynthesis. Furthermore, five kinds of fatty acids were added to the medium to study the substrate preferences. Results revealed that DH1,2 domain preferred to acting on C16:0, while DH3 domain trended acting on C14:0 and C15:0, which illustrated DH from different clusters do have specific substrate preference. Besides, DH expression could save the cell growth inhibition by mid-chain fatty acids. This study provided more information about the catalysis mechanism of polyunsaturated fatty acid synthase and might promote the modification study based on this enzyme.
Collapse
Affiliation(s)
- Yanli Man
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China.,School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Yuting Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China.,School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Jiayi Jiang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China.,School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Quanyu Zhao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China.,School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Lujing Ren
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China. .,School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China.
| |
Collapse
|
3
|
Xie X, Sun K, Meesapyodsuk D, Miao Y, Qiu X. Distinct functions of two FabA-like dehydratase domains of polyunsaturated fatty acid synthase in the biosynthesis of very long-chain polyunsaturated fatty acids. Environ Microbiol 2020; 22:3772-3783. [PMID: 32618113 DOI: 10.1111/1462-2920.15149] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/06/2020] [Accepted: 06/29/2020] [Indexed: 11/29/2022]
Abstract
Thraustochytrium is a unicellular marine protist for the commercial production of very long-chain polyunsaturated fatty acids (VLCPUFAs). Biosynthesis of these VLCPUFAs in the protist is catalysed by a PUFA synthase comprising three subunits, each with multiple catalytic domains. Among these domains, two tandem FabA-like dehydratase domains (DH1 and DH2) in subunit-C together are responsible for introducing double bonds in VLCPUFAs. Domain swapping analysis in yeast showed that the defective phenotype of a Scfas1 mutant could be complemented by expressing an engineered ScFAS1 gene in which the DH domain was replaced by a single DH1 or mutated DH2 of the two. Heterologous expression of the PUFA synthase in E. coli showed that the mutation of DH1 of the two or deletion of DH1 or substitution of DH1 with DH2 resulted in the complete loss of activity in the biosynthesis of VLCPUFAs. Mutation of DH2 of the two or deletion of the DH2 domain produced a small amount of DPA, but not docosahexaenoic acid (DHA). These results indicate that each of the two FabA-like domains of the PUFA synthase possesses distinct function. DH1 domain is essential for the biosynthesis of VLCPUFAs, but DH2 domain is required for the biosynthesis of DHA.
Collapse
Affiliation(s)
- Xi Xie
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5A8, Canada.,College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Kaiwen Sun
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5A8, Canada
| | - Dauenpen Meesapyodsuk
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5A8, Canada.,National Research Council of Canada, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Yu Miao
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5A8, Canada
| | - Xiao Qiu
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5A8, Canada
| |
Collapse
|
4
|
Molecular mechanisms for biosynthesis and assembly of nutritionally important very long chain polyunsaturated fatty acids in microorganisms. Prog Lipid Res 2020; 79:101047. [DOI: 10.1016/j.plipres.2020.101047] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/29/2020] [Accepted: 06/09/2020] [Indexed: 12/23/2022]
|
5
|
Cloning of the pks3 gene of Aurantiochytrium limacinum and functional study of the 3-ketoacyl-ACP reductase and dehydratase enzyme domains. PLoS One 2018; 13:e0208853. [PMID: 30533058 PMCID: PMC6289434 DOI: 10.1371/journal.pone.0208853] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/24/2018] [Indexed: 12/19/2022] Open
Abstract
Aurantiochytrium limacinum has received attention because of its abundance of polyunsaturated fatty acids (PUFAs), particularly docosahexaenoic acid (DHA). DHA is synthesized through the polyketide synthase (PKS) pathway in A. limacinum. The related enzymes of the PKS pathway are mainly expressed by three gene clusters, called pks1, pks2 and pks3. In this study, the full-length pks3 gene was obtained by polymerase chain reaction amplification and Genome Walking technology. Based on a domain analysis of the deduced amino acid sequence of the pks3 gene, 3-ketoacyl-ACP reductase (KR) and dehydratase (DH) enzyme domains were identified. Herein, A. limacinum OUC168 was engineered by gene knock-in of KR and DH using the 18S rDNA sequence as the homologous recombination site. Total fatty acid contents and the degree of unsaturation of total fatty acids increased after the kr or dh gene was knocked in. The cloning and functional study of the pks3 gene of A. limacinum establishes a foundation for revealing the DHA synthetic pathway. Gene knock-in of the enzyme domain associated with PKS synthesis has the potential to provide effective recombinant strains with higher DHA content for industrial applications.
Collapse
|
6
|
Allemann MN, Allen EE. Characterization and Application of Marine Microbial Omega-3 Polyunsaturated Fatty Acid Synthesis. Methods Enzymol 2018; 605:3-32. [DOI: 10.1016/bs.mie.2018.02.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
Chaudhary N, Gupta A, Gupta S, Sharma VK. BioFuelDB: a database and prediction server of enzymes involved in biofuels production. PeerJ 2017; 5:e3497. [PMID: 28875065 PMCID: PMC5578369 DOI: 10.7717/peerj.3497] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/02/2017] [Indexed: 01/06/2023] Open
Abstract
Background In light of the rapid decrease in fossils fuel reserves and an increasing demand for energy, novel methods are required to explore alternative biofuel production processes to alleviate these pressures. A wide variety of molecules which can either be used as biofuels or as biofuel precursors are produced using microbial enzymes. However, the common challenges in the industrial implementation of enzyme catalysis for biofuel production are the unavailability of a comprehensive biofuel enzyme resource, low efficiency of known enzymes, and limited availability of enzymes which can function under extreme conditions in the industrial processes. Methods We have developed a comprehensive database of known enzymes with proven or potential applications in biofuel production through text mining of PubMed abstracts and other publicly available information. A total of 131 enzymes with a role in biofuel production were identified and classified into six enzyme classes and four broad application categories namely ‘Alcohol production’, ‘Biodiesel production’, ‘Fuel Cell’ and ‘Alternate biofuels’. A prediction tool ‘Benz’ was developed to identify and classify novel homologues of the known biofuel enzyme sequences from sequenced genomes and metagenomes. ‘Benz’ employs a hybrid approach incorporating HMMER 3.0 and RAPSearch2 programs to provide high accuracy and high speed for prediction. Results Using the Benz tool, 153,754 novel homologues of biofuel enzymes were identified from 23 diverse metagenomic sources. The comprehensive data of curated biofuel enzymes, their novel homologs identified from diverse metagenomes, and the hybrid prediction tool Benz are presented as a web server which can be used for the prediction of biofuel enzymes from genomic and metagenomic datasets. The database and the Benz tool is publicly available at http://metabiosys.iiserb.ac.in/biofueldb& http://metagenomics.iiserb.ac.in/biofueldb.
Collapse
Affiliation(s)
- Nikhil Chaudhary
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh, India
| | - Ankit Gupta
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh, India
| | - Sudheer Gupta
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh, India
| | - Vineet K Sharma
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh, India
| |
Collapse
|
8
|
Yoshida K, Hashimoto M, Hori R, Adachi T, Okuyama H, Orikasa Y, Nagamine T, Shimizu S, Ueno A, Morita N. Bacterial Long-Chain Polyunsaturated Fatty Acids: Their Biosynthetic Genes, Functions, and Practical Use. Mar Drugs 2016; 14:E94. [PMID: 27187420 PMCID: PMC4882568 DOI: 10.3390/md14050094] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 04/23/2016] [Accepted: 04/29/2016] [Indexed: 02/06/2023] Open
Abstract
The nutritional and pharmaceutical values of long-chain polyunsaturated fatty acids (LC-PUFAs) such as arachidonic, eicosapentaenoic and docosahexaenoic acids have been well recognized. These LC-PUFAs are physiologically important compounds in bacteria and eukaryotes. Although little is known about the biosynthetic mechanisms and functions of LC-PUFAs in bacteria compared to those in higher organisms, a combination of genetic, bioinformatic, and molecular biological approaches to LC-PUFA-producing bacteria and some eukaryotes have revealed the notably diverse organization of the pfa genes encoding a polyunsaturated fatty acid synthase complex (PUFA synthase), the LC-PUFA biosynthetic processes, and tertiary structures of the domains of this enzyme. In bacteria, LC-PUFAs appear to take part in specific functions facilitating individual membrane proteins rather than in the adjustment of the physical fluidity of the whole cell membrane. Very long chain polyunsaturated hydrocarbons (LC-HCs) such as hentriacontanonaene are considered to be closely related to LC-PUFAs in their biosynthesis and function. The possible role of LC-HCs in strictly anaerobic bacteria under aerobic and anaerobic environments and the evolutionary relationships of anaerobic and aerobic bacteria carrying pfa-like genes are also discussed.
Collapse
Affiliation(s)
- Kiyohito Yoshida
- Laboratory of Ecological Genetics, Section of Environmental Biology, Faculty of Environmental Earth Science, Hokkaido University, Kita-ku, Sapporo, Hokkaido 060-0810, Japan.
| | - Mikako Hashimoto
- Course in Ecological Genetics, Division of Biosphere Science, Graduate School of Environmental Science, Hokkaido University, Kita-ku, Sapporo, Hokkaido 060-0810, Japan.
| | - Ryuji Hori
- Technical Solution Center First Group, J-OIL MILLS, Inc., Chuo-ku, Tokyo 104-0044, Japan.
| | - Takumi Adachi
- Laboratory of Environmental Microbiology, Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Kita-ku, Sapporo, Hokkaido 060-8589, Japan.
- Bioproduction Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Toyohira-ku, Sapporo, Hokkaido 062-8517, Japan.
| | - Hidetoshi Okuyama
- Laboratory of Environmental Molecular Biology, Section of Environmental Biology, Faculty of Environmental Earth Science, Hokkaido University, Kita-ku, Sapporo, Hokkaido 060-0810, Japan.
| | - Yoshitake Orikasa
- Department Food Science, Obihiro University Agriculture Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan.
| | - Tadashi Nagamine
- ROM Co. Ltd., Togashi Bld., Chuo-ku, Sapporo, Hokkaido 060-0062, Japan.
| | - Satoru Shimizu
- Horonobe Research Institute for the Subsurface Environment, Northern Advancement Centre for Science and Technology, 5-3, Sakae-machi, Horonobe, Teshio-gun, Hokkaido 098-3221, Japan.
| | - Akio Ueno
- Horonobe Research Institute for the Subsurface Environment, Northern Advancement Centre for Science and Technology, 5-3, Sakae-machi, Horonobe, Teshio-gun, Hokkaido 098-3221, Japan.
| | - Naoki Morita
- Laboratory of Environmental Microbiology, Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Kita-ku, Sapporo, Hokkaido 060-8589, Japan.
- Bioproduction Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Toyohira-ku, Sapporo, Hokkaido 062-8517, Japan.
| |
Collapse
|
9
|
Production of FAME biodiesel in E. coli by direct methylation with an insect enzyme. Sci Rep 2016; 6:24239. [PMID: 27053100 PMCID: PMC4823748 DOI: 10.1038/srep24239] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 03/23/2016] [Indexed: 12/13/2022] Open
Abstract
Most biodiesel currently in use consists of fatty acid methyl esters (FAMEs) produced by transesterification of plant oils with methanol. To reduce competition with food supplies, it would be desirable to directly produce biodiesel in microorganisms. To date, the most effective pathway for the production of biodiesel in bacteria yields fatty acid ethyl esters (FAEEs) at up to ~1.5 g/L. A much simpler route to biodiesel produces FAMEs by direct S-adenosyl-L-methionine (SAM) dependent methylation of free fatty acids, but FAME production by this route has been limited to only ~16 mg/L. Here we employ an alternative, broad spectrum methyltransferase, Drosophila melanogaster Juvenile Hormone Acid O-Methyltransferase (DmJHAMT). By introducing DmJHAMT in E. coli engineered to produce medium chain fatty acids and overproduce SAM, we obtain medium chain FAMEs at titers of 0.56 g/L, a 35-fold increase over titers previously achieved. Although considerable improvements will be needed for viable bacterial production of FAMEs and FAEEs for biofuels, it may be easier to optimize and transport the FAME production pathway to other microorganisms because it involves fewer enzymes.
Collapse
|
10
|
Yang YX, Qian ZG, Zhong JJ, Xia XX. Hyper-production of large proteins of spider dragline silk MaSp2 by Escherichia coli via synthetic biology approach. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|