1
|
Bakar B, Akbulut M, Ulusal F, Ulu A, Özdemir N, Ateş B. Horseradish Peroxidase Immobilized onto Mesoporous Magnetic Hybrid Nanoflowers for Enzymatic Decolorization of Textile Dyes: A Highly Robust Bioreactor and Boosted Enzyme Stability. ACS OMEGA 2024; 9:24558-24573. [PMID: 38882139 PMCID: PMC11170722 DOI: 10.1021/acsomega.4c00703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024]
Abstract
Recently, hybrid nanoflowers (hNFs), which are accepted as popular carrier supports in the development of enzyme immobilization strategies, have attracted much attention. In this study, the horseradish peroxidase (HRP) was immobilized to mesoporous magnetic Fe3O4-NH2 by forming Schiff base compounds and the HRP@Fe3O4-NH2/hNFs were then synthesized. Under optimal conditions, 95.0% of the available HRP was immobilized on the Fe3O4-NH2/hNFs. Structural morphology and characterization of synthesized HRP@Fe3O4-NH2/hNFs were investigated. The results demonstrated that the average size of HRP@Fe3O4-NH2/hNFs was determined to be around 220 nm. The ζ-potential and magnetic saturation values of HRP@Fe3O4-NH2/hNFs were -33.58 mV and ∼30 emu/g, respectively. Additionally, the optimum pH, optimum temperature, thermal stability, kinetic parameters, reusability, and storage stability were examined. It was observed that the optimum pH value shifted from 5.0 to pH 8.0 after immobilization, while the optimum temperature shifted from 30 to 80 °C. K m values were calculated to be 15.5502 and 7.6707 mM for free HRP and the HRP@Fe3O4-NH2/hNFs, respectively, and V max values were calculated to be 0.0701 and 0.0038 mM min-1. The low K m value observed after immobilization indicated that the affinity of HRP for its substrate increased. The HRP@Fe3O4-NH2/hNFs showed higher thermal stability than free HRP, and its residual activity after six usage cycles was approximately 45%. While free HRP lost all of its activity within 120 min at 65 °C, the HRP@Fe3O4-NH2/hNFs retained almost all of its activity during the 6 h incubation period at 80 °C. Most importantly, the HRP@Fe3O4-NH2/hNFs demonstrated good potential efficiency for the biodegradation of methyl orange, phenol red, and methylene blue dyes. The HRP@Fe3O4-NH2/hNFs were used for a total of 8 cycles to degrade methyl orange, phenol red, and methylene blue, and degradation of around 81, 96, and 56% was obtained in 8 h, respectively. Overall, we believe that the HRP@Fe3O4-NH2/hNFs reported in this work can be potentially used in various industrial and environmental applications, particularly for the biodegradation of recalcitrant compounds, such as textile dyes.
Collapse
Affiliation(s)
- Büşra Bakar
- Biochemistry and Biomaterials Research Laboratory, Department of Chemistry, Faculty of Arts and Science, İnönü University, 44280 Malatya, Türkiye
| | - Mustafa Akbulut
- Department of Chemistry, Faculty of Science, Erciyes University, 38280 Kayseri, Türkiye
| | - Fatma Ulusal
- Department of Chemistry and Chemical Process Technologies, Vocational School of Technical Sciences, Tarsus University, 33400, Mersin, Türkiye
| | - Ahmet Ulu
- Biochemistry and Biomaterials Research Laboratory, Department of Chemistry, Faculty of Arts and Science, İnönü University, 44280 Malatya, Türkiye
| | - Nalan Özdemir
- Department of Chemistry, Faculty of Science, Erciyes University, 38280 Kayseri, Türkiye
| | - Burhan Ateş
- Biochemistry and Biomaterials Research Laboratory, Department of Chemistry, Faculty of Arts and Science, İnönü University, 44280 Malatya, Türkiye
| |
Collapse
|
2
|
Aziz I, Sigurdardóttir SB, Lehmann J, Nambi A, Zhang W, Pinelo M, Kaiser A. Electrospun aluminum silicate nanofibers as novel support material for immobilization of alcohol dehydrogenase. NANOTECHNOLOGY 2022; 33:435601. [PMID: 35835080 DOI: 10.1088/1361-6528/ac810a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Ceramic materials with high surface area, large and open porosity are considered excellent supports for enzyme immobilization owing to their stability and reusability. The present study reports the electrospinning of aluminum silicate nanofiber supports from sol-gel precursors, the impact of different fabrication parameters on the microstructure of the nanofibers and their performance in enzyme immobilization. A change in nanofiber diameter and pore size of the aluminum silicate nanofibers was observed upon varying specific processing parameters, such as the sol-composition (precursor and polymer concentration), the electrospinning parameters and the subsequent heat treatment (calcination temperature). The enzyme, alcohol dehydrogenase (ADH), was immobilized on the aluminum silicate nanofibers by physical adsorption and covalent bonding. Activity retention of 17% and 42% was obtained after 12 d of storage and repeated reaction cycles for physically adsorbed and covalently bonded ADH, respectively. Overall, the immobilization of ADH on aluminum silicate nanofibers resulted in high enzyme loading and activity retention. However, as compared to covalent immobilization, a marked decrease in the enzyme activity during storage for physically adsorbed enzymes was observed, which was ascribed to leakage of the enzymes from the nanofibers. Such fibers can improve enzyme stability and promote a higher residual activity of the immobilized enzyme as compared to the free enzyme. The results shown in this study thus suggest that aluminum silicate nanofibers, with their high surface area, are promising support materials for the immobilization of enzymes.
Collapse
Affiliation(s)
- Iram Aziz
- Department of Environmental Engineering, Technical University of Denmark, Building 115, Bygningstorvet, DK 2800 Kongens Lyngby, Denmark
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| | - Sigyn Björk Sigurdardóttir
- Department of Chemical and Biochemical Engineering, Process and Systems Engineering Center (PROSYS), Technical University of Denmark, Søltofts Plads, Building 229, DK 2800 Kongens, Lyngby, Denmark
| | - Jonas Lehmann
- Department of Energy Conversion and Storage, Technical University of Denmark, Anker Engelunds Vej 301, DK 2800 Kongens Lyngby, Denmark
| | - Ashwin Nambi
- Department of Energy Conversion and Storage, Technical University of Denmark, Anker Engelunds Vej 301, DK 2800 Kongens Lyngby, Denmark
| | - Wenjing Zhang
- Department of Environmental Engineering, Technical University of Denmark, Building 115, Bygningstorvet, DK 2800 Kongens Lyngby, Denmark
| | - Manuel Pinelo
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| | - Andreas Kaiser
- Department of Energy Conversion and Storage, Technical University of Denmark, Anker Engelunds Vej 301, DK 2800 Kongens Lyngby, Denmark
| |
Collapse
|
3
|
Bej S, Ghosh M, Das R, Banerjee P. Evaluation of nanomaterials-grafted enzymes for application in contaminants degradation: Need of the hour with proposed IoT synchronized nanosensor fit sustainable clean water technology in en masse. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
4
|
Sharma A, Vázquez LAB, Hernández EOM, Becerril MYM, Oza G, Ahmed SSSJ, Ramalingam S, Iqbal HMN. Green remediation potential of immobilized oxidoreductases to treat halo-organic pollutants persist in wastewater and soil matrices - A way forward. CHEMOSPHERE 2022; 290:133305. [PMID: 34929272 DOI: 10.1016/j.chemosphere.2021.133305] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/11/2021] [Accepted: 12/12/2021] [Indexed: 02/08/2023]
Abstract
The alarming presence of hazardous halo-organic pollutants in wastewater and soils generated by industrial growth, pharmaceutical and agricultural activities is a major environmental concern that has drawn the attention of scientists. Unfortunately, the application of conventional technologies within hazardous materials remediation processes has radically failed due to their high cost and ineffectiveness. Consequently, the design of innovative and sustainable techniques to remove halo-organic contaminants from wastewater and soils is crucial. Altogether, these aspects have led to the search for safe and efficient alternatives for the treatment of contaminated matrices. In fact, over the last decades, the efficacy of immobilized oxidoreductases has been explored to achieve the removal of halo-organic pollutants from diverse tainted media. Several reports have indicated that these enzymatic constructs possess unique properties, such as high removal rates, improved stability, and excellent reusability, making them promising candidates for green remediation processes. Hence, in this current review, we present an insight of green remediation approaches based on the use of immobilized constructs of phenoloxidases (e.g., laccase and tyrosinase) and peroxidases (e.g., horseradish peroxidase, chloroperoxidase, and manganese peroxidase) for sustainable decontamination of wastewater and soil matrices from halo-organic pollutants, including 2,4-dichlorophenol, 4-chlorophenol, diclofenac, 2-chlorophenol, 2,4,6-trichlorophenol, among others.
Collapse
Affiliation(s)
- Ashutosh Sharma
- Tecnologico de Monterrey, School of Engineering and Sciences, Centre of Bioengineering, Campus Queretaro, 76130, Mexico.
| | - Luis Alberto Bravo Vázquez
- Tecnologico de Monterrey, School of Engineering and Sciences, Centre of Bioengineering, Campus Queretaro, 76130, Mexico
| | | | | | - Goldie Oza
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica (CIDETEQ), Parque Tecnológico Querétaro S/n, Sanfandila. Pedro Escobedo, Querétaro, 76703, Mexico
| | - Shiek S S J Ahmed
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Sathishkumar Ramalingam
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
5
|
Kujawa J, Głodek M, Li G, Al-Gharabli S, Knozowska K, Kujawski W. Highly effective enzymes immobilization on ceramics: Requirements for supports and enzymes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149647. [PMID: 34467928 DOI: 10.1016/j.scitotenv.2021.149647] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/27/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Enzyme immobilization is a well-known method for the improvement of enzyme reusability and stability. To achieve very high effectiveness of the enzyme immobilization, not only does the method of attachment need to be optimized, but the appropriate support must be chosen. The essential necessities addressed to the support applied for enzyme immobilization can be focused on the material features as well as on the stability and resistances in certain conditions. Ceramic membranes and nanoparticles are the most widespread supports for enzyme immobilization. Hence, the immobilization of enzymes on ceramic membrane and nanoparticles are summarized and discussed. The important properties of the supports are particle size, pore structure, active surface area, volume to surface ratio, type and number of reactive available groups, as well as thermal, mechanical, and chemical stability. The modifiers and the crosslinkers are crucial to the enzyme loading amount, the chemical and physical stability, and the reusability and catalytical activity of the immobilized enzymes. Therefore, the chemical and physical methods of modification of ceramic materials are presented. The most popular and used modifiers (e.g. APTES, CPTES, VTES) as well as activating agents (GA, gelatin, EDC and/or NHS) applied to the grafting process are discussed. Moreover, functional groups of enzymes are presented and discussed since they play important roles in the enzyme immobilization via covalent bonding. The enhanced physical, chemical, and catalytical properties of immobilized enzymes are discussed revealing the positive balance between the effectiveness of the immobilization process, preservation of high enzyme activity, its good stability, and relatively low cost.
Collapse
Affiliation(s)
- Joanna Kujawa
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina Street, 87-100 Toruń, Poland
| | - Marta Głodek
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina Street, 87-100 Toruń, Poland
| | - Guoqiang Li
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina Street, 87-100 Toruń, Poland
| | - Samer Al-Gharabli
- Pharmaceutical and Chemical Engineering Department, German-Jordanian University, Amman 11180, Jordan
| | - Katarzyna Knozowska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina Street, 87-100 Toruń, Poland
| | - Wojciech Kujawski
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina Street, 87-100 Toruń, Poland.
| |
Collapse
|
6
|
Wang Y, Li B, Li Y, Chen X. Research progress on enhancing the performance of autotrophic nitrogen removal systems using microbial immobilization technology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145136. [PMID: 33609842 DOI: 10.1016/j.scitotenv.2021.145136] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
The autotrophic nitrogen removal process has great potential to be applied to the biological removal of nitrogen from wastewater, but its application is hindered by its unstable operation under adverse environmental conditions, such as those presented by low temperatures, high organic matter concentrations, or the presence of toxic substances. Granules and microbial entrapment technology can effectively retain and enrich microbial assemblages in reactors to improve operating efficiency and reactor stability. The carriers can also protect the reactor's internal microorganisms from interference from the external environment. This article critically reviews the existing literature on autotrophic nitrogen removal systems using immobilization technology. We focus our discussion on the natural aggregation process (granulation) and entrapment technology. The selection of carrier materials and entrapment methods are identified and described in detail and the mechanisms through which entrapment technology protects microorganisms are analyzed. This review will provide a better understanding of the mechanisms through which immobilization operates and the prospects for immobilization technology to be applied in autotrophic nitrogen removal systems.
Collapse
Affiliation(s)
- Yue Wang
- School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Bolin Li
- School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China.
| | - Ye Li
- School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Xiaoguo Chen
- School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China
| |
Collapse
|
7
|
El-Naggar ME, Abdel-Aty AM, Wassel AR, Elaraby NM, Mohamed SA. Immobilization of horseradish peroxidase on cationic microporous starch: Physico-bio-chemical characterization and removal of phenolic compounds. Int J Biol Macromol 2021; 181:734-742. [PMID: 33811934 DOI: 10.1016/j.ijbiomac.2021.03.171] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/19/2022]
Abstract
In the present study, two different modified starches; microporous starch (MPS) and cationic microporous starch (CMPS) were synthesized. The granules of MPS that distributed regularly were destroyed after the etherification reaction. The data depicted that the immobilization of horseradish peroxidase (HRP) on CMPS revealed highest immobilization efficiency (86%) at 100 mg of CMPS at pH = 6.0 and 100 units of enzyme. After 10 reuses of the CMPS-HRP, it retained 66% of initial activity. The soluble HRP showed broad pH optimum of 6.0-7.0, which changed to sharp pH = 6.0 for CMPS-HRP. Soluble-HRP and CMPS-HRP showed temperature optima at 30 °C and 40 °C, respectively. The CMPS-HRP showed high thermal stability up to 50 °C compared to the soluble HRP (40 °C). The Km values of soluble HRP and CMPS-HRP were 6.6 and 10.8 mM for H2O2 and 34 and 41.6 mM for guaiacol, respectively. CMPS-HRP showed higher affinity toward various substrates than the soluble-HRP. CMPS-HRP showed more resistance against heavy metals, urea, isopropanol, Triton X-100 and trypsin than soluble enzyme. The CMPS-HRP showed higher ability to remove phenol and p-chlorophenol compared to soluble-HRP.
Collapse
Affiliation(s)
- Mehrez E El-Naggar
- Textile Research Division, National Research Centre, 33 El Bohouth St., P.O. 12622, Dokki, Giza, Egypt.
| | - Azza M Abdel-Aty
- Molecular Biology Department, National Research Centre, 33 El Bohouth St., P.O. 12622, Dokki, Giza, Egypt
| | - Ahmed R Wassel
- Electron Microscope and Thin Films Department, Physics Research Division, National Research Centre, 33 El Bohouth St., P.O. 12622, Dokki, Giza, Egypt
| | - Nesma M Elaraby
- Medical Molecular Genetics Department, Human Genetics & Genome Research Division, National Research Centre, 33 El Bohouth St., P.O. 12622, Dokki, Giza, Egypt
| | - Saleh A Mohamed
- Molecular Biology Department, National Research Centre, 33 El Bohouth St., P.O. 12622, Dokki, Giza, Egypt
| |
Collapse
|
8
|
Jankowska K, Zdarta J, Grzywaczyk A, Degórska O, Kijeńska-Gawrońska E, Pinelo M, Jesionowski T. Horseradish peroxidase immobilised onto electrospun fibres and its application in decolourisation of dyes from model sea water. Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.11.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
9
|
Aggarwal S, Chakravarty A, Ikram S. A comprehensive review on incredible renewable carriers as promising platforms for enzyme immobilization & thereof strategies. Int J Biol Macromol 2020; 167:962-986. [PMID: 33186644 DOI: 10.1016/j.ijbiomac.2020.11.052] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/07/2020] [Accepted: 11/08/2020] [Indexed: 02/05/2023]
Abstract
Enzymes are the highly versatile bio-catalysts having the potential for being employed in biotechnological and industrial sectors to catalyze biosynthetic reactions over a commercial point of view. Immobilization of enzymes has improved catalytic properties, retention activities, thermal and storage stabilities as well as reusabilities of enzymes in synthetic environments that have enthralled significant attention over the past few years. Dreadful efforts have been emphasized on the renewable and synthetic supports/composite materials to reserve their inherent characteristics such as biocompatibility, non-toxicity, accessibility of numerous reactive sites for profitable immobilization of biological molecules that often serve diverse applications in the pharmaceutical, environmental, and energy sectors. Supports should be endowed with unique physicochemical properties including high specific surface area, hydrophobicity, hydrophilicity, enantioselectivities, multivalent functionalization which professed them as competent carriers for enzyme immobilization. Organic, inorganic, and nano-based platforms are more potent, stable, highly recovered even after used for continuous catalytic processes, broadly renders the enzymes to get efficiently immobilized to develop an inherent bio-catalytic system that displays higher activities as compared to free-counter parts. This review highlights the recent advances or developments on renewable and synthetic matrices that are utilized for the immobilization of enzymes to deliver emerging applications around the globe.
Collapse
Affiliation(s)
- Shalu Aggarwal
- Bio/Polymers Research Laboratory, Department of Chemistry, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Archana Chakravarty
- Bio/Polymers Research Laboratory, Department of Chemistry, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Saiqa Ikram
- Bio/Polymers Research Laboratory, Department of Chemistry, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
10
|
Nanocapsulation of horseradish peroxidase (HRP) enhances enzymatic performance in removing phenolic compounds. Int J Biol Macromol 2020; 150:814-822. [DOI: 10.1016/j.ijbiomac.2020.02.043] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/29/2020] [Accepted: 02/05/2020] [Indexed: 12/13/2022]
|
11
|
Šekuljica NŽ, Jovanović JR, Jakovetić Tanasković SM, Ognjanović ND, Gazikalović IV, Knežević‐Jugović ZD, Mijin DŽ. Immobilization of horseradish peroxidase onto Purolite®
A109
and its anthraquinone dye biodegradation and detoxification potential. Biotechnol Prog 2020; 36:e2991. [DOI: 10.1002/btpr.2991] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 01/16/2020] [Accepted: 03/04/2020] [Indexed: 01/29/2023]
Affiliation(s)
- Nataša Ž. Šekuljica
- Innovation Center, Faculty of Technology and MetallurgyUniversity of Belgrade Belgrade Serbia
| | | | | | | | - Ivana V. Gazikalović
- Innovation Center, Faculty of Technology and MetallurgyUniversity of Belgrade Belgrade Serbia
| | | | - Dušan Ž. Mijin
- Faculty of Technology and MetallurgyUniversity of Belgrade Belgrade Serbia
| |
Collapse
|
12
|
Shakerian F, Zhao J, Li SP. Recent development in the application of immobilized oxidative enzymes for bioremediation of hazardous micropollutants - A review. CHEMOSPHERE 2020; 239:124716. [PMID: 31521938 DOI: 10.1016/j.chemosphere.2019.124716] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/11/2019] [Accepted: 08/29/2019] [Indexed: 05/05/2023]
Abstract
During the past several years, abundant progresses has been made in the development of immobilized oxidative enzymes with focus on finding new support materials, improving the immobilization methods and their applications. Nowadays, immobilized oxidative enzymes are broadly accepted as a green way to face the challenge of high amounts of micropollutants in nature. Among all oxidative enzymes, laccases and horseradish peroxidase were used frequently in recent years as they are general oxidative enzymes with ability to oxidize various types of compounds. Immobilized laccase or horseradish peroxidase are showed better stability, and reusability as well as easy separation from reaction mixture that make them more favorable and economic in compared to free enzymes. However, additional improvements are still essential such as: development of the new materials for immobilization with higher capacity, easy preparation, and cheaper price. Moreover, immobilization methods are still need improving to become more efficient and avoid enzyme wasting during immobilization and enzyme leakage through working cycles.
Collapse
Affiliation(s)
- Farid Shakerian
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Jing Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| | - Shao-Ping Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| |
Collapse
|
13
|
Almulaiky YQ, El-Shishtawy RM, Aldhahri M, Mohamed SA, Afifi M, Abdulaal WH, Mahyoub JA. Amidrazone modified acrylic fabric activated with cyanuric chloride: A novel and efficient support for horseradish peroxidase immobilization and phenol removal. Int J Biol Macromol 2019; 140:949-958. [PMID: 31445147 DOI: 10.1016/j.ijbiomac.2019.08.179] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 12/20/2022]
Abstract
In this study, hydrazine treated acrylic fabrics (polyacrylonitrile, PAN) activated with cyanuric chloride was developed as supporting material for horseradish peroxidase (HRP) immobilization. The immobilization of HRP onto the modified supporting material was achieved after being end-over-end incubated for 12 h. Field emission scanning electron microscopy and Fourier-transform infrared spectroscopy techniques were used to confirm the successful immobilization. Reusability experiment was performed to estimate the ability of the immobilized HRP to recover the reaction medium, in which it was observed to retain 78% of its original activity after 10 cycles. Relative to the soluble HRP, the optimum pH and temperature for the immobilized HRP were shifted to 7-7.5 and 50 °C, respectively. The kinetic parameters of guaiacol and H2O2 for the immobilized HRP were determined to be Km/Vmax = 57.61, 11.35 and Kcat/Km = 1.87, 1.86, respectively, while the values for the free form were Km/Vmax = 41.49, 6.23 and Kcat/Km = 1.87, 1.86, respectively. Compared to the soluble form, the immobilized HRP exhibited higher resistance toward metal ions and some organic solvents. For an application perspective. The immobilization of HRP using this procedure has the potential to be used for industrial application and wastewater treatment.
Collapse
Affiliation(s)
- Yaaser Q Almulaiky
- Chemistry Department, Faculty of Sciences and Arts, University of Jeddah, Khulais, P.O. Box 355, Khulais 21921, Saudi Arabia; Chemistry Department, Faculty of Applied Science, Taiz University, Taiz, Yemen.
| | - Reda M El-Shishtawy
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, P. O. Box 80200, Jeddah 21589, Saudi Arabia; Dyeing, Printing and Textile Auxiliaries Department, Textile Research Division, National Research Center, Dokki, 71516, Cairo, Egypt
| | - Musab Aldhahri
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, P. O. Box 80200, Jeddah 21589, Saudi Arabia; Center of Nanotechnology, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Saleh A Mohamed
- Molecular Biology Department, National Research Centre, Cairo, Egypt
| | - Mohamed Afifi
- Department of Biochemistry, Faculty of Science, University of Jeddah, P.O. Box 80203, Jeddah 21589, Saudi Arabia; Biochemistry Department, Faculty of Veterinary Medicine, Zagazig University, Egypt
| | - Wesam H Abdulaal
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, P. O. Box 80200, Jeddah 21589, Saudi Arabia
| | - Jazem A Mahyoub
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| |
Collapse
|
14
|
Correa S, Puertas S, Gutiérrez L, Asín L, Martínez de la Fuente J, Grazú V, Betancor L. Design of stable magnetic hybrid nanoparticles of Si-entrapped HRP. PLoS One 2019; 14:e0214004. [PMID: 30933987 PMCID: PMC6443235 DOI: 10.1371/journal.pone.0214004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/05/2019] [Indexed: 12/17/2022] Open
Abstract
Hybrid and composite nanoparticles represent an attractive material for enzyme integration due to possible synergic advantages of the structural builders in the properties of the nanobiocatalyst. In this study, we report the synthesis of a new stable hybrid nanobiocatalyst formed by biomimetic silica (Si) nanoparticles entrapping both Horseradish Peroxidase (HRP) (EC 1.11.1.7) and magnetic nanoparticles (MNPs). We have demonstrated that tailoring of the synthetic reagents and post immobilization treatments greatly impacted physical and biocatalytic properties such as an unprecedented ~280 times increase in the half-life time in thermal stability experiments. The optimized nanohybrid biocatalyst that showed superparamagnetic behaviour, was effective in the batch conversion of indole-3-acetic acid, a prodrug used in Direct Enzyme Prodrug Therapy (DEPT). Our system, that was not cytotoxic per se, showed enhanced cytotoxic activity in the presence of the prodrug towards HCT-116, a colorectal cancer cell line. The strategy developed proved to be effective in obtaining a stabilized nanobiocatalyst combining three different organic/inorganic materials with potential in DEPT and other biotechnological applications.
Collapse
Affiliation(s)
- Sonali Correa
- Laboratorio de Biotecnología, Universidad ORT Uruguay, Montevideo, Uruguay
| | | | - Lucía Gutiérrez
- Instituto de Nanociencia de Aragón, Universidad de Zaragoza, Campus Río Ebro, Edificio I+D, Zaragoza, Spain
- Instituto de Ciencia de Materiales de Aragón (ICMA), Consejo Superior de Investigaciones Científica, Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Laura Asín
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Jesús Martínez de la Fuente
- Instituto de Ciencia de Materiales de Aragón (ICMA), Consejo Superior de Investigaciones Científica, Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Valeria Grazú
- Instituto de Ciencia de Materiales de Aragón (ICMA), Consejo Superior de Investigaciones Científica, Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Lorena Betancor
- Laboratorio de Biotecnología, Universidad ORT Uruguay, Montevideo, Uruguay
| |
Collapse
|
15
|
Nanomaterials: Solutions to Water-Concomitant Challenges. MEMBRANES 2019; 9:membranes9030040. [PMID: 30875842 PMCID: PMC6468567 DOI: 10.3390/membranes9030040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/05/2019] [Accepted: 03/11/2019] [Indexed: 11/17/2022]
Abstract
Plenty of fresh water resources are still inaccessible for human use. Calamities such as pollution, climate change, and global warming pose serious threats to the fresh water system. Although many naturally and synthetically grown materials have been taken up to resolve these issues, there is still plenty of room for enhancements in technology and material perspectives to maximize resources and to minimize harm. Considering the challenges related to the purification of water, materials in the form of nanofiber membranes and nanomaterials have made tremendous contributions to water purification and filtration. Nanofiber membranes made of synthetic polymer nanofibers, ceramic membranes etc., metal oxides in various morphologies, and carbonaceous materials were explored in relation to waste removal from water. In this review, we have discussed a few key materials that have shown effectiveness in removing pollutants from waste water, enabling solutions to existing problems in obtaining clean drinking water.
Collapse
|
16
|
Chiong T, Lau SY, Zeng X, Danquah MK. Synthesis of peroxidase‐encapsulated sodium cellulose sulphate/poly‐dimethyl‐diallyl‐ammonium chloride biopolymer via polyelectrolyte complexation for enhanced removal of phenol. ASIA-PAC J CHEM ENG 2019. [DOI: 10.1002/apj.2296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tung Chiong
- Department of Chemical Engineering, Faculty of Engineering and ScienceCurtin University Sarawak Malaysia
| | - Sie Yon Lau
- Department of Chemical Engineering, Faculty of Engineering and ScienceCurtin University Sarawak Malaysia
| | | | | |
Collapse
|
17
|
Zheng G, Liu S, Zha J, Zhang P, Xu X, Chen Y, Jiang S. Protecting Enzymatic Activity via Zwitterionic Nanocapsulation for the Removal of Phenol Compound from Wastewater. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1858-1863. [PMID: 30080053 DOI: 10.1021/acs.langmuir.8b02001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Horseradish peroxidase (HRP) holds great potential in wastewater treatment. However, its instability in harsh environments remains a major issue. Various immobilization technologies were developed to retain enzyme stability at the cost of its effectiveness. We demonstrate that zwitterionic encapsulation of HRP retained both protein stability and activity to a large degree. In a water treatment study, encapsulating HRP into a zwitterionic nanogel resulted in a three-fold increase in the catalytic oxidation efficiency of phenol molecules. In addition, zwitterionic nanocapsules exhibited the best performance when compared with nanocapsules made from other hydrophilic polymers. These results indicated that zwitterionic HRP nanocapsules hold great potential in the decontamination of organic pollutants from wastewater.
Collapse
Affiliation(s)
- Guiqin Zheng
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering , Shenzhen University , Shenzhen , Guangdong 518060 , China
| | - Shan Liu
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering , Shenzhen University , Shenzhen , Guangdong 518060 , China
| | - Junqi Zha
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering , Shenzhen University , Shenzhen , Guangdong 518060 , China
| | - Peng Zhang
- Department of Chemical Engineering , University of Washington , Seattle , Washington 98195 , United States
| | - Xuewei Xu
- Department of Chemical Engineering , University of Washington , Seattle , Washington 98195 , United States
| | - Yantao Chen
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering , Shenzhen University , Shenzhen , Guangdong 518060 , China
| | - Shaoyi Jiang
- Department of Chemical Engineering , University of Washington , Seattle , Washington 98195 , United States
| |
Collapse
|
18
|
Khan N, Husain Q. Continuous degradation of Direct Red 23 by calcium pectate-bound Ziziphus mauritiana peroxidase: identification of metabolites and degradation routes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:3517-3529. [PMID: 30519913 DOI: 10.1007/s11356-018-3847-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/25/2018] [Indexed: 06/09/2023]
Abstract
In the present study, oxido-reductive degradation of diazo dye, Direct Red 23, has been carried out by Ziziphus mauritiana peroxidases (specific activity 17.6 U mg-1). Peroxidases have been immobilized via simple adsorption and cross-linking by glutaraldehyde; adsorbed and cross-linked enzyme retained 94.28% and 91.23% of original activity, respectively. The stability of peroxidases was enhanced significantly upon immobilization; a marked widening in both pH and temperature activity profiles were observed. Adsorbed peroxidases exhibited similar pH and temperature optima as reported for the free enzyme. Thermal stability was significantly enhanced in case of cross-linked enzyme which showed 80.52% activity even after 2 h of incubation at 60 °C. Packed bed reactors containing adsorbed and cross-linked peroxidases were run over a period of 4 weeks; adsorbed peroxidases retained 52.86% activity whereas cross-linked peroxidases maintained over 77% dye decolorization ability at the end of the fourth week of its continuous operation. Gas chromatography coupled with mass spectrometry was used to analyze the degradation products; it showed the presence of four major metabolites. Degradation of dye starts with the 1-Hydroxybenzotriazole radical attack on the carbon atom of the phenolic ring bearing azo linkage, converting it into cation radical which underwent nucleophilic attack by a water molecule and results in cleavage of chromophore via symmetric and asymmetric cleavage pathways. Intermediates undergo spontaneous removal of nitrogen, deamination, and oxidation reactions to produce maleic acid as the final degradation product. Graphical abstract.
Collapse
Affiliation(s)
- Nida Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, U.P., 202002, India
| | - Qayyum Husain
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, U.P., 202002, India.
| |
Collapse
|
19
|
Vikrant K, Giri BS, Raza N, Roy K, Kim KH, Rai BN, Singh RS. Recent advancements in bioremediation of dye: Current status and challenges. BIORESOURCE TECHNOLOGY 2018; 253:355-367. [PMID: 29352640 DOI: 10.1016/j.biortech.2018.01.029] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/01/2018] [Accepted: 01/05/2018] [Indexed: 05/23/2023]
Abstract
The rampant industrialization and unchecked growth of modern textile production facilities coupled with the lack of proper treatment facilities have proliferated the discharge of effluents enriched with toxic, baleful, and carcinogenic pollutants including dyes, heavy metals, volatile organic compounds, odorants, and other hazardous materials. Therefore, the development of cost-effective and efficient control measures against such pollution is imperative to safeguard ecosystems and natural resources. In this regard, recent advances in biotechnology and microbiology have propelled bioremediation as a prospective alternative to traditional treatment methods. This review was organized to address bioremediation as a practical option for the treatment of dyes by evaluating its performance and typical attributes. It further highlights the current hurdles and future prospects for the abatement of dyes via biotechnology-based remediation techniques.
Collapse
Affiliation(s)
- Kumar Vikrant
- Department of Chemical Engineering and Technology, Centre of Advanced Study, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Balendu Shekhar Giri
- Department of Chemical Engineering and Technology, Centre of Advanced Study, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Nadeem Raza
- Government Emerson College affiliated with Bahauddin Zakariya University, Multan 60800, Pakistan; Department of Materials Science and Metallurgy, University of Cambridge, CB3 0FS, United Kingdom
| | - Kangkan Roy
- Department of Chemical Engineering and Technology, Centre of Advanced Study, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| | - Birendra Nath Rai
- Department of Chemical Engineering and Technology, Centre of Advanced Study, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Ram Sharan Singh
- Department of Chemical Engineering and Technology, Centre of Advanced Study, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
20
|
Zhang X, Wang M, Lin L, Xiao G, Tang Z, Zhu X. Synthesis of novel laccase-biotitania biocatalysts for malachite green decolorization. J Biosci Bioeng 2018; 126:69-77. [PMID: 29567373 DOI: 10.1016/j.jbiosc.2018.01.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 01/19/2018] [Accepted: 01/30/2018] [Indexed: 12/12/2022]
Abstract
Biomimetic mineralization has emerged as a novel tool for generating excellent supports for enzyme stabilization. In this work, protamine was used to induce titanium (IV) bis(ammonium lactato) dihydroxide (Ti-BALDH) into titania nanoparticles. This biomimetic titanification process was adopted for laccase immobilization. Laccase-biotitania biocatalyst was prepared and the effect of different parameters (buffer solution, titania precursor concentration, protamine concentration, and enzyme loading) on the encapsulation efficiency and recovery of laccase were evaluated. Compared with free laccase, the thermal and pH stability of immobilized laccase were improved significantly. In addition, laccase loaded on titania was effective at enhancing its storage stability. After seven consecutive cycles, the immobilized laccase still retained 51% of its original activity. Finally, laccase-biotitania biocatalysts showed good performance on decolorization of malachite green (MG), which can be attributed to an adsorption and degradation effect. The intermediates of the MG degradation were identified by gas chromatography-mass spectrometry (GC-MS) analysis, and the most probable degradation pathway was proposed. This study provides deeper understanding of the laccase-biotitania particles as a fast biocatalyst for MG decolorization.
Collapse
Affiliation(s)
- Xinying Zhang
- College of Environment and Resources, Fuzhou University, Fuzhou, Fujian 350108, PR China; Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350002, China
| | - Meiyin Wang
- College of Environment and Resources, Fuzhou University, Fuzhou, Fujian 350108, PR China
| | - Linlin Lin
- College of Environment and Resources, Fuzhou University, Fuzhou, Fujian 350108, PR China
| | - Gao Xiao
- College of Environment and Resources, Fuzhou University, Fuzhou, Fujian 350108, PR China
| | - Zhenping Tang
- College of Environment and Resources, Fuzhou University, Fuzhou, Fujian 350108, PR China
| | - Xuefeng Zhu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, 500 Dongchuan Rd., Shanghai 200241, PR China; Section Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and GeoSciences, Delft University of Technology, 2628CN Delft, The Netherlands.
| |
Collapse
|
21
|
Alneyadi AH, Rauf MA, Ashraf SS. Oxidoreductases for the remediation of organic pollutants in water - a critical review. Crit Rev Biotechnol 2018; 38:971-988. [PMID: 29385838 DOI: 10.1080/07388551.2017.1423275] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Water contamination by various recalcitrant organic aromatic compounds is an emerging environmental issue that is increasingly attracting the attention of environmental scientists. A great majority of these recalcitrant pollutants are industrial wastes, textile dyes, pharmaceuticals, hormones, and personal care products that are discharged into wastewater. Not surprisingly, various chemical, physical, and biological strategies have been proposed and developed to remove and/or degrade these pollutants from contaminated water bodies. Biological approaches, specifically using oxidoreductase enzymes (such as peroxidases and laccases) for pollutant degradation are a relatively new and a promising research area that has potential advantages over other methods due to their higher efficiency and the ease of handling. This review focuses on the application of different classes of oxidoreductase enzymes to degrade various classes of organic pollutants. In addition to classifying these enzymes based on structural differences, the major factors that can affect their remediation ability, such as the class of peroxidases employed, pH, molecular structure of the pollutant, temperature, and the presence of redox mediators are also examined and discussed. Interestingly, a literature survey combined with our unpublished data suggests that "peroxidases" are a very heterogeneous and diverse family of enzymes and have different pH profiles, temperature optima, thermal stabilities, requirements for redox mediators, and substrate specificities as well as varying detoxification abilities. Additionally, remediation of real-life polluted samples by oxidoreductases is also highlighted as well as a critical look at current challenges and future perspectives.
Collapse
Affiliation(s)
| | - Muhammad A Rauf
- b Department of Chemistry , College of Science, UAE University , Al-Ain , UAE
| | - S Salman Ashraf
- b Department of Chemistry , College of Science, UAE University , Al-Ain , UAE
| |
Collapse
|
22
|
Asmat S, Husain Q, Khan MS. A polypyrrole–methyl anthranilate functionalized worm-like titanium dioxide nanocomposite as an innovative tool for immobilization of lipase: preparation, activity, stability and molecular docking investigations. NEW J CHEM 2018. [DOI: 10.1039/c7nj02951a] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Schematic of the novel synthesised nanobioconjugates.
Collapse
Affiliation(s)
- Shamoon Asmat
- Department of Biochemistry
- Faculty of Life Sciences
- Aligarh Muslim University
- Aligarh-202002
- India
| | - Qayyum Husain
- Department of Biochemistry
- Faculty of Life Sciences
- Aligarh Muslim University
- Aligarh-202002
- India
| | - Mohd Shoeb Khan
- Department of Chemistry
- Aligarh Muslim University
- Aligarh-202002
- India
| |
Collapse
|
23
|
Sun H, Jin X, Jiang F, Zhang R. Immobilization of horseradish peroxidase on ZnO nanowires/macroporous SiO2
composites for the complete decolorization of anthraquinone dyes. Biotechnol Appl Biochem 2017; 65:220-229. [DOI: 10.1002/bab.1559] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 12/08/2016] [Accepted: 02/16/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Huaiyan Sun
- Faculty of Materials Science and Chemical Engineering; Ningbo University; Ningbo Zhejiang People's Republic of China
| | - Xinyu Jin
- Faculty of Materials Science and Chemical Engineering; Ningbo University; Ningbo Zhejiang People's Republic of China
| | - Feng Jiang
- Faculty of Materials Science and Chemical Engineering; Ningbo University; Ningbo Zhejiang People's Republic of China
| | - Ruifeng Zhang
- Faculty of Materials Science and Chemical Engineering; Ningbo University; Ningbo Zhejiang People's Republic of China
| |
Collapse
|
24
|
Temoçin Z, İnal M, Gökgöz M, Yiğitoğlu M. Immobilization of horseradish peroxidase on electrospun poly(vinyl alcohol)–polyacrylamide blend nanofiber membrane and its use in the conversion of phenol. Polym Bull (Berl) 2017. [DOI: 10.1007/s00289-017-2129-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
25
|
Farias S, Oliveira DD, Souza AAUD, Souza SMAGUD, Morgado AF. Removal of reactive blue 21 and reactive red 195 dyes using horseradish peroxidase as catalyst. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2017. [DOI: 10.1590/0104-6632.20170343s20160091] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- S. Farias
- Federal University of Santa Catarina, Brazil
| | | | | | | | | |
Collapse
|
26
|
Bilal M, Iqbal HMN, Hu H, Wang W, Zhang X. Development of horseradish peroxidase-based cross-linked enzyme aggregates and their environmental exploitation for bioremediation purposes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 188:137-143. [PMID: 27978441 DOI: 10.1016/j.jenvman.2016.12.015] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/02/2016] [Accepted: 12/06/2016] [Indexed: 02/08/2023]
Abstract
In the present study, horseradish peroxidase (HRP), in-house isolated crude cocktail enzyme, from Armoracia rusticana was cross-linked using a new type of cross-linking agent, i.e., ethylene glycol-bis [succinic acid N-hydroxysuccinimide, (EG-NHS)], which is mild in nature as compared to the glutaraldehyde (GA). The HRP-immobilized cross-linked enzyme aggregates (HRP-CLEAs) were developed using a wider range of EG-NHS and notably no adverse effect was observed. In a comparative evaluation, in the case of EG-NHS, a high-level stability in the residual activity was recorded, whereas a sharp decrease was observed in the case of glutaraldehyde. Following initial cross-linker evaluation, the HRP-CLEAs were tested to investigate their bio-catalytic efficacy for bioremediation purposes using a newly developed packed bed reactor system (PBRS). A maximal of 94.26% degradation of textile-based methyl orange dye was recorded within the shortest time frame, following 91.73% degradation of basic red 9, 84.35% degradation of indigo, 81.47% degradation of Rhodamin B, and 73.6% degradation of Rhodamine 6G, respectively, under the same working environment. Notably, the HRP-CLEAs retained almost 60% of its original activity after methyl orange dye degradation in seven consecutive cycles using PBRS. Furthermore, after HRP-CLEAs-mediated treatment in the PBRS, a significant toxicity reduction in the dye samples was recorded as compared to their pristine counterparts. In conclusion, the results suggest that the newly developed HRP-CLEAs have a great potential for industrial exploitation, to tackle numerous industrial dye-based emergent pollutants.
Collapse
Affiliation(s)
- Muhammad Bilal
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Hafiz M N Iqbal
- ENCIT - Science, Engineering and Technology School, Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., CP 64849, Mexico.
| | - Hongbo Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
27
|
Sun H, Jin X, Long N, Zhang R. Improved biodegradation of synthetic azo dye by horseradish peroxidase cross-linked on nano-composite support. Int J Biol Macromol 2017; 95:1049-1055. [DOI: 10.1016/j.ijbiomac.2016.10.093] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 10/24/2016] [Accepted: 10/25/2016] [Indexed: 10/20/2022]
|
28
|
Immobilization of horseradish peroxidase onto kaolin. Bioprocess Biosyst Eng 2016; 39:461-72. [PMID: 26747440 DOI: 10.1007/s00449-015-1529-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 12/19/2015] [Indexed: 10/22/2022]
Abstract
Kaolin showed as a very perspective carrier for the enzyme immobilization and it was used for the adsorption of horseradish peroxidase (HRP). The effects of the enzyme concentration and pH on the immobilization efficiency were studied in the reaction with pyrogallol and anthraquinone dye C.I. Acid Violet 109 (AV 109). In addition, Fourier transform infrared spectroscopy, scanning electron microscopy and analysis by Brunauer-Emmett-Teller were performed for kaolin, thermally activated kaolin and the immobilized enzyme. It has been shown that 0.1 IU of HRP-kaolin decolorized 87 % of dye solution, under the optimal conditions (pH 5.0, temperature 24 °C, dye concentration 40 mg/L and 0.2 mM of H2O2) within 40 min. The immobilized HRP decolorization follows the Ping Pong Bi-Bi mechanism with dead-end inhibition by the dye. The biocatalyst retained 35 ± 0.9 % of the initial activity after seven cycles of reuse in the decolorization reaction of AV 109 under optimal conditions in a batch reactor. The obtained kinetic parameters and reusability study confirmed improvement in performances of k-HRP compared to free, indicating that k-HRP has a great potential for environmental purposes.
Collapse
|
29
|
Ai J, Zhang W, Liao G, Xia H, Wang D. Immobilization of horseradish peroxidase enzymes on hydrous-titanium and application for phenol removal. RSC Adv 2016. [DOI: 10.1039/c6ra02397e] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Hydrous-titanium was utilized to immobilize HRP in order to improve its stability and adaptability under different water qualities by the biomimetic titanification process. The effects of the reaction conditions on phenol removal were studied.
Collapse
Affiliation(s)
- Jing Ai
- Faculty Materials Science and Chemistry
- China University of Geosciences
- China
| | - Weijun Zhang
- School of Environment Studies
- China University of Geosciences
- China
| | - Guiying Liao
- Faculty Materials Science and Chemistry
- China University of Geosciences
- China
| | - Hua Xia
- Faculty Materials Science and Chemistry
- China University of Geosciences
- China
| | - Dongsheng Wang
- Faculty Materials Science and Chemistry
- China University of Geosciences
- China
| |
Collapse
|
30
|
An adhesive conducting electrode material based on commercial mesoporous titanium dioxide as a support for Horseradish peroxidase for bioelectrochemical applications. Talanta 2016; 146:689-93. [DOI: 10.1016/j.talanta.2015.06.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 06/13/2015] [Accepted: 06/17/2015] [Indexed: 11/22/2022]
|
31
|
Chang Q, Jiang G, Tang H, Li N, Huang J, Wu L. Enzymatic removal of chlorophenols using horseradish peroxidase immobilized on superparamagnetic Fe3O4/graphene oxide nanocomposite. CHINESE JOURNAL OF CATALYSIS 2015. [DOI: 10.1016/s1872-2067(15)60856-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Romero-Arcos M, Garnica-Romo MG, Martinez-Flores HE, Vázquez-Marrufo G, Ramírez-Bon R, González-Hernández J, Barbosa-Cánovas GV. Enzyme Immobilization by Amperometric Biosensors with TiO2 Nanoparticles Used to Detect Phenol Compounds. FOOD ENGINEERING REVIEWS 2015. [DOI: 10.1007/s12393-015-9129-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
33
|
Sun W, Vallooran JJ, Mezzenga R. Enzyme Kinetics in Liquid Crystalline Mesophases: Size Matters, But Also Topology. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:4558-4565. [PMID: 25806598 DOI: 10.1021/acs.langmuir.5b00579] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Lyotropic liquid crystalline systems (LLCs) are excellent immobilizing carriers for enzymes, due to their biocompatibility and well-defined pore nanostructure. Here we show that the liquid crystalline mesophase topology can greatly influence the enzymatic activity in a typical peroxidase (Horseradish peroxidase, HRP) enzymatic reaction. Enzyme kinetics was investigated in different LLC mesophases based on monolinolein, with varying symmetries and dimensions such as the 1D cylindrical inverse hexagonal phase (HII), the 2D planar lamellar phase (Lα), and two 3D bicontinuous cubic phases of double diamond (Pn3m) and gyroid (Ia3d) space groups. As expected, the mesophase with largest water channel size shows highest activity, regardless of the topology. Interestingly, however, when mesophases with different topologies have the same water channel size, then the topology plays the dominant role, and the enzyme showed the highest activity in the 3D tetra-fold connected Pn3m, followed by the Ia3d with trifold connectivity, and finally the 1D HII phase. This study demonstrates that the enzymatic activity in LLC mesophases depends on both the water channel size and the topology of the mesophase.
Collapse
Affiliation(s)
- Wenjie Sun
- ETH Zurich, Department of Health Sciences and Technology, Schmelzbergstrasse 9, CH-8092 Zurich, Switzerland
| | - Jijo J Vallooran
- ETH Zurich, Department of Health Sciences and Technology, Schmelzbergstrasse 9, CH-8092 Zurich, Switzerland
| | - Raffaele Mezzenga
- ETH Zurich, Department of Health Sciences and Technology, Schmelzbergstrasse 9, CH-8092 Zurich, Switzerland
| |
Collapse
|
34
|
Jiao R, Tan Y, Jiang Y, Hu M, Li S, Zhai Q. Ordered Mesoporous Silica Matrix for Immobilization of Chloroperoxidase with Enhanced Biocatalytic Performance for Oxidative Decolorization of Azo Dye. Ind Eng Chem Res 2014. [DOI: 10.1021/ie5011492] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Yi Tan
- College
of Science, Beijing University of Chemical Technology, Beijing, 100029,P.R. China
| | | | | | | | | |
Collapse
|
35
|
Yang W, Hao J, Zhang Z, Lu B, Zhang B, Tang J. CoxFe3−xO4 hierarchical nanocubes as peroxidase mimetics and their applications in H2O2 and glucose detection. RSC Adv 2014. [DOI: 10.1039/c4ra03859b] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A facile approach was proposed for the synthesis of hierarchical CoxFe3−xO4 (CF) nanocubes, using Prussian Blue (PB) as precursor. Then, an efficient and simple colorimetric biosensor for H2O2 and glucose was fabricated using CF nanocubes as peroxidase mimetic.
Collapse
Affiliation(s)
- Wenshu Yang
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, P. R. China
- University of Chinese Academy of Sciences
| | - Jinhui Hao
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, P. R. China
- University of Chinese Academy of Sciences
| | - Zhe Zhang
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, P. R. China
| | - Baoping Lu
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, P. R. China
- University of Chinese Academy of Sciences
| | - Bailin Zhang
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, P. R. China
| | - Jilin Tang
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, P. R. China
| |
Collapse
|
36
|
Lopes GR, Pinto DCGA, Silva AMS. Horseradish peroxidase (HRP) as a tool in green chemistry. RSC Adv 2014. [DOI: 10.1039/c4ra06094f] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The horseradish peroxidase (HRP) potential in organic synthesis.
Collapse
Affiliation(s)
- Guido R. Lopes
- Department of Chemistry & QOPNA
- University of Aveiro
- 3810-193 Aveiro, Portugal
| | | | - Artur M. S. Silva
- Department of Chemistry & QOPNA
- University of Aveiro
- 3810-193 Aveiro, Portugal
| |
Collapse
|