1
|
Khusnutdinova AN, Tran H, Devlekar S, Distaso MA, Kublanov IV, Skarina T, Stogios P, Savchenko A, Ferrer M, Golyshina OV, Yakunin AF, Golyshin PN. Moderately thermostable GH1 β-glucosidases from hyperacidophilic archaeon Cuniculiplasma divulgatum S5. FEMS Microbiol Ecol 2024; 100:fiae114. [PMID: 39127612 PMCID: PMC11376072 DOI: 10.1093/femsec/fiae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/26/2024] [Accepted: 08/09/2024] [Indexed: 08/12/2024] Open
Abstract
Family GH1 glycosyl hydrolases are ubiquitous in prokaryotes and eukaryotes and are utilized in numerous industrial applications, including bioconversion of lignocelluloses. In this study, hyperacidophilic archaeon Cuniculiplasma divulgatum (S5T=JCM 30642T) was explored as a source of novel carbohydrate-active enzymes. The genome of C. divulgatum encodes three GH1 enzyme candidates, from which CIB12 and CIB13 were heterologously expressed and characterized. Phylogenetic analysis of CIB12 and CIB13 clustered them with β-glucosidases from genuinely thermophilic archaea including Thermoplasma acidophilum, Picrophilus torridus, Sulfolobus solfataricus, Pyrococcus furiosus, and Thermococcus kodakarensis. Purified enzymes showed maximal activities at pH 4.5-6.0 (CIB12) and 4.5-5.5 (CIB13) with optimal temperatures at 50°C, suggesting a high-temperature origin of Cuniculiplasma spp. ancestors. Crystal structures of both enzymes revealed a classical (α/β)8 TIM-barrel fold with the active site located inside the barrel close to the C-termini of β-strands including the catalytic residues Glu204 and Glu388 (CIB12), and Glu204 and Glu385 (CIB13). Both enzymes preferred cellobiose over lactose as substrates and were classified as cellobiohydrolases. Cellobiose addition increased the biomass yield of Cuniculiplasma cultures growing on peptides by 50%, suggesting that the cellobiohydrolases expand the carbon substrate range and hence environmental fitness of Cuniculiplasma.
Collapse
Affiliation(s)
- Anna N Khusnutdinova
- Centre for Environmental Biotechnology, School of Environmental and Natural Sciences, Bangor University, Bangor, LL57 2UW, United Kingdom
| | - Hai Tran
- Centre for Environmental Biotechnology, School of Environmental and Natural Sciences, Bangor University, Bangor, LL57 2UW, United Kingdom
| | - Saloni Devlekar
- Centre for Environmental Biotechnology, School of Environmental and Natural Sciences, Bangor University, Bangor, LL57 2UW, United Kingdom
| | - Marco A Distaso
- Centre for Environmental Biotechnology, School of Environmental and Natural Sciences, Bangor University, Bangor, LL57 2UW, United Kingdom
| | - Ilya V Kublanov
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Tatiana Skarina
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Ontario, M5S 3E5, Canada
| | - Peter Stogios
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Ontario, M5S 3E5, Canada
| | - Alexei Savchenko
- Department of Microbiology Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Manuel Ferrer
- Departamento de Biocatalisis Aplicada, Instituto de Catalisis y Petroleoquimica (ICP), CSIC, Madrid, 28049, Spain
| | - Olga V Golyshina
- Centre for Environmental Biotechnology, School of Environmental and Natural Sciences, Bangor University, Bangor, LL57 2UW, United Kingdom
| | - Alexander F Yakunin
- Centre for Environmental Biotechnology, School of Environmental and Natural Sciences, Bangor University, Bangor, LL57 2UW, United Kingdom
| | - Peter N Golyshin
- Centre for Environmental Biotechnology, School of Environmental and Natural Sciences, Bangor University, Bangor, LL57 2UW, United Kingdom
| |
Collapse
|
2
|
Liu S, Zhang M, Hong D, Fang Z, Xiao Y, Fang W, Zhang X. Improving the cellobiose hydrolysis activity of glucose-stimulating β-glucosidase Bgl2A. Enzyme Microb Technol 2023; 169:110289. [PMID: 37473697 DOI: 10.1016/j.enzmictec.2023.110289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/05/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023]
Abstract
β-Glucosidases with high catalytic activity and glucose tolerant properties possess promising applications in lignocellulose-based industries. To obtain enzymes possessing these properties, a semi-rational strategy was employed to engineer the glucose-stimulating β-glucosidase Bgl2A for high cellobiose hydrolysis activity. A total of 18 mutants were constructed. A22S, V224D, and A22S/V224D exhibited high specific activities of 272.06, 237.60, and 239.29 U/mg toward cellobiose, which were 2.5- to 2.8-fold of Bgl2A. A22S, V224D, and A22S/V224D exhibited increased kcat values, which were 2.7- to 3.1-fold of Bgl2A. A22S and V224D maintained glucose-stimulating property, whereas A22S/V224D lost it. Using 150 g/L cellobiose as the substrate, the amount of glucose produced by A22S was the highest, yielding 129.70 g/L glucose after 3 h reaction at 35 °C. The synergistic effects of the engineered enzymes with commercial cellulase on hydrolyzing cellulose were investigated. Supplemented with the commercial cellulase and A22S, the highest glucose amount of 23.30 g/L was yielded from cellulose with hydrolysis rate of 21.02 %. Given its high cellobiose hydrolysis activity and glucose-stimulating properties, A22S can be used as a component of enzyme cocktail to match mesophilic cellulases for efficient cellulose hydrolysis.
Collapse
Affiliation(s)
- Shuaifeng Liu
- School of Life Sciences, Anhui University; Hefei, Anhui 230601, China; Anhui Key Laboratory of Modern Biomanufacturing; Hefei, Anhui 230601, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis; Hefei, Anhui 230601, China
| | - Meng Zhang
- School of Life Sciences, Anhui University; Hefei, Anhui 230601, China; Anhui Key Laboratory of Modern Biomanufacturing; Hefei, Anhui 230601, China
| | - Dengwang Hong
- School of Life Sciences, Anhui University; Hefei, Anhui 230601, China; Anhui Key Laboratory of Modern Biomanufacturing; Hefei, Anhui 230601, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis; Hefei, Anhui 230601, China
| | - Zemin Fang
- School of Life Sciences, Anhui University; Hefei, Anhui 230601, China; Anhui Key Laboratory of Modern Biomanufacturing; Hefei, Anhui 230601, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis; Hefei, Anhui 230601, China
| | - Yazhong Xiao
- School of Life Sciences, Anhui University; Hefei, Anhui 230601, China; Anhui Key Laboratory of Modern Biomanufacturing; Hefei, Anhui 230601, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis; Hefei, Anhui 230601, China
| | - Wei Fang
- School of Life Sciences, Anhui University; Hefei, Anhui 230601, China; Anhui Key Laboratory of Modern Biomanufacturing; Hefei, Anhui 230601, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis; Hefei, Anhui 230601, China.
| | - Xuecheng Zhang
- School of Life Sciences, Anhui University; Hefei, Anhui 230601, China; Anhui Key Laboratory of Modern Biomanufacturing; Hefei, Anhui 230601, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis; Hefei, Anhui 230601, China.
| |
Collapse
|
3
|
Crystal structure of a homotrimeric verrucomicrobial exo- β-1,4-mannosidase active in the hindgut of the wood-feeding termite Reticulitermes flavipes. JOURNAL OF STRUCTURAL BIOLOGY-X 2021; 5:100048. [PMID: 34195602 PMCID: PMC8233224 DOI: 10.1016/j.yjsbx.2021.100048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 11/29/2022]
Abstract
First structure of a glycoside hydrolase from a bacterial symbiont isolated from the digestive tract of the notorious termite pest Reticulitermes flavipes. First example of a GH5 glycoside hydrolase that features a GH42-type homotrimeric structure. High exo-type specificity for the terminal ®-1,4-mannosidic linkages in mannooligosaccharides and unsubstituted®-mannans. Verrucomicrobial gut symbiont with high potential for hemicellulose degradation.
The termite Reticulitermes flavipes causes extensive damage due to the high efficiency and broad specificity of the ligno- and hemicellulolytic enzyme systems produced by its symbionts. Thus, the R. flavipes gut microbiome is expected to constitute an excellent source of enzymes that can be used for the degradation and valorization of plant biomass. The symbiont Opitutaceae bacterium strain TAV5 belongs to the phylum Verrucomicrobia and thrives in the hindgut of R. flavipes. The sequence of the gene with the locus tag opit5_10225 in the Opitutaceae bacterium strain TAV5 genome has been classified as a member of glycoside hydrolase family 5 (GH5), and provisionally annotated as an endo-β-mannanase. We characterized biochemically and structurally the opit5_10225 gene product, and show that the enzyme, Op5Man5, is an exo-β-1,4-mannosidase [EC 3.2.1.25] that is highly specific for β-1,4-mannosidic bonds in mannooligosaccharides and ivory nut mannan. The structure of Op5Man5 was phased using electron cryo-microscopy and further determined and refined at 2.2 Å resolution using X-ray crystallography. Op5Man5 features a 200-kDa large homotrimer composed of three modular monomers. Despite insignificant sequence similarity, the structure of the monomer, and homotrimeric assembly are similar to that of the GH42-family β-galactosidases and the GH164-family exo-β-1,4-mannosidase Bs164 from Bacteroides salyersiae. To the best of our knowledge Op5Man5 is the first structure of a glycoside hydrolase from a bacterial symbiont isolated from the R. flavipes digestive tract, as well as the first example of a GH5 glycoside hydrolase with a GH42 β-galactosidase-type homotrimeric structure.
Collapse
Key Words
- 4-mannosidase
- CAZy, Carbohydrate-Active enZymes database
- CMC, carboxymethyl cellulose
- Crystal structure
- DP, degree of polymerization
- EDTA, ethylenediaminetetraacetic acid
- ESI-MS, electrospray ionization mass spectrometry
- Electron cryo-microscopy
- Exo-β-1
- Fuc, fucopyranoside
- GH, glycoside hydrolase
- Gal, galactopyranoside
- Glc, glucopyranoside
- GlcNAc, N-acetyl glucosamine
- Glycosyl hydrolase family 5
- HEPES, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
- HPAEC-PAD, High Performance Anion Exchange Chromatography and Pulsed Amperometric Detection
- IPTG, β-D-1-thiogalactopyranoside
- LBG, locust bean gum
- MOS, mannooligosaccharides
- MWCO, molecular weight cut-off
- Man, mannopyranoside
- Op5Man5, exo-β-1,4-mannosidase from Opitutaceae bacterium strain TAV5
- Opitutaceae
- Reticulitermes flavipes
- SDS-PAGE, sodium dodecyl sulfate–polyacrylamide gel electrophoresis
- SEC, size-exclusion chromatography
- TCEP, tris (2-carboxyethyl) phosphine hydrochloride
- TLC, thin-layer chromatography
- Termite hindgut
- Verrucomicrobia
- Xyl, xylopyranoside
- cryo-EM, electron cryo-microscopy
- pNP, p-nitrophenyl
Collapse
|
4
|
Peng T, Nagy G, Trinidad JC, Jackson JM, Pohl NLB. A High-Throughput Mass-Spectrometry-Based Assay for Identifying the Biochemical Functions of Putative Glycosidases. Chembiochem 2017; 18:2306-2311. [PMID: 28960712 DOI: 10.1002/cbic.201700292] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Indexed: 11/10/2022]
Abstract
The most commonly employed glycosidase assays rely on bulky ultraviolet or fluorescent tags at the anomeric position in potential carbohydrate substrates, thereby limiting the utility of these assays for broad substrate characterization. Here we report a qualitative mass spectrometry-based glycosidase assay amenable to high-throughput screening for the identification of the biochemical functions of putative glycosidases. The assay utilizes a library of methyl glycosides and is demonstrated on a high-throughput robotic liquid handling system for enzyme substrate screening. Identification of glycosidase biochemical function is achieved through the observation of an appropriate decrease in mass between a potential sugar substrate and its corresponding product by electrospray ionization mass spectrometry (ESI-MS). In addition to screening known glycosidases, the assay was demonstrated to characterize the biochemical function and enzyme substrate competency of the recombinantly expressed product of a putative glycosidase gene from the thermophilic bacterium Thermus thermophilus.
Collapse
Affiliation(s)
- Tianyuan Peng
- Department of Chemistry, Indiana University, Bloomington, IN, 47405-7102, USA
| | - Gabe Nagy
- Department of Chemistry, Indiana University, Bloomington, IN, 47405-7102, USA
| | - Jonathan C Trinidad
- Department of Chemistry, Indiana University, Bloomington, IN, 47405-7102, USA.,Laboratory for Biological Mass Spectrometry, Indiana University, Bloomington, IN, 47405-7102, USA
| | - Joy Marie Jackson
- Department of Chemistry, Indiana University, Bloomington, IN, 47405-7102, USA
| | - Nicola L B Pohl
- Department of Chemistry, Indiana University, Bloomington, IN, 47405-7102, USA
| |
Collapse
|