1
|
Wang X, Liu L, Shen R, Wang Q, Xie X, Liu W, Yu Z, Li X, Guo X, Yang F. A novel CBM serving as a module for efficiently decomposing xanthan by modifying the processivity of hydrolase. Carbohydr Polym 2025; 347:122747. [PMID: 39486976 DOI: 10.1016/j.carbpol.2024.122747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/24/2024] [Accepted: 09/11/2024] [Indexed: 11/04/2024]
Abstract
The inefficient decomposition of polysaccharides, particularly branched polysaccharides limits their large-scale industrial applications. Further understanding and modification of glycoside hydrolases (GHs) processivity is expected to overcome this limitation. Here, a novel xanthan-binding CBM (MiXBM), which was supposed to alter the processivity of GHs, was systematically characterized. Phylogeny and structure analyses indicated that MiXBM is closely related to putative polysaccharide side chain-binding modules. Quantitative binding assays further revealed that MiXBM probably has a high affinity for xanthan side chain via a variable loop site. Moreover, catalytic performance demonstrated that xanthanase chimeras containing MiXBM promote highly efficient hydrolysis of xanthan because of improved substrate accessibility. Notably, MiXBM was observed to enhance the processivity of xanthanase, owing to its high substrate affinity to the repeating unit xanthan. Furthermore, sequential hydrolysis of xanthan by xanthanases with varying processivity resulted in significantly increased hydrolytic efficiency and focused oligoxanthans array. These results expand understanding of CBM-substrate recognition and shed light on efficient degradation of other regularly branched polysaccharides using modified GHs.
Collapse
Affiliation(s)
- Xueyan Wang
- School of Biological Engineering, Dalian Polytechnic University, Ganjingziqu, Dalian, PR China.
| | - Le Liu
- School of Biological Engineering, Dalian Polytechnic University, Ganjingziqu, Dalian, PR China
| | - Ruiyu Shen
- School of Biological Engineering, Dalian Polytechnic University, Ganjingziqu, Dalian, PR China
| | - Qian Wang
- Division of Biotechnology, Chinese Academy of Sciences Dalian Institute of Chemical Physics, Zhongshan Road, Dalian, PR China
| | - Xiaoqi Xie
- School of Biological Engineering, Dalian Polytechnic University, Ganjingziqu, Dalian, PR China
| | - Weiming Liu
- School of Biological Engineering, Dalian Polytechnic University, Ganjingziqu, Dalian, PR China
| | - Zhimin Yu
- School of Biological Engineering, Dalian Polytechnic University, Ganjingziqu, Dalian, PR China
| | - Xianzhen Li
- School of Biological Engineering, Dalian Polytechnic University, Ganjingziqu, Dalian, PR China
| | - Xiaoyu Guo
- School of Biological Engineering, Dalian Polytechnic University, Ganjingziqu, Dalian, PR China.
| | - Fan Yang
- School of Biological Engineering, Dalian Polytechnic University, Ganjingziqu, Dalian, PR China.
| |
Collapse
|
2
|
Ran Q, Zhang D, Jiang W, Zhang H, Cheng W, Li H, Liu J, Jiang Z. How carbohydrate-binding module affects the catalytic properties of endoglucanase. Int J Biol Macromol 2024; 278:134653. [PMID: 39128731 DOI: 10.1016/j.ijbiomac.2024.134653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/15/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
The important role of Carbohydrate-binding module (CBM) in the cellulases catalytic activity has been widely studied. CBM3 showed highest affinity for cellulose substrate with 84.69 % adsorption rate among CBM1, CBM2, CBM3, and CBM4 in this study. How CBM affect the catalytic properties of GH5 endoglucanase III from Trichoderma viride (TvEG3) was systematically explored from two perspectives: the deletion of its own CBM(TvEG3dc) and the replacement of high substrate affinity CBM3 (TvEG3dcCBM3). Compared with TvEG3, TvEG3dc lost its binding ability on Avicel and filter paper, but its catalytic activity did not change significantly. The binding ability and catalytic activity of TvEG3dcCBM3 to Avicel increased 348.3 % and 372.51 % than that of TvEG3, respectively. The binding ability and catalytic activity of TvEG3dcCBM3 to filter paper decreased 51.7 % and 33.33 % than that of TvEG3, respectively. Further structural analysis of TvEG3, TvEG3dc, and TvEG3dcCBM3 revealed no changes in the positions and secondary structures of the key amino acids. These results demonstrated that its own CBM1 of TvEG3 did not affect its catalytic activity center, so it had no effect on its catalytic activity. But CBM3 changed the adsorption affinity for different substrates, which resulted in a change in the catalytic activity of the substrate.
Collapse
Affiliation(s)
- Qiuping Ran
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan 430062, PR China; College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, PR China
| | - Di Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan 430062, PR China
| | - Wenping Jiang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan 430062, PR China
| | - Huimin Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan 430062, PR China
| | - Wanli Cheng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan 430062, PR China
| | - Huanan Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan 430062, PR China
| | - Jiashu Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan 430062, PR China
| | - Zhengbing Jiang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan 430062, PR China.
| |
Collapse
|
3
|
Sidar A, Voshol GP, El-Masoudi A, Vijgenboom E, Punt PJ. Streptomyces small laccase expressed in Aspergillus Niger as a new addition for the lignocellulose bioconversion toolbox. Fungal Biol Biotechnol 2024; 11:13. [PMID: 39223615 PMCID: PMC11368006 DOI: 10.1186/s40694-024-00181-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Laccases are multi-copper oxidases that are usually composed of three Cu-oxidase domains. Domains one and three house the copper binding sites, and the second domain is involved in forming a substrate-binding cleft. However, Streptomyces species are found to have small laccases (SLAC) that lack one of the three Cu-oxidase domains. This type of SLAC with interesting lignocellulose bioconversion activities has not been reported in Aspergillus niger. In our research, we explored the expression and engineering of the SLAC from Streptomyces leeuwenhoekii C34 in A. niger. Genes encoding two versions of the SLAC were expressed. One encoding the SLAC in its native form and a second encoding the SLAC fused to two N-terminal CBM1 domains. The latter is a configuration also known for specific yeast laccases. Both SLAC variants were functionally expressed in A. niger as shown by in vitro activity assays and proteome analysis. Laccase activity was also analyzed toward bioconversion of lignocellulosic rice straw. From this analysis it was clear that the SLAC activity improved the efficiency of saccharification of lignocellulosic biomass by cellulase enzyme cocktails.
Collapse
Affiliation(s)
- Andika Sidar
- Institute of Biology Leiden, Fungal Genetics and Biotechnology, Leiden University, 2333BE, Leiden, The Netherlands.
- Department of Food and Agricultural Product Technology, Gadjah Mada University, Yogyakarta, 55281, Indonesia.
| | - Gerben P Voshol
- Institute of Biology Leiden, Fungal Genetics and Biotechnology, Leiden University, 2333BE, Leiden, The Netherlands
- Genomescan, Leiden, 2333 BZ, The Netherlands
| | - Ahmed El-Masoudi
- Institute of Biology Leiden, Fungal Genetics and Biotechnology, Leiden University, 2333BE, Leiden, The Netherlands
| | - Erik Vijgenboom
- Institute of Biology Leiden, Fungal Genetics and Biotechnology, Leiden University, 2333BE, Leiden, The Netherlands
| | - Peter J Punt
- Institute of Biology Leiden, Fungal Genetics and Biotechnology, Leiden University, 2333BE, Leiden, The Netherlands.
- Ginkgo Bioworks NL, Zeist, 3704 HE, The Netherlands.
| |
Collapse
|
4
|
You Y, Kong H, Li C, Gu Z, Ban X, Li Z. Carbohydrate binding modules: Compact yet potent accessories in the specific substrate binding and performance evolution of carbohydrate-active enzymes. Biotechnol Adv 2024; 73:108365. [PMID: 38677391 DOI: 10.1016/j.biotechadv.2024.108365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
Carbohydrate binding modules (CBMs) are independent non-catalytic domains widely found in carbohydrate-active enzymes (CAZymes), and they play an essential role in the substrate binding process of CAZymes by guiding the appended catalytic modules to the target substrates. Owing to their precise recognition and selective affinity for different substrates, CBMs have received increasing research attention over the past few decades. To date, CBMs from different origins have formed a large number of families that show a variety of substrate types, structural features, and ligand recognition mechanisms. Moreover, through the modification of specific sites of CBMs and the fusion of heterologous CBMs with catalytic domains, improved enzymatic properties and catalytic patterns of numerous CAZymes have been achieved. Based on cutting-edge technologies in computational biology, gene editing, and protein engineering, CBMs as auxiliary components have become portable and efficient tools for the evolution and application of CAZymes. With the aim to provide a theoretical reference for the functional research, rational design, and targeted utilization of novel CBMs in the future, we systematically reviewed the function-related characteristics and potentials of CAZyme-derived CBMs in this review, including substrate recognition and binding mechanisms, non-catalytic contributions to enzyme performances, module modifications, and innovative applications in various fields.
Collapse
Affiliation(s)
- Yuxian You
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Haocun Kong
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Caiming Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Zhengbiao Gu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaofeng Ban
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhaofeng Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China.
| |
Collapse
|
5
|
Ding N, Zhao B, Han X, Li C, Gu Z, Li Z. Starch-Binding Domain Modulates the Specificity of Maltopentaose Production at Moderate Temperatures. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9057-9065. [PMID: 35829707 DOI: 10.1021/acs.jafc.2c03031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Maltooligosaccharide-forming amylases (MFAs) hydrolyze starch into maltooligosaccharides with a defined degree of polymerization. However, the enzymatic mechanism underlying the product specificity remains partially understood. Here, we show that Saccharophagus degradans MFA (SdMFA) contains a noncatalytic starch-binding domain (SBD), which belongs to the carbohydrate-binding module family 20 and enables modulation of the product specificity. Removal of SBD from SdMFA resulted in a 3.5-fold lower production of the target maltopentaose. Conversely, appending SBD to another MFA from Bacillus megaterium improved the specificity for maltopentaose. SdMFA exhibited a higher level of exo-action and greater product specificity when reacting with amylopectin than with amylose. Our structural analysis and molecular dynamics simulation suggested that SBD could promote the recognition of nonreducing ends of substrates and delivery of the substrate chain to a groove end toward the active site in the catalytic domain. Furthermore, we demonstrate that a moderate temperature could mediate SBD to interact with the substrate with loose affinity, which facilitates the substrate to slide toward the active site. Together, our study reveals the structural and conditional bases for the specificity of MFAs, providing generalizable strategies to engineer MFAs and optimize the biosynthesis of maltooligosaccharides.
Collapse
Affiliation(s)
- Ning Ding
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Boyang Zhao
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Xu Han
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Caiming Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Zhengbiao Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Zhaofeng Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
6
|
Hu Y, Li H, Ran Q, Liu J, Zhou S, Qiao Q, Song H, Peng F, Jiang Z. Effect of carbohydrate binding modules alterations on catalytic activity of glycoside hydrolase family 6 exoglucanase from Chaetomium thermophilum to cellulose. Int J Biol Macromol 2021; 191:222-229. [PMID: 34508724 DOI: 10.1016/j.ijbiomac.2021.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 12/31/2022]
Abstract
Exoglucanase (CBH) is the rate limiting enzyme in the process of cellulose degradation. The carbohydrate binding module (CBM) can improve the accessibility of cellulase to substrate, thereby promoting the enzymatic hydrolysis of cellulase. In this study, the influence of CBM on the properties of GH6 exoglucanase from Chaetomium thermophilum (CtCBH) is systematically explored from three perspectives: the fusion of exogenous CBM, the exogenous CBM replacement of its own CBM, and the deletion of its own CBM. The parental and reconstructed CtCBH presented the same optimum pH (6.0) and temperature (60 °C) for maximum activity. Fusion of exogenous CBM increased the binding capacity of CtCBH to Avicel by 8% and 9%, respectively, but it had no significant effect on its catalytic activity. The exogenous CBM replacement of its own CBM resulted in a 12% reduction in the binding ability of CtCBH to Avicel, and a 26% reduction in the catalytic activity of Avicel. The deletion of its own CBM significantly reduced the binding ability of CtCBH to Avicel by approximately 53%, but its catalytic activity was not obviously reduced. These observations suggest that binding ability of CBM is not necessary for the catalysis of CtCBH.
Collapse
Affiliation(s)
- Yanmei Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, PR China; Hubei Key Laboratory of Industrial Biotechnology, School of Life Science, Hubei University, Wuhan 430062, PR China
| | - Huanan Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, PR China; Hubei Key Laboratory of Industrial Biotechnology, School of Life Science, Hubei University, Wuhan 430062, PR China
| | - Qiuping Ran
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, PR China; Hubei Key Laboratory of Industrial Biotechnology, School of Life Science, Hubei University, Wuhan 430062, PR China
| | - Jiashu Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, PR China; Hubei Key Laboratory of Industrial Biotechnology, School of Life Science, Hubei University, Wuhan 430062, PR China
| | - Shanna Zhou
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, PR China; Hubei Key Laboratory of Industrial Biotechnology, School of Life Science, Hubei University, Wuhan 430062, PR China
| | - Qiming Qiao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, PR China; Hubei Key Laboratory of Industrial Biotechnology, School of Life Science, Hubei University, Wuhan 430062, PR China
| | - Huiting Song
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, PR China; Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, PR China
| | - Fang Peng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, PR China; Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, PR China
| | - Zhengbing Jiang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, PR China; Hubei Key Laboratory of Industrial Biotechnology, School of Life Science, Hubei University, Wuhan 430062, PR China.
| |
Collapse
|
7
|
Liu J, Sun D, Zhu J, Liu C, Liu W. Carbohydrate-binding modules targeting branched polysaccharides: overcoming side-chain recalcitrance in a non-catalytic approach. BIORESOUR BIOPROCESS 2021; 8:28. [PMID: 38650221 PMCID: PMC10992016 DOI: 10.1186/s40643-021-00381-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/07/2021] [Indexed: 12/25/2022] Open
Abstract
Extensive decoration of backbones is a major factor resulting in resistance of enzymatic conversion in hemicellulose and other branched polysaccharides. Employing debranching enzymes is the main strategy to overcome this kind of recalcitrance at present. A carbohydrate-binding module (CBM) is a contiguous amino acid sequence that can promote the binding of enzymes to various carbohydrates, thereby facilitating enzymatic hydrolysis. According to previous studies, CBMs can be classified into four types based on their preference in ligand type, where Type III and IV CBMs prefer to branched polysaccharides than the linear and thus are able to specifically enhance the hydrolysis of substrates containing side chains. With a role in dominating the hydrolysis of branched substrates, Type III and IV CBMs could represent a non-catalytic approach in overcoming side-chain recalcitrance.
Collapse
Affiliation(s)
- Jiawen Liu
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Tongshan New District, Xuzhou, 221116, Jiangsu, China
| | - Di Sun
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Tongshan New District, Xuzhou, 221116, Jiangsu, China
| | - Jingrong Zhu
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Tongshan New District, Xuzhou, 221116, Jiangsu, China
| | - Cong Liu
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Tongshan New District, Xuzhou, 221116, Jiangsu, China.
| | - Weijie Liu
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Tongshan New District, Xuzhou, 221116, Jiangsu, China.
| |
Collapse
|
8
|
Nemmaru B, Ramirez N, Farino CJ, Yarbrough JM, Kravchenko N, Chundawat SPS. Reduced type-A carbohydrate-binding module interactions to cellulose I leads to improved endocellulase activity. Biotechnol Bioeng 2020; 118:1141-1151. [PMID: 33245142 DOI: 10.1002/bit.27637] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/12/2020] [Accepted: 11/15/2020] [Indexed: 12/24/2022]
Abstract
Dissociation of nonproductively bound cellulolytic enzymes from cellulose is hypothesized to be a key rate-limiting factor impeding cost-effective biomass conversion to fermentable sugars. However, the role of carbohydrate-binding modules (CBMs) in enabling nonproductive enzyme binding is not well understood. Here, we examine the subtle interplay of CBM binding and cellulose hydrolysis activity for three models type-A CBMs (Families 1, 3a, and 64) tethered to multifunctional endoglucanase (CelE) on two distinct cellulose allomorphs (i.e., cellulose I and III). We generated a small library of mutant CBMs with varying cellulose affinity, as determined by equilibrium binding assays, followed by monitoring cellulose hydrolysis activity of CelE-CBM fusion constructs. Finally, kinetic binding assays using quartz crystal microbalance with dissipation were employed to measure CBM adsorption and desorption rate constants k on and k off , respectively, towards nanocrystalline cellulose derived from both allomorphs. Overall, our results indicate that reduced CBM equilibrium binding affinity towards cellulose I alone, resulting from increased desorption rates ( k off ) and reduced effective adsorption rates ( nk on ), is correlated to overall improved endocellulase activity. Future studies could employ similar approaches to unravel the role of CBMs in nonproductive enzyme binding and develop improved cellulolytic enzymes for industrial applications.
Collapse
Affiliation(s)
| | - Nicholas Ramirez
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Cindy J Farino
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - John M Yarbrough
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Nicholas Kravchenko
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Shishir P S Chundawat
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| |
Collapse
|
9
|
Kozaki R, Miyake H. Enzymatic and molecular characterization of an endoglucanase E from Clostridium cellulovorans 743B. J Biosci Bioeng 2019; 128:398-404. [DOI: 10.1016/j.jbiosc.2019.03.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/08/2019] [Accepted: 03/15/2019] [Indexed: 10/27/2022]
|
10
|
Wang Z, Zhang T, Long L, Ding S. Altering the linker in processive GH5 endoglucanase 1 modulates lignin binding and catalytic properties. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:332. [PMID: 30568732 PMCID: PMC6297974 DOI: 10.1186/s13068-018-1333-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/07/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND The non-productive adsorption of cellulases onto lignin in biomass is a key issue for the biofuel process economy. It would be helpful to reduce the inhibitory effect of lignin on enzymatic hydrolysis by engineering weak lignin-binding cellulases. Cellulase linkers are highly divergent in their lengths, compositions, and glycosylations. Numerous studies have revealed that linkers can facilitate optimal interactions between structured domains. Recently, efforts have focused on the contributions and mechanisms of carbohydrate-binding modules and catalytic domains that affect lignin affinity and processivity of cellulases, but our understanding of the effects of the linker regions on lignin adsorption and processivity of GH5 processive endoglucanases is still limited. RESULTS Eight GH5 endoglucanase 1 variants of varying length, flexibility, and sequence in the linker region were constructed. Their characteristics were then compared to the wild-type enzyme (EG1). Remarkably, significant differences in the lignin adsorption profiles and processivities were observed for EG1 and other variants. Our studies suggest that either the length or the specific amino acid composition of the linker has a prominent influence on the lignin-binding affinity of the enzymes. Comparatively, the processivity may depend primarily on the length of the linker and less so on the specific amino acid composition. EG1-ApCel5A, a variant with better performance in enzymatic hydrolysis in the presence of lignin, was obtained by replacing a longer, flexible linker. In total, up to between 28.2 and 30.1% more reducing sugars were generated from filter paper by EG1-ApCel5A in the presence of lignin compared to EG1. CONCLUSIONS Our results highlight the relevance of the linker region in the lignin adsorption and processivity of a processive endoglucanase. Our findings suggest that the linker region may be used as a target for the design of more active and weaker lignin-binding cellulases.
Collapse
Affiliation(s)
- Zhen Wang
- The Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037 Jiangsu China
| | - Tianrui Zhang
- The Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037 Jiangsu China
| | - Liangkun Long
- The Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037 Jiangsu China
| | - Shaojun Ding
- The Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037 Jiangsu China
| |
Collapse
|
11
|
Wu B, Zheng S, Pedroso MM, Guddat LW, Chang S, He B, Schenk G. Processivity and enzymatic mechanism of a multifunctional family 5 endoglucanase from Bacillus subtilis BS-5 with potential applications in the saccharification of cellulosic substrates. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:20. [PMID: 29422948 PMCID: PMC5787917 DOI: 10.1186/s13068-018-1022-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 01/11/2018] [Indexed: 05/28/2023]
Abstract
BACKGROUND Presently, enzymes still constitute a major part of the cost of biofuel production from lignocellulosic biomass. Processive endoglucanases, which possess both endoglucanase and exoglucanase activity, have the potential to reduce the costs of biomass saccharification when used together with commercial cellulases. Therefore, the exploration of new processive endoglucanases has attracted much attention with a view to accelerating the industrialization of biofuels and biochemicals. RESULTS The endoglucanase EG5C and its truncated form EG5C-1 from Bacillus subtilis BS-5 were expressed and characterized. EG5C was a typical endoglucanase, comprised of a family 5 catalytic domain and family 3 carbohydrate-binding domain, and which had high activity toward soluble cellulosic substrates, but low activity toward insoluble cellulosic substrates. Importantly, the truncated form EG5C-1 was a processive endoglucanase that hydrolyzed not only carboxymethyl cellulose (CMC), but also insoluble cellulosic substrates. The hydrolytic activities of EG5C-1 towards CMC, phosphoric acid-swollen cellulose (PASC), p-nitrophenyl-β-d-cellobioside, filter paper and Avicel are 4170, 700, 2550, 405 and 320 U/μmol, respectively. These data demonstrated that EG5C-1 had higher activity ratio of exoglucanase to endoglucanase than other known processive endoglucanases. When PASC was degraded by EG5C-1, the ratio of soluble to insoluble reducing sugars was about 3.7 after 3 h of incubation with cellobiose and cellotriose as the main products. Importantly, EG5C-1 alone was able to hydrolyze filter paper and PASC. At 5% substrate concentration and 10 FPU/g PASC enzyme loading, the saccharification yield was 76.5% after 60 h of incubation. Replacement of a phenylalanine residue (F238) by an alanine at the entrance/exit of the substrate binding cleft significantly reduces the ability of EG5C-1 to degrade filter paper and Avicel, but this mutation has little impact on CMCase activity. The processivity of this mutant was also greatly reduced while its cellulose binding ability was markedly enhanced. CONCLUSIONS The processive endoglucanase EG5C-1 from B. subtilis BS-5 exhibits excellent properties that render it a suitable candidate for use in biofuel and biochemical production from lignocellulosic biomass. In addition, our studies also provide useful information for research on enzyme processivity at the molecular level.
Collapse
Affiliation(s)
- Bin Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan road, Nanjing, 211816 Jiangsu China
- China Jiangsu National Synergetic Innovation Center for Advanced Materials, 30 Puzhunan road, Nanjing, 211816 Jiangsu China
| | - Shan Zheng
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, QLD 4072 Australia
| | - Marcelo Monteiro Pedroso
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, QLD 4072 Australia
| | - Luke W. Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, QLD 4072 Australia
| | - Siyuan Chang
- School of Pharmaceutical Sciences, Nanjing Tech University, 30 Puzhunan road, Nanjing, 211816 Jiangsu China
| | - Bingfang He
- China Jiangsu National Synergetic Innovation Center for Advanced Materials, 30 Puzhunan road, Nanjing, 211816 Jiangsu China
- School of Pharmaceutical Sciences, Nanjing Tech University, 30 Puzhunan road, Nanjing, 211816 Jiangsu China
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, QLD 4072 Australia
| |
Collapse
|
12
|
Meleiro LP, Carli S, Fonseca-Maldonado R, da Silva Torricillas M, Zimbardi ALRL, Ward RJ, Jorge JA, Furriel RPM. Overexpression of a Cellobiose-Glucose-Halotolerant Endoglucanase from Scytalidium thermophilum. Appl Biochem Biotechnol 2017; 185:316-333. [PMID: 29150773 DOI: 10.1007/s12010-017-2660-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 11/13/2017] [Indexed: 11/28/2022]
Abstract
Enzyme reaction products and by-products from pretreatment steps can inhibit endoglucanases and are major factors limiting the efficiency of enzymatic lignocellulosic biomass hydrolysis. The gene encoding the endoglucanase from Scytalidium thermophilum (egst) was cloned and expressed as a soluble protein in Pichia pastoris GS115. The recombinant enzyme (Egst) was monomeric (66 kDa) and showed an estimated carbohydrate content of 53.3% (w/w). The optimum temperature and pH of catalysis were 60-70 °C and pH of 5.5, respectively. The enzyme was highly stable at pH 3.0-8.0 with a half-life in water of 100 min at 65 °C. The Egst presented good halotolerance, retaining 84.1 and 71.4% of the control activity in the presence of 0.5 and 2.0 mol L-1 NaCl, respectively. Hydrolysis of medium viscosity carboxymethylcellulose (CMC) by Egst was stimulated 1.77-, 1.84-, 1.64-, and 1.8-fold by dithiothreitol, β-mercaptoethanol, cysteine, and manganese at 10, 10, 10, and 5 mmol L-1 concentration, respectively. The enzyme hydrolyzed CMC with maximal velocity and an apparent affinity constant of 432.10 ± 16.76 and 10.5 ± 2.53 mg mL-1, respectively. Furthermore, the Egst was tolerant to reaction products and able to act on pretreated fractions sugarcane bagasse demonstrating excellent properties for application in the hydrolysis of lignocellulosic biomass.
Collapse
Affiliation(s)
- Luana Parras Meleiro
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Sibeli Carli
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Marcela da Silva Torricillas
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ana Lucia Ribeiro Latorre Zimbardi
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Richard John Ward
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - João Atílio Jorge
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rosa Prazeres Melo Furriel
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
13
|
Carbohydrate active enzyme domains from extreme thermophiles: components of a modular toolbox for lignocellulose degradation. Extremophiles 2017; 22:1-12. [PMID: 29110088 DOI: 10.1007/s00792-017-0974-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/24/2017] [Indexed: 02/06/2023]
Abstract
Lignocellulosic biomass is a promising feedstock for the manufacture of biodegradable and renewable bioproducts. However, the complex lignocellulosic polymeric structure of woody tissue is difficult to access without extensive industrial pre-treatment. Enzyme processing of partly depolymerised biomass is an established technology, and there is evidence that high temperature (extremely thermophilic) lignocellulose degrading enzymes [carbohydrate active enzymes (CAZymes)] may enhance processing efficiency. However, wild-type thermophilic CAZymes will not necessarily be functionally optimal under industrial pre-treatment conditions. With recent advances in synthetic biology, it is now potentially possible to build CAZyme constructs from individual protein domains, tailored to the conditions of specific industrial processes. In this review, we identify a 'toolbox' of thermostable CAZyme domains from extremely thermophilic organisms and highlight recent advances in CAZyme engineering which will allow for the rational design of CAZymes tailored to specific aspects of lignocellulose digestion.
Collapse
|
14
|
Recombinant thermo-alkali-stable endoglucanase of Myceliopthora thermophila BJA (rMt-egl): Biochemical characteristics and applicability in enzymatic saccharification of agro-residues. Int J Biol Macromol 2017; 104:107-116. [DOI: 10.1016/j.ijbiomac.2017.05.167] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 05/13/2017] [Accepted: 05/30/2017] [Indexed: 11/17/2022]
|
15
|
Duan CJ, Huang MY, Pang H, Zhao J, Wu CX, Feng JX. Characterization of a novel theme C glycoside hydrolase family 9 cellulase and its CBM-chimeric enzymes. Appl Microbiol Biotechnol 2017; 101:5723-5737. [DOI: 10.1007/s00253-017-8320-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/09/2017] [Accepted: 04/29/2017] [Indexed: 01/27/2023]
|