1
|
Zhang X, Ding J, Liao M, Meng X, Fu Y, Huang L, Wang Z, Wang Q. Characterization of Degraded Konjac Glucomannan from an Isolated Bacillus licheniformis Strain with Multi-Enzyme Synergetic Action. Foods 2024; 13:2041. [PMID: 38998547 PMCID: PMC11241805 DOI: 10.3390/foods13132041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/14/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
The large molecular weight and high viscosity of natural konjac glucomannan (KGM) limit its industrial application. Microbial degradation of low-molecular-weight KGM has health benefits and various biological functions; however, the available KGM strains used in the industry have microbial contamination and low degradation efficiencies. Therefore, exploring novelly adaptable strains is critical for industrial processes. Here, the Bacillus licheniformis Z7-1 strain isolated from decaying konjac showed high efficiency for KGM degradation. The monosaccharide composition of the degradation products had a reduced molar ratio of mannose to glucose, indicating that Z7-1 preferentially degraded glucose in KGM. The degraded component was further characterized by ESI-MS, Fourier-transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM), and it also exhibited good antibacterial activity against various food-spoilage bacteria. Genome sequencing and zymolytic analysis revealed that abundant carbohydrate-active enzymes exist in the Z7-1 genome, with at least five types of extracellular enzymes responsible for KGM degradation, manifesting multi-enzyme synergetic action. The extracellular enzymes had significant thermal stability, indicating their potential application in industry. This study provides an alternative method for obtaining low-molecular-weight KGM with antibacterial functions and supports foundational knowledge for its development as a biocatalyst for the direct conversion of biomass polysaccharides into functional components.
Collapse
Affiliation(s)
- Xueting Zhang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Jieqiong Ding
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Minghong Liao
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Xin Meng
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Yubiao Fu
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Linjuan Huang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Zhongfu Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Qingling Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| |
Collapse
|
2
|
Zhang X, Zhang X, Shi H, Zhang H, Zhang J, Yue C, Li D, Yao L, Tang C. Combining Flexible Region Design and Automatic Design to Enhance the Thermal Stability and Catalytic Efficiency of Leucine Dehydrogenase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38838197 DOI: 10.1021/acs.jafc.4c02152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Leucine dehydrogenase (LeuDH, EC 1.4.1.9) can reversibly catalyze the oxidative deamination of l-leucine and some other specific α-amino acids to form the corresponding α-ketoacids. This reaction has great significance in the field of food additives and the pharmaceutical industry. The LeuDH from Exiguobacterium sibiricum (EsLeuDH) has high catalytic efficiency but limited thermal stability, hindering its widespread industrial application. In this study, a mutant N5F/I12L/A352Y of EsLeuDH (referred to as M2) was developed with enhanced thermal stability and catalytic activity through rational modification. The M2 mutant exhibits a half-life at 60 °C (t1/2(60 °C)) of 975.7 min and a specific activity of 69.6 U mg-1, which is 5.4 and 2.1 times higher than those of EsLeuDH, respectively. This research may facilitate the utilization of EsLeuDH at elevated temperatures, enhancing its potential for industrial applications. The findings offer a practical and efficient approach for optimizing LeuDH and other industrial enzymes.
Collapse
Affiliation(s)
- Xiang Zhang
- College of Life Science, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan 473061, People's Republic of China
| | - Xichuan Zhang
- College of Life Science, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan 473061, People's Republic of China
| | - Hongling Shi
- College of Life Science, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan 473061, People's Republic of China
| | - Huimin Zhang
- College of Animal Science and Technology, Yangzhou University, 88 South Daxue Road, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Jianhui Zhang
- Postdoctoral Innovation Training Base, She Dian Lao Jiu Co. Ltd., 2 Liquor Avenue, Nanyang, Henan 473300, People's Republic of China
| | - Chao Yue
- College of Life Science, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan 473061, People's Republic of China
| | - Dandan Li
- College of Life Science, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan 473061, People's Republic of China
| | - Lunguang Yao
- College of Life Science, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan 473061, People's Republic of China
| | - Cunduo Tang
- College of Life Science, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan 473061, People's Republic of China
- Postdoctoral Innovation Training Base, She Dian Lao Jiu Co. Ltd., 2 Liquor Avenue, Nanyang, Henan 473300, People's Republic of China
| |
Collapse
|
3
|
Wang P, Pei X, Zhou W, Zhao Y, Gu P, Li Y, Gao J. Research and application progress of microbial β-mannanases: a mini-review. World J Microbiol Biotechnol 2024; 40:169. [PMID: 38630389 DOI: 10.1007/s11274-024-03985-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
Mannan is a predominant constituent of cork hemicellulose and is widely distributed in various plant tissues. β-Mannanase is the principal mannan-degrading enzyme, which breaks down the β-1,4-linked mannosidic bonds in mannans in an endo-acting manner. Microorganisms are a valuable source of β-mannanase, which exhibits catalytic activity in a wide range of pH and temperature, making it highly versatile and applicable in pharmaceuticals, feed, paper pulping, biorefinery, and other industries. Here, the origin, classification, enzymatic properties, molecular modification, immobilization, and practical applications of microbial β-mannanases are reviewed, the future research directions for microbial β-mannanases are also outlined.
Collapse
Affiliation(s)
- Ping Wang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, PR China
| | - Xiaohui Pei
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, PR China
| | - Weiqiang Zhou
- Weili Biotechnology (Shandong) Co., Ltd, Taian, 271400, PR China
| | - Yue Zhao
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, PR China
| | - Pengfei Gu
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, PR China
| | - Yumei Li
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, PR China.
| | - Juan Gao
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, PR China.
- Shandong Engineering Research Center of Key Technologies for High-Value and High-Efficiency Full Industry Chain of Lonicera japonica, Linyi, 273399, PR China.
| |
Collapse
|
4
|
Matsuzawa T. Plant polysaccharide degradation-related enzymes in Aspergillus oryzae. Biosci Biotechnol Biochem 2024; 88:276-282. [PMID: 38066701 DOI: 10.1093/bbb/zbad177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/06/2023] [Indexed: 02/22/2024]
Abstract
Plants synthesize large amounts of stored and structural polysaccharides. Aspergillus oryzae is used in traditional Japanese fermentation and produces many types of plant polysaccharide degradation-related enzymes. The carbohydrate-active enzymes of A. oryzae are important in the fermentation process and biotechnological applications. Because plant polysaccharides have a complex structure, cooperative and synergistic actions of enzymes are crucial for the degradation of plant polysaccharides. For example, the cooperative action of isoprimeverose-producing oligoxyloglucan hydrolase, β-galactosidase, and α-xylosidase is important for the degradation of xyloglucan, and A. oryzae coordinates these enzymes at the expression level. In this review, I focus on the plant polysaccharide degradation-related enzymes identified in A. oryzae.
Collapse
Affiliation(s)
- Tomohiko Matsuzawa
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kagawa, Japan
| |
Collapse
|
5
|
High-level expression of an acetaldehyde dehydrogenase from Lactiplantibacillus plantarum and preliminary evaluation of its potential as a functional food additive. ELECTRON J BIOTECHN 2023. [DOI: 10.1016/j.ejbt.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
|
6
|
He JJ, Liu XX, Li Y, Wang Z, Shi HL, Kan YC, Yao LG, Tang CD. High level expression of nicotinamide nucleoside kinase from Saccharomyces cerevisiae and its purification and immobilization by one-step method. Front Bioeng Biotechnol 2023; 11:1134152. [PMID: 36873348 PMCID: PMC9975500 DOI: 10.3389/fbioe.2023.1134152] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Nicotinamide riboside kinase (NRK) plays an important role in the synthesis of β -nicotinamide nucleotide (NMN). NMN is a key intermediate of NAD+ synthesis, and it actually contribute to the well-being of our health. In this study, gene mining technology was used to clone nicotinamide nucleoside kinase gene fragments from S. cerevisiae, and the ScNRK1 was achieved a high level of soluble expression in E. coli BL21. Then, the reScNRK1 was immobilized by metal affinity label to optimize the enzyme performance. The results showed that the enzyme activity in the fermentation broth was 14.75 IU/mL, and the specific enzyme activity after purification was 2252.59 IU/mg. After immobilization, the optimum temperature of the immobilized enzyme was increased by 10°C compared with the free enzyme, and the temperature stability was improved with little change in pH. Moreover, the activity of the immobilized enzyme remained above 80% after four cycles of immobilized reScNRK1, which makes the enzyme more advantageous in the enzymatic synthesis of NMN.
Collapse
Affiliation(s)
- Jian-Ju He
- Henan Provincial Key Laboratory of Funiu Mountain Insect Biology and Henan Provincal Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang Normal University, Nanyang, China
- College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, China
| | - Xin-Xin Liu
- Henan Provincial Key Laboratory of Funiu Mountain Insect Biology and Henan Provincal Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang Normal University, Nanyang, China
- College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, China
| | - Ying Li
- Henan Provincial Key Laboratory of Funiu Mountain Insect Biology and Henan Provincal Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang Normal University, Nanyang, China
- College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, China
| | - Zhe Wang
- Henan Provincial Key Laboratory of Funiu Mountain Insect Biology and Henan Provincal Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang Normal University, Nanyang, China
- College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, China
| | - Hong-Ling Shi
- Henan Provincial Key Laboratory of Funiu Mountain Insect Biology and Henan Provincal Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang Normal University, Nanyang, China
- College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, China
| | - Yun-Chao Kan
- Henan Provincial Key Laboratory of Funiu Mountain Insect Biology and Henan Provincal Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang Normal University, Nanyang, China
| | - Lun-Guang Yao
- Henan Provincial Key Laboratory of Funiu Mountain Insect Biology and Henan Provincal Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang Normal University, Nanyang, China
- College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, China
| | - Cun-Duo Tang
- Henan Provincial Key Laboratory of Funiu Mountain Insect Biology and Henan Provincal Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang Normal University, Nanyang, China
- College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, China
| |
Collapse
|
7
|
Chavan AR, Singh AK, Gupta RK, Nakhate SP, Poddar BJ, Gujar VV, Purohit HJ, Khardenavis AA. Recent trends in the biotechnology of functional non-digestible oligosaccharides with prebiotic potential. Biotechnol Genet Eng Rev 2023:1-46. [PMID: 36714949 DOI: 10.1080/02648725.2022.2152627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/13/2022] [Indexed: 01/31/2023]
Abstract
Prebiotics as a part of dietary nutrition can play a crucial role in structuring the composition and metabolic function of intestinal microbiota and can thus help in managing a clinical scenario by preventing diseases and/or improving health. Among the different prebiotics, non-digestible carbohydrates are molecules that selectively enrich a typical class of bacteria with probiotic potential. This review summarizes the current knowledge about the different aspects of prebiotics, such as its production, characterization and purification by various techniques, and its link to novel product development at an industrial scale for wide-scale use in diverse range of health management applications. Furthermore, the path to effective valorization of agricultural residues in prebiotic production has been elucidated. This review also discusses the recent developments in application of genomic tools in the area of prebiotics for providing new insights into the taxonomic characterization of gut microorganisms, and exploring their functional metabolic pathways for enzyme synthesis. However, the information regarding the cumulative effect of prebiotics with beneficial bacteria, their colonization and its direct influence through altered metabolic profile is still getting established. The future of this area lies in the designing of clinical condition specific functional foods taking into consideration the host genotypes, thus facilitating the creation of balanced and required metabolome and enabling to maintain the healthy status of the host.
Collapse
Affiliation(s)
- Atul Rajkumar Chavan
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ashish Kumar Singh
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rakesh Kumar Gupta
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Suraj Prabhakarrao Nakhate
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Bhagyashri Jagdishprasad Poddar
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Vaibhav Vilasrao Gujar
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, India
- JoVE, Mumbai, India
| | - Hemant J Purohit
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, India
| | - Anshuman Arun Khardenavis
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
8
|
Tang CD, Zhang X, Shi HL, Liu XX, Wang HY, Lu YF, Zhang SP, Kan YC, Yao LG. Improving catalytic activity of Lactobacillus harbinensis -mandelate dehydrogenase toward -o-chloromandelic acid by laboratory evolution. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
9
|
Yang LL, Shi HL, Liu F, Wang Z, Chen KL, Chen WS, Niu XR, Kan YC, Yao LG, Tang CD. Gene cloning of a highly active phytase from Lactobacillus plantarum and further improving its catalytic activity and thermostability through protein engineering. Enzyme Microb Technol 2022; 156:109997. [DOI: 10.1016/j.enzmictec.2022.109997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 01/21/2023]
|
10
|
Ye S, Zongo AWS, Shah BR, Li J, Li B. Konjac Glucomannan (KGM), Deacetylated KGM (Da-KGM), and Degraded KGM Derivatives: A Special Focus on Colloidal Nutrition. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12921-12932. [PMID: 34713703 DOI: 10.1021/acs.jafc.1c03647] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Konjac flour, mainly obtained and purified from the tubers ofAmorphophallus konjac C. Koch, yields a high molecular weight (Mw) and viscous hydrocolloidal polysaccharide: konjac glucomannan (KGM). KGM has been widely applied in the food industry as a thickening and gelation agent as a result of its unique colloidal properties of effective viscosity enhancement and thermal-irreversible gelling. This review first narrates the typical commercial KGM source species, the industrial production, and the purification process of KGM flour. The structural information on native KGM, gelation mechanisms of alkali-induced deacetylated KGM (Da-KGM) hydrogel, progress on degraded KGM derivatives, cryoprotection effect, and colloidal nutrition are highlighted. Finally, the regulatory requirements of konjac flour and KGM among different countries are briefly introduced. The fine structure and physicochemical properties of KGM can be regulated in a great range via the deacetylation or degradation reaction. Here, the relationship between the physicochemical properties, such as viscosity, solubility, gelation, and nutritional effects, of native KGM, Da-KGM, and degraded KGM derivatives was preliminary established, which would provide theoretical guidance for designing KGM-based products with certain nutritional needs.
Collapse
Affiliation(s)
- Shuxin Ye
- College of Food Science and Technology, Huazhong Agriculture University, Wuhan, Hubei 430070, People's Republic of China
| | - Abel Wend-Soo Zongo
- College of Food Science and Technology, Huazhong Agriculture University, Wuhan, Hubei 430070, People's Republic of China
| | - Bakht Ramin Shah
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, University of South Bohemia in Ceske Budejovice, Na Sádkách 1780, 370 05 České Budějovice, Czech Republic
| | - Jing Li
- College of Food Science and Technology, Huazhong Agriculture University, Wuhan, Hubei 430070, People's Republic of China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agriculture University, Wuhan, Hubei 430070, People's Republic of China
- Hubei Collaborative Innovation Centre for Industrial Fermentation, Hubei University of Technology, Wuhan, Hubei 430068, People's Republic of China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei 430070, People's Republic of China
| |
Collapse
|
11
|
Jia YY, Xie YL, Yang LL, Shi HL, Lu YF, Zhang SP, Tang CD, Yao LG, Kan YC. Expression of Novel L-Leucine Dehydrogenase and High-Level Production of L-Tert-Leucine Catalyzed by Engineered Escherichia coli. Front Bioeng Biotechnol 2021; 9:655522. [PMID: 33859982 PMCID: PMC8042219 DOI: 10.3389/fbioe.2021.655522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/05/2021] [Indexed: 11/29/2022] Open
Abstract
Leucine dehydrogenase (LDH) is a NAD+-dependent oxidoreductase, which can selectively catalyze α-keto acids to obtain α-amino acids and their derivatives. It plays a key role in the biosynthesis of L-tert-leucine (L-Tle). As a non-naturally chiral amino acid, L-Tle can be used as an animal feed additive, nutrition fortifier, which is a perspective and important building block in the pharmaceutical, cosmetic, and food additive industry. In this study, four hypothetical leucine dehydrogenases were discovered by using genome mining technology, using the highly active leucine dehydrogenase LsLeuDH as a probe. These four leucine dehydrogenases were expressed in Escherichia coli BL21(DE3), respectively, and purified to homogeneity and characterized. Compared with the other enzymes, the specific activity of PfLeuDH also shows stronger advantage. In addition, the highly selective biosynthesis of L-Tle from trimethylpyruvic acid (TMP) was successfully carried out by whole-cell catalysis using engineered E. coli cells as biocatalyst, which can efficiently coexpress leucine dehydrogenase and formate dehydrogenase. One hundred-millimolar TMP was catalyzed for 25 h, and the yield and space-time yield of L-Tle reached 87.38% (e.e. >99.99%) and 10.90 g L–1 day–1. In short, this research has initially achieved the biosynthesis of L-Tle, laying a solid foundation for the realization of low-cost and large-scale biosynthesis of L-Tle.
Collapse
Affiliation(s)
- Yuan-Yuan Jia
- Henan Provincial Engineering Laboratory of Insect Bio-reactor, Henan Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North, Nanyang Normal University, Nanyang, China.,School of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, China
| | - Yu-Li Xie
- Henan Provincial Engineering Laboratory of Insect Bio-reactor, Henan Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North, Nanyang Normal University, Nanyang, China.,School of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, China
| | - Lu-Lu Yang
- Henan Provincial Engineering Laboratory of Insect Bio-reactor, Henan Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North, Nanyang Normal University, Nanyang, China.,School of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, China
| | - Hong-Ling Shi
- Henan Provincial Engineering Laboratory of Insect Bio-reactor, Henan Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North, Nanyang Normal University, Nanyang, China.,School of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, China
| | - Yun-Feng Lu
- Henan Provincial Engineering Laboratory of Insect Bio-reactor, Henan Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North, Nanyang Normal University, Nanyang, China.,School of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, China
| | - Si-Pu Zhang
- Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Cun-Duo Tang
- Henan Provincial Engineering Laboratory of Insect Bio-reactor, Henan Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North, Nanyang Normal University, Nanyang, China.,School of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, China
| | - Lun-Guang Yao
- Henan Provincial Engineering Laboratory of Insect Bio-reactor, Henan Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North, Nanyang Normal University, Nanyang, China.,School of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, China
| | - Yun-Chao Kan
- Henan Provincial Engineering Laboratory of Insect Bio-reactor, Henan Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North, Nanyang Normal University, Nanyang, China
| |
Collapse
|
12
|
Wang HY, Xie YL, Shi X, Shi HL, Xu JH, Tang CD, Yao LG, Kan YC. Directed evolution of a D-mandelate dehydrogenase toward D-o-chloromandelic acid and insight into the molecular basis for its catalytic performance. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2020.107863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Dawood A, Ma K. Applications of Microbial β-Mannanases. Front Bioeng Biotechnol 2020; 8:598630. [PMID: 33384989 PMCID: PMC7770148 DOI: 10.3389/fbioe.2020.598630] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/28/2020] [Indexed: 11/24/2022] Open
Abstract
Mannans are main components of hemicellulosic fraction of softwoods and they are present widely in plant tissues. β-mannanases are the major mannan-degrading enzymes and are produced by different plants, animals, actinomycetes, fungi, and bacteria. These enzymes can function under conditions of wide range of pH and temperature. Applications of β-mannanases have therefore, been found in different industries such as animal feed, food, biorefinery, textile, detergent, and paper and pulp. This review summarizes the most recent studies reported on potential applications of β-mannanases and bioengineering of β-mannanases to modify and optimize their key catalytic properties to cater to growing demands of commercial sectors.
Collapse
Affiliation(s)
- Aneesa Dawood
- Department of Microbiology, Quaid-I-Azam University, Islamabad, Pakistan
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, United States
| | - Kesen Ma
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
14
|
Kaira GS, Kapoor M. Molecular advancements on over-expression, stability and catalytic aspects of endo-β-mannanases. Crit Rev Biotechnol 2020; 41:1-15. [PMID: 33032458 DOI: 10.1080/07388551.2020.1825320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The hydrolysis of mannans by endo-β-mannanases continues to gather significance as exemplified by its commercial applications in food, feed, and a rekindled interest in biorefineries. The present review provides a comprehensive account of fundamental research and fascinating insights in the field of endo-β-mannanase engineering in order to improve over-expression and to decipher molecular determinants governing activity-stability during harsh conditions, substrate recognition, polysaccharide specificity, endo/exo mode of action and multi-functional activities in the modular polypeptide. In-depth analysis of the available literature has also been made on rational and directed evolution approaches, which have translated native endo-β-mannanases into superior biocatalysts for satisfying industrial requirements.
Collapse
Affiliation(s)
- Gaurav Singh Kaira
- Department of Protein Chemistry and Technology, CSIR-Central Food Technological Research Institute, Mysuru, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Mukesh Kapoor
- Department of Protein Chemistry and Technology, CSIR-Central Food Technological Research Institute, Mysuru, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
15
|
Efficient expression of novel glutamate decarboxylases and high level production of γ-aminobutyric acid catalyzed by engineered Escherichia coli. Int J Biol Macromol 2020; 160:372-379. [DOI: 10.1016/j.ijbiomac.2020.05.195] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 11/20/2022]
|
16
|
Asymmetric synthesis of l-phosphinothricin using thermostable alpha-transaminase mined from Citrobacter koseri. J Biotechnol 2019; 302:10-17. [PMID: 31201835 DOI: 10.1016/j.jbiotec.2019.06.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/30/2019] [Accepted: 06/11/2019] [Indexed: 11/22/2022]
Abstract
α-Transaminase (α-TA) responsible for catalyzing the reversible transfer of amino groups between amine donors and amine acceptors, is applicable to enzymatic route for asymmetric synthesis of herbicide l-phosphinothricin (l-PPT). In the search for α-TAs with better catalysis performance, three α-TAs were discovered by genome mining approach using a known sequence encoding Escherichia coli tyrosine TA (TyrB) as probe. Through detailed comparison of their expression amount, activities and characteristics, Citrobacter koseri TA (CkTA) exhibited better activity and thermostability, which retain 65.9% of initial activity after incubation at 57 °C for 4 h. The Km and kcat/Km values of CkTA were 36.75 mM and 34.29 mM-1 min-1, respectively. In addition, recombinant CkTA cells were immobilized onto Celite 545 using tris(hydroxymethyl)phosphine as crosslinker. During five repetitive asymmetric synthesis of l-PPT from 20 g/L prostereogenic ketone using l-Glu as amine donor, all the yields of l-PPT reached up to 91.2% (>99% ee). These characteristics made CkTA a valuable addition to the currently scarce α-TA library for stereospecific synthesis of l-PPT.
Collapse
|
17
|
Cloning and expression of a β-mannanase gene from Bacillus sp. MK-2 and its directed evolution by random mutagenesis. Enzyme Microb Technol 2019; 124:70-78. [DOI: 10.1016/j.enzmictec.2019.02.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/01/2019] [Accepted: 02/06/2019] [Indexed: 11/22/2022]
|
18
|
Tang CD, Ding PJ, Shi HL, Jia YY, Zhou MZ, Yu HL, Xu JH, Yao LG, Kan YC. One-Pot Synthesis of Phenylglyoxylic Acid from Racemic Mandelic Acids via Cascade Biocatalysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:2946-2953. [PMID: 30807132 DOI: 10.1021/acs.jafc.8b07295] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Phenylglyoxylic acid (PGA) are key building blocks and widely used to synthesize pharmaceutical intermediates or food additives. However, the existing synthetic methods for PGA generally involve toxic cyanide and complex processes. To explore an alternative method for PGA biosynthesis, we envisaged cascade biocatalysis for the one-pot synthesis of PGA from racemic mandelic acid. A novel mandelate racemase named ArMR showing higher expression level (216.9 U·mL-1 fermentation liquor) was cloned from Agrobacterium radiobacter and identified, and six recombinant Escherichia coli strains were engineered to coexpress three enzymes of mandelate racemase, d-mandelate dehydrogenase and l-lactate dehydrogenase, and transform racemic mandelic acid to PGA. Among them, the recombinant E. coli TCD 04, engineered to coexpress three enzymes of ArMR, LhDMDH, and LhLDH, can transform racemic mandelic acid (100 mM) to PGA with 98% conversion. Taken together, we provide a green approach for one-pot biosynthesis of PGA from racemic mandelic acid.
Collapse
Affiliation(s)
- Cun-Duo Tang
- Henan Provincial Engineering Laboratory of Insect Bio-reactor and Henan Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North , Nanyang Normal University , 1638 Wolong Road , Nanyang , Henan 473061 , People's Republic of China
- State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai 200237 , People's Republic of China
| | - Peng-Ju Ding
- Henan Provincial Engineering Laboratory of Insect Bio-reactor and Henan Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North , Nanyang Normal University , 1638 Wolong Road , Nanyang , Henan 473061 , People's Republic of China
| | - Hong-Ling Shi
- Henan Provincial Engineering Laboratory of Insect Bio-reactor and Henan Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North , Nanyang Normal University , 1638 Wolong Road , Nanyang , Henan 473061 , People's Republic of China
| | - Yuan-Yuan Jia
- Henan Provincial Engineering Laboratory of Insect Bio-reactor and Henan Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North , Nanyang Normal University , 1638 Wolong Road , Nanyang , Henan 473061 , People's Republic of China
| | - Mao-Zhi Zhou
- State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai 200237 , People's Republic of China
| | - Hui-Lei Yu
- State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai 200237 , People's Republic of China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai 200237 , People's Republic of China
| | - Lun-Guang Yao
- Henan Provincial Engineering Laboratory of Insect Bio-reactor and Henan Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North , Nanyang Normal University , 1638 Wolong Road , Nanyang , Henan 473061 , People's Republic of China
| | - Yun-Chao Kan
- Henan Provincial Engineering Laboratory of Insect Bio-reactor and Henan Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North , Nanyang Normal University , 1638 Wolong Road , Nanyang , Henan 473061 , People's Republic of China
| |
Collapse
|
19
|
Tang CD, Shi HL, Xu JH, Jiao ZJ, Liu F, Ding PJ, Shi HF, Yao LG, Kan YC. Biosynthesis of Phenylglyoxylic Acid by LhDMDH, a Novel d-Mandelate Dehydrogenase with High Catalytic Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:2805-2811. [PMID: 29460618 DOI: 10.1021/acs.jafc.7b05835] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
d-Mandelate dehydrogenase (DMDH) has the potential to convert d-mandelic acid to phenylglyoxylic acid (PGA), which is a key building block in the field of chemical synthesis and is widely used to synthesize pharmaceutical intermediates or food additives. A novel NAD+-dependent d-mandelate dehydrogenase was cloned from Lactobacillus harbinensi (LhDMDH) by genome mining and expressed in Escherichia coli BL21. After being purified to homogeneity, the oxidation activity of LhDMDH toward d-mandelic acid was approximately 1200 U·mg-1, which was close to four times the activity of the probe. Meanwhile, the kcat/ Km value of LhDMDH was 28.80 S-1·mM-1, which was distinctly higher than the probe. By coculturing two E. coli strains expressing LhDMDH and LcLDH, we developed a system for the efficient synthesis of PGA, achieving a 60% theoretical yield and 99% purity without adding coenzyme or cosubstrate. Our data supports the implementation of a promising strategy for the chiral resolution of racemic mandelic acid and the biosynthesis of PGA.
Collapse
Affiliation(s)
- Cun-Duo Tang
- Henan Provincial Engineering Laboratory of Insect Bio-reactor and Henan Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North , Nanyang Normal University , 1638 Wolong Road , Nanyang , Henan 473061 , People's Republic of China
- State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai 200237 , People's Republic of China
| | - Hong-Ling Shi
- Henan Provincial Engineering Laboratory of Insect Bio-reactor and Henan Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North , Nanyang Normal University , 1638 Wolong Road , Nanyang , Henan 473061 , People's Republic of China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai 200237 , People's Republic of China
| | - Zhu-Jin Jiao
- Henan Provincial Engineering Laboratory of Insect Bio-reactor and Henan Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North , Nanyang Normal University , 1638 Wolong Road , Nanyang , Henan 473061 , People's Republic of China
| | - Fei Liu
- Henan Provincial Engineering Laboratory of Insect Bio-reactor and Henan Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North , Nanyang Normal University , 1638 Wolong Road , Nanyang , Henan 473061 , People's Republic of China
| | - Peng-Ju Ding
- Henan Provincial Engineering Laboratory of Insect Bio-reactor and Henan Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North , Nanyang Normal University , 1638 Wolong Road , Nanyang , Henan 473061 , People's Republic of China
| | - Hong-Fei Shi
- Henan Provincial Engineering Laboratory of Insect Bio-reactor and Henan Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North , Nanyang Normal University , 1638 Wolong Road , Nanyang , Henan 473061 , People's Republic of China
| | - Lun-Guang Yao
- Henan Provincial Engineering Laboratory of Insect Bio-reactor and Henan Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North , Nanyang Normal University , 1638 Wolong Road , Nanyang , Henan 473061 , People's Republic of China
| | - Yun-Chao Kan
- Henan Provincial Engineering Laboratory of Insect Bio-reactor and Henan Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North , Nanyang Normal University , 1638 Wolong Road , Nanyang , Henan 473061 , People's Republic of China
| |
Collapse
|
20
|
You S, Ding J, Dai Y, Xing R, Qi W, Wang M, Su R, He Z. A simply enzymatic hydrolysis pretreatment for β-mannanase production from konjac powder. BIORESOURCE TECHNOLOGY 2018; 249:1052-1057. [PMID: 29074203 DOI: 10.1016/j.biortech.2017.09.181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/25/2017] [Accepted: 09/26/2017] [Indexed: 06/07/2023]
Abstract
Currently, the traditional fermentation using konjac powder for β-mannanase production presents operational difficulties and high energy consumption, because of the individual hot air sterilization for konjac powder. A simply enzymatic hydrolysis pretreatment for konjac powder was developed to solve the problems of the traditional process in a 7-L fermenter. In the new process, when hydrolysis yield of konjac powder was above 50%, the media became liquid state from gelatinous state and could be sterilized immediately, avoiding the hot air sterilization and solving the operational difficulties. Interestingly, the new process didn't have negative influence on β-mannanase production. Additionally, it could save close to 23% of power consumption during the whole fermentation. For another example, it did work well using locust bean gum for β-mannanase production in a 7-L fermenter. Therefore, the new process might be scaled up for industrial production using mannan-based bioresource as substrate.
Collapse
Affiliation(s)
- Shengping You
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Juanjuan Ding
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Yemei Dai
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Ruizhe Xing
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Wei Qi
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, PR China; Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, PR China.
| | - Mengfan Wang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, PR China
| | - Rongxin Su
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, PR China; Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, PR China
| | - Zhimin He
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China
| |
Collapse
|