1
|
Liu J, Zhao S, Wei W, Yu S, Wang Z, Zheng J. Improved catalytic stability of immobilized Candida antarctica lipase B on macroporous resin with organic polymer coating for biodiesel production. Bioprocess Biosyst Eng 2024:10.1007/s00449-024-03099-w. [PMID: 39433572 DOI: 10.1007/s00449-024-03099-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/11/2024] [Indexed: 10/23/2024]
Abstract
Lipase is one of the most widely studied and applied biocatalysts. Due to the high enzyme leakage rate of the immobilization method of physical adsorption, we propose a new lipase immobilization method, based on the combination of macroporous resin adsorption and organic polymer coating. The immobilized Candida antarctica lipase B (CALB@resin-CAB) was prepared by combining the macroporous resin adsorption with cellulose acetate butyrate coating, and its structure was characterized by various analytic methods. Immobilized lipase was applied for biodiesel production using acidified palm oil as the starting material, the conversion rate achieved as high as 98.5% in two steps. Furthermore, the immobilized lipase displayed satisfactory stability and reusability in biodiesel production. When the aforementioned reaction was carried out in a continuous flow packed bed system, the yield of biodiesel was 94.8% and space-time yield was 2.88 g/(mL∙h). The immobilized lipase CALB@resin-CAB showed high catalytic activity and stability, which has good potential for industrial application in the field of oil processing.
Collapse
Affiliation(s)
- Jiale Liu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Shufan Zhao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Wan Wei
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Shupeng Yu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Zhao Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Jianyong Zheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China.
| |
Collapse
|
2
|
Miranda FC, Oliveira KSGC, Tardioli PW, Fernandez-Lafuente R, Guimarães JR. Insights on the role of blocking agent on the properties of the lipase from Thermomyces lanuginosus immobilized on heterofunctional support for hydroesterification reactions. Int J Biol Macromol 2024; 275:133555. [PMID: 38960240 DOI: 10.1016/j.ijbiomac.2024.133555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/06/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
Here, we report a study of the effect of the blocking agent on the properties of the lipase from Thermomyces lanuginosus (TLL) immobilized on a heterofunctional support (Purolite C18-ethylnediamina (EDA)- vinyl sulfone (VS)-TLL-blocking agent) in different reactions. The performance of the biocatalysts was compared to those immobilized on standard hydrophobic support (Purolite C18-TLL) and the commercial one (TLL-IM). The nature of the blocking agent (Cys, Gly and Asp) altered the enzyme features. TLL-IM always gave a comparatively worse performance, with its specificity for the oil being very different to the Purolite biocatalysts. Under optimized conditions, Purolite C18-TLL yielded 97 % of hydrolysis conversion after 4 h using a water/waste cooking soybean oil (WCSO) mass ratio of 4.3, biocatalyst load of 6.5 wt% and a temperature of 44.2 °C (without buffer or emulsification agent). In esterification reactions of the purified free fatty acids (FFAs) obtained from WCSO, the best TLL biocatalysts depended on the utilized alcohol: linear amyl alcohol was preferred by Purolite C18-TLL and Purolite C18-EDA-VS-TLL-Gly, while higher activity was achieved utilizing isoamyl alcohol as nucleophile by Purolite C18-EDA-VS-TLL-Cys, Purolite C18-EDA-VS-TLL-Asp and IM-TLL as catalysts. All the results indicate the influence of the blocking step on the final biocatalyst features.
Collapse
Affiliation(s)
- Felipe Cardoso Miranda
- Institute of Natural Resources, Federal University of Itajubá, Av. Benedito Pereira dos Santos, 1303, Itajubá, Minas Gerais 37500-903, Brazil
| | | | - Paulo Waldir Tardioli
- Department of Chemical Engineering, Federal Institute of Education, Science and Technology of the South of Minas Gerais, Av. Maria da Conceição Santos, 900, 37560-260 Pouso Alegre, Minas Gerais, Brazil
| | - Roberto Fernandez-Lafuente
- Department of biocatalysis, Institute of Catalysis and Petrochemistry (ICP-CSIC), Campus UAM -CSIC, 28049 Madrid, Spain.
| | - José Renato Guimarães
- Institute of Natural Resources, Federal University of Itajubá, Av. Benedito Pereira dos Santos, 1303, Itajubá, Minas Gerais 37500-903, Brazil.
| |
Collapse
|
3
|
Scheibel DM, Gitsov IPI, Gitsov I. Enzymes in "Green" Synthetic Chemistry: Laccase and Lipase. Molecules 2024; 29:989. [PMID: 38474502 DOI: 10.3390/molecules29050989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/14/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Enzymes play an important role in numerous natural processes and are increasingly being utilized as environmentally friendly substitutes and alternatives to many common catalysts. Their essential advantages are high catalytic efficiency, substrate specificity, minimal formation of byproducts, and low energy demand. All of these benefits make enzymes highly desirable targets of academic research and industrial development. This review has the modest aim of briefly overviewing the classification, mechanism of action, basic kinetics and reaction condition effects that are common across all six enzyme classes. Special attention is devoted to immobilization strategies as the main tools to improve the resistance to environmental stress factors (temperature, pH and solvents) and prolong the catalytic lifecycle of these biocatalysts. The advantages and drawbacks of methods such as macromolecular crosslinking, solid scaffold carriers, entrapment, and surface modification (covalent and physical) are discussed and illustrated using numerous examples. Among the hundreds and possibly thousands of known and recently discovered enzymes, hydrolases and oxidoreductases are distinguished by their relative availability, stability, and wide use in synthetic applications, which include pharmaceutics, food and beverage treatments, environmental clean-up, and polymerizations. Two representatives of those groups-laccase (an oxidoreductase) and lipase (a hydrolase)-are discussed at length, including their structure, catalytic mechanism, and diverse usage. Objective representation of the current status and emerging trends are provided in the main conclusions.
Collapse
Affiliation(s)
- Dieter M Scheibel
- Department of Chemistry, State University of New York-ESF, Syracuse, NY 13210, USA
| | - Ioan Pavel Ivanov Gitsov
- Science and Technology, Medtronic Incorporated, 710 Medtronic Parkway, Minneapolis, MN 55432, USA
| | - Ivan Gitsov
- Department of Chemistry, State University of New York-ESF, Syracuse, NY 13210, USA
- The Michael M. Szwarc Polymer Research Institute, Syracuse, NY 13210, USA
- Biomedical and Chemical Engineering Department, Syracuse University, Syracuse, NY 13210, USA
- BioInspired Institute, Syracuse, NY 13210, USA
| |
Collapse
|
4
|
Sheng ZK, Liu Y, Du LH, Zhang SY, Zhang AY, Xie HJ, Lin H, Yan BL, Xue MM, Ruan ZX, Fu GN, Pan BL, Zhou TY, Luo XP. Development of a green, concise synthesis of nicotinamide derivatives catalysed by Novozym® 435 from Candida antarctica in sustainable continuous-flow microreactors. RSC Adv 2024; 14:131-138. [PMID: 38173597 PMCID: PMC10758761 DOI: 10.1039/d3ra07201k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 11/21/2023] [Indexed: 01/05/2024] Open
Abstract
An increasing number of studies have shown that many nicotinamide derivatives exhibited extensive biological activities, such as anti-inflammatory and antitumor activity. In this paper, a green, concise synthesis of nicotinamide derivatives in sustainable continuous-flow microreactors catalysed by Novozym® 435 from Candida antarctica has been developed. Application of an easily obtainable and reusable lipase in the synthesis of nicotinamide derivatives from methyl nicotinate and amines/benzylamines reacted for 35 min at 50 °C led to high product yields (81.6-88.5%). Environmentally friendly tert-amyl alcohol was applied as a reaction medium. Substantially shorter reaction times as well as a significant increase in the product yield were obtained as compared to the batch process. This innovative approach provides a promising green, efficient and rapid synthesis strategy for pharmaceutical synthesis and further activity research of novel nicotinamide derivatives.
Collapse
Affiliation(s)
- Zhi-Kai Sheng
- College of Pharmaceutical Science, ZheJiang University of Technology Zhejiang Hangzhou 310014 China +86 571 88320903 +86-189-690-693-99
| | - Yi Liu
- College of Pharmaceutical Science, ZheJiang University of Technology Zhejiang Hangzhou 310014 China +86 571 88320903 +86-189-690-693-99
| | - Li-Hua Du
- College of Pharmaceutical Science, ZheJiang University of Technology Zhejiang Hangzhou 310014 China +86 571 88320903 +86-189-690-693-99
| | - Shi-Yi Zhang
- College of Pharmaceutical Science, ZheJiang University of Technology Zhejiang Hangzhou 310014 China +86 571 88320903 +86-189-690-693-99
| | - Ao-Ying Zhang
- College of Pharmaceutical Science, ZheJiang University of Technology Zhejiang Hangzhou 310014 China +86 571 88320903 +86-189-690-693-99
| | - Han-Jia Xie
- College of Pharmaceutical Science, ZheJiang University of Technology Zhejiang Hangzhou 310014 China +86 571 88320903 +86-189-690-693-99
| | - Hang Lin
- College of Pharmaceutical Science, ZheJiang University of Technology Zhejiang Hangzhou 310014 China +86 571 88320903 +86-189-690-693-99
| | - Bing-Lin Yan
- College of Pharmaceutical Science, ZheJiang University of Technology Zhejiang Hangzhou 310014 China +86 571 88320903 +86-189-690-693-99
| | - Miao-Miao Xue
- College of Pharmaceutical Science, ZheJiang University of Technology Zhejiang Hangzhou 310014 China +86 571 88320903 +86-189-690-693-99
| | - Zhi-Xuan Ruan
- College of Pharmaceutical Science, ZheJiang University of Technology Zhejiang Hangzhou 310014 China +86 571 88320903 +86-189-690-693-99
| | - Guo-Neng Fu
- College of Pharmaceutical Science, ZheJiang University of Technology Zhejiang Hangzhou 310014 China +86 571 88320903 +86-189-690-693-99
| | - Bing-Le Pan
- College of Pharmaceutical Science, ZheJiang University of Technology Zhejiang Hangzhou 310014 China +86 571 88320903 +86-189-690-693-99
| | - Tong-Yao Zhou
- College of Pharmaceutical Science, ZheJiang University of Technology Zhejiang Hangzhou 310014 China +86 571 88320903 +86-189-690-693-99
| | - Xi-Ping Luo
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang A&F University Zhejiang Hangzhou 311300 China
| |
Collapse
|
5
|
Morales AH, Hero JS, Ledesma AE, Martínez MA, Navarro MC, Gómez MI, Romero CM. Tuning surface interactions on MgFe 2O 4 nanoparticles to induce interfacial hyperactivation in Candida rugosa lipase immobilization. Int J Biol Macromol 2023; 253:126615. [PMID: 37652323 DOI: 10.1016/j.ijbiomac.2023.126615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/15/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Lipase adsorption on solid supports can be mediated by a precise balance of electrostatic and hydrophobic interactions. A suitable fine-tuning could allow the immobilized enzyme to display high catalytic activity. The objective of this work was to investigate how pH and ionic strength fluctuations affected protein-support interactions during immobilization via physical adsorption of a Candida rugosa lipase (CRL) on MgFe2O5. The highest amount of immobilized protein (IP) was measured at pH 4, and an ionic strength of 90 mM. However, these immobilization conditions did not register the highest hydrolytic activity (HA) in the biocatalyst (CRLa@MgFe2O4), finding the best values also at acidic pH but with a slight shift towards higher values of ionic strength around 110 mM. These findings were confirmed when the adsorption isotherms were examined under different immobilization conditions so that the maximum measurements of IP did not coincide with that of HA. Furthermore, when the recovered activity was examined, a strong interfacial hyperactivation of the lipase was detected towards acidic pH and highly charged surrounding environments. Spectroscopic studies, as well as in silico molecular docking analyses, revealed a considerable involvement of surface hydrophobic protein-carrier interactions, with aromatic aminoacids, especially phenylalanine residues, playing an important role. In light of these findings, this study significantly contributes to the body of knowledge and a better understanding of the factors that influence the lipase immobilization process on magnetic inorganic oxide nanoparticle surfaces.
Collapse
Affiliation(s)
- Andrés H Morales
- Planta Piloto de Procesos Industriales Microbiológicos PROIMI-CONICET, Av. Belgrano y Pasaje Caseros, T4001 MVB Tucumán, Argentina.
| | - Johan S Hero
- Planta Piloto de Procesos Industriales Microbiológicos PROIMI-CONICET, Av. Belgrano y Pasaje Caseros, T4001 MVB Tucumán, Argentina
| | - Ana E Ledesma
- Centro de Investigación en Biofísica Aplicada y Alimentos (CIBAAL-UNSE- CONICET), Universidad Nacional de Santiago del Estero, RN 9, km 1125, (4206) Santiago del Estero, Argentina; Universidad Nacional de Santiago del Estero, Facultad de Ciencias Exactas y Tecnologías, Departamento Académico de Química, Av. Belgrano Sur 1912, 4200, Santiago del Estero, Argentina
| | - M Alejandra Martínez
- Planta Piloto de Procesos Industriales Microbiológicos PROIMI-CONICET, Av. Belgrano y Pasaje Caseros, T4001 MVB Tucumán, Argentina; Facultad de Ciencias Exactas yTecnología, UNT. Av. Independencia 1800, San Miguel de Tucumán 4000, Argentina
| | - María C Navarro
- Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000IL, San Miguel de Tucumán, Argentina
| | - María I Gómez
- Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000IL, San Miguel de Tucumán, Argentina
| | - Cintia M Romero
- Planta Piloto de Procesos Industriales Microbiológicos PROIMI-CONICET, Av. Belgrano y Pasaje Caseros, T4001 MVB Tucumán, Argentina; Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000IL, San Miguel de Tucumán, Argentina.
| |
Collapse
|
6
|
Monteiro RRC, Berenguer-Murcia Á, Rocha-Martin J, Vieira RS, Fernandez-Lafuente R. Biocatalytic production of biolubricants: Strategies, problems and future trends. Biotechnol Adv 2023; 68:108215. [PMID: 37473819 DOI: 10.1016/j.biotechadv.2023.108215] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/22/2023]
Abstract
The increasing worries by the inadequate use of energy and the preservation of nature are promoting an increasing interest in the production of biolubricants. After discussing the necessity of producing biolubricants, this review focuses on the production of these interesting molecules through the use of lipases, discussing the different possibilities (esterification of free fatty acids, hydroesterification or transesterification of oils and fats, transesterification of biodiesel with more adequate alcohols, estolides production, modification of fatty acids). The utilization of discarded substrates has special interest due to the double positive ecological impact (e.g., oil distillated, overused oils). Pros and cons of all these possibilities, together with general considerations to optimize the different processes will be outlined. Some possibilities to overcome some of the problems detected in the production of these interesting compounds will be also discussed.
Collapse
Affiliation(s)
- Rodolpho R C Monteiro
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, 60455760 Fortaleza, Brazil
| | - Ángel Berenguer-Murcia
- Departamento de Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, 03080 Alicante, Spain
| | - Javier Rocha-Martin
- Departamento de Bioquímica y Biología Molecular, Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - Rodrigo S Vieira
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, 60455760 Fortaleza, Brazil.
| | | |
Collapse
|
7
|
Cambraia MVS, Barbosa MS, Soares CMF, Carvalho AKF, Mendes AA. Process optimization for enzymatic production of a valuable biomass-based ester from levulinic acid. Bioprocess Biosyst Eng 2023; 46:53-67. [PMID: 36409316 DOI: 10.1007/s00449-022-02813-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/09/2022] [Indexed: 11/22/2022]
Abstract
The enzymatic production of isoamyl levulinate via esterification of isoamyl alcohol (IA) and levulinic acid (LA), a biomass-based platform chemical with attractive properties, in a solvent system has been performed in this study. For such a purpose, a low-cost liquid lipase (Eversa® Transform 2.0) immobilized by physical adsorption via hydrophobic interactions (mechanism of interfacial activation) on mesoporous poly(styrenene-divinylbenzene) (PSty-DVB) beads was used as heterogeneous biocatalyst. It was prepared at low ionic strength (5 mmol.L-1 buffer sodium acetate pH 5.0) and 25 ℃ using an initial protein loading of 40 mg.g-1 of support. Maximum protein loading of 31.2 ± 2.8 mg.g-1 of support and an immobilization yield of 83% was achieved. The influence of relevant factors (biocatalyst concentration and reaction temperature) on ester production was investigated using a central composite rotatable design (CCRD). Maximum acid conversion percentage of 65% was achieved after 12 h of reaction at 40 °C, 20% of mass of heterogeneous biocatalyst per mass of reaction mixture (20% m.m-1), and LA:IA molar ratio of 1:1.5 in a methyl isobutyl ketone (MIBK) medium. The biocatalyst retained around of 30% of its initial activity after five consecutive esterification batches under optimal experimental conditions. The proposed experimental procedure can be considered as an acceptable green process (EcoScale score of 66.5), in addition to the fact that a new strategy is proposed to sustainably produce a valuable industrial ester (isoamyl levulinate) from biomass-based materials using an immobilized and low-cost commercial lipase as catalyst.
Collapse
Affiliation(s)
- Marcus V S Cambraia
- Graduate Program in Biotechnology, Federal University of Alfenas, Alfenas, MG, 37130-001, Brazil.,Institute of Chemistry, Federal University of Alfenas, Alfenas, MG, 37130-001, Brazil
| | - Milson S Barbosa
- Tiradentes University, Av. Murilo Dantas 300, Farolândia, Aracaju, Sergipe, 49032-490, Brazil.,Institute of Technology and Research, Av. Murilo Dantas 300, Farolândia, Aracaju, Sergipe, 49032-490, Brazil
| | - Cleide M F Soares
- Tiradentes University, Av. Murilo Dantas 300, Farolândia, Aracaju, Sergipe, 49032-490, Brazil.,Institute of Technology and Research, Av. Murilo Dantas 300, Farolândia, Aracaju, Sergipe, 49032-490, Brazil
| | - Ana K F Carvalho
- Graduate Program in Biotechnology, Federal University of Alfenas, Alfenas, MG, 37130-001, Brazil.,Institute of Chemistry, Federal University of Alfenas, Alfenas, MG, 37130-001, Brazil
| | - Adriano A Mendes
- Graduate Program in Biotechnology, Federal University of Alfenas, Alfenas, MG, 37130-001, Brazil. .,Institute of Chemistry, Federal University of Alfenas, Alfenas, MG, 37130-001, Brazil.
| |
Collapse
|
8
|
Souza PMP, Carballares D, Gonçalves LRB, Fernandez-Lafuente R, Rodrigues S. Immobilization of Lipase B from Candida antarctica in Octyl-Vinyl Sulfone Agarose: Effect of the Enzyme-Support Interactions on Enzyme Activity, Specificity, Structure and Inactivation Pathway. Int J Mol Sci 2022; 23:ijms232214268. [PMID: 36430745 PMCID: PMC9697615 DOI: 10.3390/ijms232214268] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/21/2022] [Accepted: 11/11/2022] [Indexed: 11/21/2022] Open
Abstract
Lipase B from Candida antarctica was immobilized on heterofunctional support octyl agarose activated with vinyl sulfone to prevent enzyme release under drastic conditions. Covalent attachment was established, but the blocking step using hexylamine, ethylenediamine or the amino acids glycine (Gly) and aspartic acid (Asp) altered the results. The activities were lower than those observed using the octyl biocatalyst, except when using ethylenediamine as blocking reagent and p-nitrophenol butyrate (pNPB) as substrate. The enzyme stability increased using these new biocatalysts at pH 7 and 9 using all blocking agents (much more significantly at pH 9), while it decreased at pH 5 except when using Gly as blocking agent. The stress inactivation of the biocatalysts decreased the enzyme activity versus three different substrates (pNPB, S-methyl mandelate and triacetin) in a relatively similar fashion. The tryptophane (Trp) fluorescence spectra were different for the biocatalysts, suggesting different enzyme conformations. However, the fluorescence spectra changes during the inactivation were not too different except for the biocatalyst blocked with Asp, suggesting that, except for this biocatalyst, the inactivation pathways may not be so different.
Collapse
Affiliation(s)
- Priscila M. P. Souza
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, 28049 Madrid, Spain
- Food Engineering Department, Federal University of Ceará, Campus do Pici, Bloco 858, Fortaleza CEP 60440-900, CE, Brazil
| | - Diego Carballares
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, 28049 Madrid, Spain
| | - Luciana R. B. Gonçalves
- Chemical Engineering Department, Federal University of Ceará, Campus do Pici, Bloco 709, Fortaleza CEP 60440-900, CE, Brazil
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, 28049 Madrid, Spain
- Center of Excellence in Bionanoscience Research, Member of the External Scientific Advisory Academics, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (R.F.-L.); (S.R.)
| | - Sueli Rodrigues
- Food Engineering Department, Federal University of Ceará, Campus do Pici, Bloco 858, Fortaleza CEP 60440-900, CE, Brazil
- Correspondence: (R.F.-L.); (S.R.)
| |
Collapse
|
9
|
Immobilization of Thermomyces lanuginosus lipase on a new hydrophobic support (Streamline phenyl™): strategies to improve stability and reusability. Enzyme Microb Technol 2022; 163:110166. [DOI: 10.1016/j.enzmictec.2022.110166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
|
10
|
Bolivar JM, Woodley JM, Fernandez-Lafuente R. Is enzyme immobilization a mature discipline? Some critical considerations to capitalize on the benefits of immobilization. Chem Soc Rev 2022; 51:6251-6290. [PMID: 35838107 DOI: 10.1039/d2cs00083k] [Citation(s) in RCA: 148] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Enzyme immobilization has been developing since the 1960s and although many industrial biocatalytic processes use the technology to improve enzyme performance, still today we are far from full exploitation of the field. One clear reason is that many evaluate immobilization based on only a few experiments that are not always well-designed. In contrast to many other reviews on the subject, here we highlight the pitfalls of using incorrectly designed immobilization protocols and explain why in many cases sub-optimal results are obtained. We also describe solutions to overcome these challenges and come to the conclusion that recent developments in material science, bioprocess engineering and protein science continue to open new opportunities for the future. In this way, enzyme immobilization, far from being a mature discipline, remains as a subject of high interest and where intense research is still necessary to take full advantage of the possibilities.
Collapse
Affiliation(s)
- Juan M Bolivar
- FQPIMA group, Chemical and Materials Engineering Department, Faculty of Chemical Sciences, Complutense University of Madrid, Madrid, 28040, Spain
| | - John M Woodley
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark.
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis. ICP-CSIC, C/Marie Curie 2, Campus UAM-CSIC Cantoblanco, Madrid 28049, Spain. .,Center of Excellence in Bionanoscience Research, External Scientific Advisory Academic, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
11
|
Sampaio CS, Angelotti JAF, Fernandez-Lafuente R, Hirata DB. Lipase immobilization via cross-linked enzyme aggregates: Problems and prospects - A review. Int J Biol Macromol 2022; 215:434-449. [PMID: 35752332 DOI: 10.1016/j.ijbiomac.2022.06.139] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/06/2022] [Accepted: 06/20/2022] [Indexed: 02/08/2023]
Abstract
In this review we have focused on the preparation of cross-linked enzyme aggregates (CLEAs) from lipases, as these are among the most used enzyme in bioprocesses. This immobilization method is considered very attractive due to preparation simplicity, non-use of supports and the possibility of using crude enzyme extracts. CLEAs provide lipase stabilization under extreme temperature or pH conditions or in the presence of organic solvents, in addition to preventing enzyme leaching in aqueous medium. However, it presents some problems in the preparation and limitations in their use. The problems in preparation refer mainly to the crosslinking step, and may be solved using an aminated feeder. The problems in handling have been tackled designing magnetic-CLEAs or trapping the CLEAs in particles with better mechanical properties, the substrate diffusion problems has been reduced by producing more porous-CLEAs, etc. The enzyme co-immobilization using combi-CLEAs is also a new tendency. Therefore, this review explores the CLEAs methodology aimed at lipase immobilization and its applications.
Collapse
Affiliation(s)
- Camila S Sampaio
- Postgraduate Program in Biotechnology, Federal University of Alfenas, 37130-001 Alfenas, MG, Brazil
| | - Joelise A F Angelotti
- Postgraduate Program in Biotechnology, Federal University of Alfenas, 37130-001 Alfenas, MG, Brazil
| | - Roberto Fernandez-Lafuente
- Department of Biocatalysis, ICP-CSIC, Campus UAM-CSIC, Cantoblanco, 28049 Madrid, Spain.; Center of Excellence in Bionanoscience Research, Member of The External Scientific Advisory Board, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Daniela B Hirata
- Postgraduate Program in Biotechnology, Federal University of Alfenas, 37130-001 Alfenas, MG, Brazil.
| |
Collapse
|
12
|
Sabi GJ, Gama RS, Fernandez-Lafuente R, Cancino-Bernardi J, Mendes AA. Decyl esters production from soybean-based oils catalyzed by lipase immobilized on differently functionalized rice husk silica and their characterization as potential biolubricants. Enzyme Microb Technol 2022; 157:110019. [PMID: 35219176 DOI: 10.1016/j.enzmictec.2022.110019] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 12/16/2022]
Abstract
This study aimed the enzymatic decyl esters production by hydroesterification, a two-step process consisting of hydrolysis of refined soybean (RSBO) or used soybean cooking (USCO) oils to produce free fatty acids (FFA) and further esterification of purified FFA. Using free lipase from Candida rugosa (CRL), about 98% hydrolyses for both oils have been observed after 180 min of reaction using a CRL loading of 50 U g-1 of reaction mixture, 40 °C, and a mechanical stirring of 1500 rpm. FFA esterification with decanol in solvent-free systems was performed using lipase from Thermomyces lanuginosus (TLL) immobilized by physical adsorption on silica particles extracted from rice husk, an agricultural waste. For such purpose, non-functionalized (SiO2) or functionalized rice husk silica bearing octyl (Octyl-SiO2) or phenyl (Phe-SiO2) groups have been used as immobilization supports. Protein amounts between 22 and 28 mg g-1 of support were observed. When used in the esterification, they enabled a FFA conversion of 81.3-87.6% after 90-300 min of reaction. Lipozyme TL IM, a commercial immobilized TLL, exhibited similar performance compared to TLL-Octyl-SiO2 (FFA conversion ≈90% after 90-120 min of reaction). However, high operational stability after fifteen successive esterification batches was observed only for TLL immobilized on Octyl-SiO2 (activity retention of ≈90% using both FFA sources). The produced decyl esters presented good characteristics as potential biolubricants according to standard methods (ASTM) and thermal analysis.
Collapse
Affiliation(s)
- Guilherme J Sabi
- Institute of Chemistry, Federal University of Alfenas, 37130-001 Alfenas, MG, Brazil
| | - Rafaela S Gama
- Institute of Chemistry, Federal University of Alfenas, 37130-001 Alfenas, MG, Brazil
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, 28049 Madrid, Spain; Center of Excellence in Bionanoscience Research, External Scientific Advisory Academic, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Juliana Cancino-Bernardi
- Institute of Chemistry, Federal University of Alfenas, 37130-001 Alfenas, MG, Brazil; Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo, 13566-590 São Carlos, SP, Brazil
| | - Adriano A Mendes
- Institute of Chemistry, Federal University of Alfenas, 37130-001 Alfenas, MG, Brazil.
| |
Collapse
|
13
|
Chen G, Khan IM, He W, Li Y, Jin P, Campanella OH, Zhang H, Huo Y, Chen Y, Yang H, Miao M. Rebuilding the lid region from conformational and dynamic features to engineering applications of lipase in foods: Current status and future prospects. Compr Rev Food Sci Food Saf 2022; 21:2688-2714. [PMID: 35470946 DOI: 10.1111/1541-4337.12965] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 03/17/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023]
Abstract
The applications of lipases in esterification, amidation, and transesterification have broadened their potential in the production of fine compounds with high cumulative values. Mostly, the catalytic triad of lipases is covered by either one or two mobile peptides called the "lid" that control the substrate channel to the catalytic center. The lid holds unique conformational allostery via interfacial activation to regulate the dynamics and catalytic functions of lipases, thereby highlighting its importance in redesigning these enzymes for industrial applications. The structural characteristic of lipase, the dynamics of lids, and the roles of lid in lipase catalysis were summarized, providing opportunities for rebuilding lid region by biotechniques (e.g., metagenomic technology and protein engineering) and enzyme immobilization. The review focused on the advantages and disadvantages of strategies rebuilding the lid region. The main shortcomings of biotechnologies on lid rebuilding were discussed such as negative effects on lipase (e.g., a decrease of activity). Additionally, the main shortcomings (e.g., enzyme desorption at high temperatre) in immobilization on hydrophobic supports via interfacial action were presented. Solutions to the mentioned problems were proposed by combinations of computational design with biotechnologies, and improvements of lipase immobilization (e.g., immobilization protocols and support design). Finally, the review provides future perspectives about designing hyperfunctional lipases as biocatalysts in the food industry based on lid conformation and dynamics.
Collapse
Affiliation(s)
- Gang Chen
- College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Imran Mahmood Khan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wensen He
- School of Food Science and Technology, Jiangsu University, Zhenjiang, China
| | - Yongxin Li
- College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou, China
| | - Peng Jin
- College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou, China
| | - Osvaldo H Campanella
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Department of Food Science and Technology, Ohio State University, Columbus, Ohio, USA
| | - Haihua Zhang
- College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou, China
| | - Yanrong Huo
- College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou, China
| | - Yang Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Huqing Yang
- College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou, China
| | - Ming Miao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
14
|
Remonatto D, Miotti Jr. RH, Monti R, Bassan JC, de Paula AV. Applications of immobilized lipases in enzymatic reactors: A review. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
15
|
Remonatto D, Oliveira JV, Guisan JM, Oliveira D, Ninow J, Fernandez-Lorente G. Immobilization of Eversa Lipases on Hydrophobic Supports for Ethanolysis of Sunflower Oil Solvent-Free. Appl Biochem Biotechnol 2022; 194:2151-2167. [PMID: 35050455 PMCID: PMC9068681 DOI: 10.1007/s12010-021-03774-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2021] [Indexed: 11/02/2022]
Abstract
Lipases are an important group of biocatalysts for many industrial applications. Two new commercial low-cost lipases Eversa® Transform and Eversa® Transform 2.0 was immobilized on four different hydrophobic supports: Lewatit-DVB, Purolite-DVB, Sepabeads-C18, and Purolite-C18. The performance of immobilized lipases was investigated in the transesterification of sunflower oil solvent-free in an anhydrous medium. Interesting results were obtained for both lipases and the four supports, but with Sepabeads support the lipases Eversa showed high catalytic activity. However, the more stable and efficient derivative was Eversa® Transform immobilized on Sepabeads C-18. A 98 wt% of ethyl ester of fatty acid (FAEE) was obtained, in 3 h at 40ºC, ethanol/sunflower oil molar ratio of 3:1 and a 10 wt% of the immobilized biocatalyst. After 6 reaction cycles, the immobilized biocatalyst preserved 70 wt% of activity. Both lipases immobilized in Sepabeads C-18 were highly active and stable in the presence of ethanol. The immobilization of Eversa Transform and Eversa Transform 2.0 in hydrophobic supports described in this study appears to be a promising alternative to the immobilization and application of these news lipases still unexplored.
Collapse
Affiliation(s)
- Daniela Remonatto
- Department of Engineering of Bioprocesses and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903, Araraquara, SP, Brazil
| | - J Vladimir Oliveira
- Department of Chemical and Food Engineering, UFSC, 88040-900, Florianópolis, SC, Brazil
| | - J Manuel Guisan
- Departamento de Biocatálisis, Instituto de Catálisis-CSIC, UAM, Cantoblanco, 28049, Madrid, Spain
| | - Débora Oliveira
- Department of Chemical and Food Engineering, UFSC, 88040-900, Florianópolis, SC, Brazil
| | - Jorge Ninow
- Department of Chemical and Food Engineering, UFSC, 88040-900, Florianópolis, SC, Brazil
| | - Gloria Fernandez-Lorente
- Departamento de Biotecnología y Microbiología de los Alimentos, Instituto de Alimentación, CIAL (CSIC-UAM), Madrid, Spain.
| |
Collapse
|
16
|
Stabilization and operational selectivity alteration of Lipozyme 435 by its coating with polyethyleneimine: Comparison of the biocatalyst performance in the synthesis of xylose fatty esters. Int J Biol Macromol 2021; 192:665-674. [PMID: 34656534 DOI: 10.1016/j.ijbiomac.2021.10.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/09/2021] [Accepted: 10/08/2021] [Indexed: 01/13/2023]
Abstract
Differently modified Lipozyme 435 (L435) (immobilized lipase B from Candida antarctica) preparations were used as biocatalysts in the esterification reaction to synthesize sugar fatty acid esters (SFAEs) from xylose (acyl acceptor) and lauric/palmitic acids (acyl donors) in methyl ethyl ketone (MEK) solvent. The L435 treatment with polyethyleneimine (PEI) (2; 25; and 750 KDa) prevented the enzyme leakage in the crude sugar ester reaction product. The 2 KDa PEI coating of this enzyme preparation produced the highest enzyme stability in MEK, buffer solutions (pHs 5 and 7), and methanol aqueous phosphate buffer at pH 7. Using an excess of the acyl donor (1:5 xylose: fatty acid molar ratio), high xylose conversions (70-84%) were obtained after 24 h-reaction using both, non-modified and PEI (2 KDa) coated L435, but the PEI treated biocatalyst afforded a higher xylose modification degree. After 5 reuse cycles with the L435 coated with PEI 2 KDa, the xylose conversions only decreased 10%, while with the non-treated biocatalyst they decreased by 37%. The formation of SFAEs was confirmed by mass spectrometry, which showed the presence of xylose mono-, di-, and triesters. They exhibited emulsion capacities close to that of a commercial sucrose monolaurate.
Collapse
|
17
|
Souza PMP, Carballares D, Lopez-Carrobles N, Gonçalves LRB, Lopez-Gallego F, Rodrigues S, Fernandez-Lafuente R. Enzyme-support interactions and inactivation conditions determine Thermomyces lanuginosus lipase inactivation pathways: Functional and florescence studies. Int J Biol Macromol 2021; 191:79-91. [PMID: 34537296 DOI: 10.1016/j.ijbiomac.2021.09.061] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 01/28/2023]
Abstract
Lipase from Thermomyces lanuginosus (TLL) has been covalently immobilized on heterofunctional octyl-vinyl agarose. That way, the covalently immobilized enzymes will have identical orientation. Then, it has blocked using hexyl amine (HEX), ethylenediamine (EDA), Gly and Asp. The initial activity/stability of the different biocatalysts was very different, being the most stable the biocatalyst blocked with Gly. These biocatalysts had been utilized to analyze if the enzyme activity could decrease differently along thermal inactivation courses depending on the utilized substrate (that is, if the enzyme specificity was altered during its inactivation using 4 different substrates to determine the activity), and if this can be altered by the nature of the blocking agent and the inactivation conditions (we use pH 5, 7 and 9). Results show great changes in the enzyme specificity during inactivation (e.g., activity versus triacetin was much more quickly lost than versus the other substrates), and how this was modulated by the immobilization protocol and inactivation conditions. The difference in the changes induced by immobilization and inactivation were confirmed by fluorescence studies. That is, the functional and structural analysis of partially inactivated immobilized enzyme showed that their inactivation pathway is strongly depended on the support features and inactivation conditions.
Collapse
Affiliation(s)
- Priscila M Paiva Souza
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain; Federal University of Ceará, Food Engineering Department, Campus do Pici, Bloco 858, Fortaleza, CE CEP 60440-900, Brazil
| | - Diego Carballares
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain
| | | | - Luciana R B Gonçalves
- Federal University of Ceará, Chemical Engineering Department, Campus do Pici, Bloco 709, Fortaleza, CE CEP 60440-900, Brazil
| | - Fernando Lopez-Gallego
- Heterogeneous Biocatalysis Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, Donostia, San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, 48013 Bilbao, Spain
| | - Sueli Rodrigues
- Federal University of Ceará, Food Engineering Department, Campus do Pici, Bloco 858, Fortaleza, CE CEP 60440-900, Brazil.
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain; Center of Excellence in Bionanoscience Research, Member of the External Scientific Advisory Academics, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
18
|
Modification of Silica Xerogels with Polydopamine for Lipase B from Candida antarctica Immobilization. Catalysts 2021. [DOI: 10.3390/catal11121463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Silica xerogels have been proposed as a potential support to immobilize enzymes. Improving xerogels’ interactions with such enzymes and their mechanical strengths is critical to their practical applications. Herein, based on the mussel-inspired chemistry, we demonstrated a simple and highly effective strategy for stabilizing enzymes embedded inside silica xerogels by a polydopamine (PDA) coating through in-situ polymerization. The modified silica xerogels were characterized by scanning and transmission electron microscopy, Fourier tranform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy and pore structure analyses. When the PDA-modified silica xerogels were used to immobilize enzymes of Candida antarctica lipase B (CALB), they exhibited a high loading ability of 45.6 mg/gsupport, which was higher than that of immobilized CALB in silica xerogels (28.5 mg/gsupport). The immobilized CALB of the PDA-modified silica xerogels retained 71.4% of their initial activities after 90 days of storage, whereas the free CALB retained only 30.2%. Moreover, compared with the immobilization of enzymes in silica xerogels, the mechanical properties, thermal stability and reusability of enzymes immobilized in PDA-modified silica xerogels were also improved significantly. These advantages indicate that the new hybrid material can be used as a low-cost and effective immobilized-enzyme support.
Collapse
|
19
|
Rodrigues RC, Berenguer-Murcia Á, Carballares D, Morellon-Sterling R, Fernandez-Lafuente R. Stabilization of enzymes via immobilization: Multipoint covalent attachment and other stabilization strategies. Biotechnol Adv 2021; 52:107821. [PMID: 34455028 DOI: 10.1016/j.biotechadv.2021.107821] [Citation(s) in RCA: 241] [Impact Index Per Article: 80.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/26/2021] [Accepted: 08/21/2021] [Indexed: 12/22/2022]
Abstract
The use of enzymes in industrial processes requires the improvement of their features in many instances. Enzyme immobilization, a requirement to facilitate the recovery and reuse of these water-soluble catalysts, is one of the tools that researchers may utilize to improve many of their properties. This review is focused on how enzyme immobilization may improve enzyme stability. Starting from the stabilization effects that an enzyme may experience by the mere fact of being inside a solid particle, we detail other possibilities to stabilize enzymes: generation of favorable enzyme environments, prevention of enzyme subunit dissociation in multimeric enzymes, generation of more stable enzyme conformations, or enzyme rigidification via multipoint covalent attachment. In this last point, we will discuss the features of an "ideal" immobilization protocol to maximize the intensity of the enzyme-support interactions. The most interesting active groups in the support (glutaraldehyde, epoxide, glyoxyl and vinyl sulfone) will be also presented, discussing their main properties and uses. Some instances in which the number of enzyme-support bonds is not directly related to a higher stabilization will be also presented. Finally, the possibility of coupling site-directed mutagenesis or chemical modification to get a more intense multipoint covalent immobilization will be discussed.
Collapse
Affiliation(s)
- Rafael C Rodrigues
- Biocatalysis and Enzyme Technology Lab, Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, P.O. Box 15090, Porto Alegre, RS, Brazil
| | | | - Diego Carballares
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC Cantoblanco, Madrid, Spain
| | | | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC Cantoblanco, Madrid, Spain; Center of Excellence in Bionanoscience Research, External Scientific Advisory Academics, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
20
|
Enzyme co-immobilization: Always the biocatalyst designers' choice…or not? Biotechnol Adv 2021; 51:107584. [DOI: 10.1016/j.biotechadv.2020.107584] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 01/08/2023]
|
21
|
Utilization of Clay Materials as Support for Aspergillus japonicus Lipase: An Eco-Friendly Approach. Catalysts 2021. [DOI: 10.3390/catal11101173] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Lipase is an important group of biocatalysts, which combines versatility and specificity, and can catalyze several reactions when applied in a high amount of industrial processes. In this study, the lipase produced by Aspergillus japonicus under submerged cultivation, was immobilized by physical adsorption, using clay supports, namely, diatomite, vermiculite, montmorillonite KSF (MKSF) and kaolinite. Besides, the immobilized and free enzyme was characterized, regarding pH, temperature and kinetic parameters. The most promising clay support was MKSF that presented 69.47% immobilization yield and hydrolytic activity higher than the other conditions studied (270.7 U g−1). The derivative produced with MKSF showed high stability at pH and temperature, keeping 100% of its activity throughout 12 h of incubation in the pH ranges between 4.0 and 9.0 and at a temperature from 30 to 50 °C. In addition, the immobilized lipase on MKSF support showed an improvement in the catalytic performance. The study shows the potential of using clays as support to immobilized lipolytic enzymes by adsorption method, which is a simple and cost-effective process.
Collapse
|
22
|
Decyl oleate production by enzymatic esterification using Geotrichum candidum lipase immobilized on a support prepared from rice husk. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Ramakrishna TRB, Ashton TD, Marshall SN, Nalder TD, Yang W, Barrow CJ. Effect of Triton X-100 on the Activity and Selectivity of Lipase Immobilized on Chemically Reduced Graphene Oxides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9202-9214. [PMID: 34286574 DOI: 10.1021/acs.langmuir.1c01386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The effect of support hydrophobicity on lipase activity and substrate selectivity was investigated with and without Triton X-100 (TX-100). Lipases from Thermomyces lanuginosa (TL) and Alcaligenes sp. (QLM) were immobilized on graphene oxide (GO) and a range of chemically reduced graphene oxides (CRGOs) with different levels of surface hydrophobicity. Activity assays using 4-hydroxy-N-propyl-1,8-naphthalimide (NAP) esters of varying chain lengths (NAP-butyrate (NAP-B), NAP-octanoate (NAP-O), and NAP-palmitate (NAP-P)) showed that the activity of immobilized QLM and TL decreased by more than 60% on GO and 80% on CRGO (2 h), with activity decreasing further as surface hydrophobicity of the CRGOs increased. Across the hydrophobicity range of GO/CRGOs, the substrate selectivity of QLM shifted from more readily hydrolyzing NAP-P to NAP-B, while TL retained its substrate selectivity for NAP-O. Lipase TL was also shown to desorb from GO and 2 h CRGO when mixed with NAP-O and NAP-P, whereas QLM did not. Circular dichroism analyses of the lipase α-helix content correlate to the observed activity data, with decreases in the α-helical content (40% in TL and 20% in QLM relative to free lipase) consistent with decreases in activity after immobilization on GO. α-Helical content decreased even further as the surface hydrophobicity of CRGOs increased. Attenuated total reflectance-Fourier transform infrared spectroscopy also showed significant changes to the lipase secondary structure upon immobilization. The addition of TX-100 into the activity assay modified the substrate selectivity of immobilized QLM, improving the activity against NAP-O (90%) and NAP-P (67%) compared to the activity measured without TX-100. It was shown that TX-100 primarily affected the activity of QLM by interacting with the ester substrate and the lipase itself. This study provides an improved understanding of how support hydrophobicity and the presence of TX-100 can affect activity/selectivity of lipases immobilized on hydrophobic supports.
Collapse
Affiliation(s)
- Tejaswini R B Ramakrishna
- School of Life and Environmental Sciences, Deakin University, 75 Pigdons Road, Waurn Ponds, Victoria 3216, Australia
- Seafood Unit, The New Zealand Institute for Plant & Food Research Limited, 293-297 Akersten Street, Nelson 7010, New Zealand
| | - Trent D Ashton
- School of Life and Environmental Sciences, Deakin University, 75 Pigdons Road, Waurn Ponds, Victoria 3216, Australia
| | - Susan N Marshall
- Seafood Unit, The New Zealand Institute for Plant & Food Research Limited, 293-297 Akersten Street, Nelson 7010, New Zealand
| | - Tim D Nalder
- School of Life and Environmental Sciences, Deakin University, 75 Pigdons Road, Waurn Ponds, Victoria 3216, Australia
- Seafood Unit, The New Zealand Institute for Plant & Food Research Limited, 293-297 Akersten Street, Nelson 7010, New Zealand
| | - Wenrong Yang
- School of Life and Environmental Sciences, Deakin University, 75 Pigdons Road, Waurn Ponds, Victoria 3216, Australia
| | - Colin J Barrow
- School of Life and Environmental Sciences, Deakin University, 75 Pigdons Road, Waurn Ponds, Victoria 3216, Australia
| |
Collapse
|
24
|
Ethanol as additive enhance the performance of immobilized lipase LipA from Pseudomonas aeruginosa on polypropylene support. ACTA ACUST UNITED AC 2021; 31:e00659. [PMID: 34367924 PMCID: PMC8326728 DOI: 10.1016/j.btre.2021.e00659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/14/2021] [Indexed: 11/20/2022]
Abstract
Immobilization is practical to upgrade enzymes, increasing their performance and expanding their applications. The recombinant, solvent tolerant lipase LipA PSA01 from Pseudomonas aeruginosa was immobilized on polypropylene Accurel® MP1004 to improve its performance. We investigated the effect of ethanol as an additive during the immobilization process at three concentrations (20%, 25%, and 30%) on the operational behavior of the enzyme. The immobilization efficiency was higher than 92%, and the immobilized enzymes showed hyperactivation and thermal resistance depending on the concentration of ethanol. For example, at 70 °C, the free enzyme lost the activity, while the prepared one with ethanol 25% conserved a residual activity of up to 73.3% (∆ T15 50 = 27.1 °C). LipA immobilized had an optimal pH value lower than that of the free enzyme, and the organic solvent tolerance of the immobilized enzymes depended on the ethanol used. Hence, the immobilized enzyme with ethanol 25% showed hyperactivation to more solvents than the soluble enzyme. Remarkable stability towards methanol (up to 8 folds) was evidenced in all the immobilized preparations. The immobilized enzyme changed their chemo preference, and it hydrolyzed oils preferentially with short-chain than those with long-chain. LipA had a notable shelf-life after one year, keeping its activity up to 87%. Ethanol facilitated the access of the enzyme to the hydrophobic support and increased its activity and stability according to the amount of ethanol added.
Collapse
|
25
|
Lipozyme 435-Mediated Synthesis of Xylose Oleate in Methyl Ethyl Ketone. Molecules 2021; 26:molecules26113317. [PMID: 34205848 PMCID: PMC8197991 DOI: 10.3390/molecules26113317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 01/05/2023] Open
Abstract
In this paper, we have performed the Lipozyme 435-catalyzed synthesis of xylose oleate in methyl ethyl ketone (MEK) from xylose and oleic acid. The effects of substrates’ molar ratios, reaction temperature, reaction time on esterification rates, and Lipozyme 435 reuse were studied. Results showed that an excess of oleic acid (xylose: oleic acid molar ratio of 1:5) significantly favored the reaction, yielding 98% of xylose conversion and 31% oleic acid conversion after 24 h-reaction (mainly to xylose mono- and dioleate, as confirmed by mass spectrometry). The highest Lipozyme 435 activities occurred between 55 and 70 °C. The predicted Ping Pong Bi Bi kinetic model fitted very well to the experimental data and there was no evidence of inhibitions in the range assessed. The reaction product was purified and presented an emulsion capacity close to that of a commercial sugar ester detergent. Finally, the repeated use of Lipozyme 435 showed a reduction in the reaction yields (by 48 and 19% in the xylose and oleic acid conversions, respectively), after ten 12 h-cycles.
Collapse
|
26
|
Zhou XJ, Zhu CT, Zhang LY, You S, Wu FA, Wang J. Enrichment and purification of red pigments from defective mulberry fruits using biotransformation in a liquid-liquid-solid three-phase system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:24432-24440. [PMID: 32323230 DOI: 10.1007/s11356-020-08731-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
A large number of defective mulberries are discarded each year because mulberries are easy to break. The red pigments from defective mulberries are recognized as the sustainable sources of anthocyanins extracted from nature. Cyanidin-3-O-rutinoside and cyanidin-3-O-glucoside are the main components of mulberry red pigments, accounting for 50% and 40% of the total, respectively. Cyanidin-3-O-glucoside exhibits anticancer, hypoglycemic, and liver and visceral protection properties. Cyanidin-3-O-glucoside can be prepared by enzymatically hydrolyzing the rhamnosidase bond of cyanidin-3-O-rutinoside. To obtain mulberry red pigment with a high purity of cyanidin-3-O-glucoside, immobilized α-L-rhamnosidase was added to the aqueous two-phase system to construct a liquid-liquid-solid three-phase enzyme catalytic system. After optimization, the three-phase system was composed of 27.12% (w/w) ethanol, 18.10% (w/w) ammonium sulfate, 15% (w/w) mulberry juice, 4.24% (w/w) immobilized α-L-rhamnosidase, and 35.54% (w/w) pure water. The three-phase system was employed to enrich and purify cyanidin-3-O-glucoside at pH 5 and 45 °C for 1 h. The purity of cyanidin-3-O-glucoside was increased from 40 to 82.42% with cyanidin-3-O-rutinoside conversion of 60.68%. The immobilized α-L-rhamnosidase could be reused seven times, maintaining a relative activity of over 50%. Overall, the developed system provided an efficient and simple approach for high purity mulberry red pigment production and recycling in the field of sustainable agriculture. Graphical abstract.
Collapse
Affiliation(s)
- Xue-Jiao Zhou
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China
| | - Chang-Tong Zhu
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China
| | - Lu-Yue Zhang
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China
| | - Shuai You
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, Jiangsu, China
| | - Fu-An Wu
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, Jiangsu, China
| | - Jun Wang
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China.
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, Jiangsu, China.
| |
Collapse
|
27
|
|
28
|
Modulation of the Biocatalytic Properties of a Novel Lipase from Psychrophilic Serratia sp. (USBA-GBX-513) by Different Immobilization Strategies. Molecules 2021; 26:molecules26061574. [PMID: 33809323 PMCID: PMC8001504 DOI: 10.3390/molecules26061574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/26/2021] [Accepted: 03/05/2021] [Indexed: 01/26/2023] Open
Abstract
In this work, the effect of different immobilization procedures on the properties of a lipase obtained from the extremophilic microorganism Serratia sp. USBA-GBX-513, which was isolated from Paramo soils of Los Nevados National Natural Park (Colombia), is reported. Different Shepharose beads were used: octyl-(OC), octyl-glyoxyl-(OC-GLX), cyanogen bromide (BrCN)-, and Q-Sepharose. The performance of the different immobilized extremophile lipase from Serratia (ESL) was compared with that of the lipase B from Candida antarctica (CALB). In all immobilization tests, hyperactivation of ESL was observed. The highest hyperactivation (10.3) was obtained by immobilization on the OC support. Subsequently, the thermal stability at pH 5, 7, and 9 and the stability in the presence of 50% (v/v) acetonitrile, 50% dioxane, and 50% tetrahydrofuran solvents at pH 7 and 40 °C were evaluated. ESL immobilized on octyl-Sepharose was the most stable biocatalyst at 90 °C and pH 9, while the most stable preparation at pH 5 was ESL immobilized on OC-GLX-Sepharose supports. Finally, in the presence of 50% (v/v) tetrahydrofuran (THF) or dioxane at 40 °C, ESL immobilized on OC-Sepharose was the most stable biocatalyst, while the immobilized preparation of ESL on Q-Sepharose was the most stable one in 40% (v/v) acetonitrile.
Collapse
|
29
|
Chen Z, Xie HY, Chen GE, Xu SJ, Xu ZL, Li YJ, Mao HF. Self-adhesive PMIA membranes with virus-like silica immobilized lipase for efficient biological aging of Chinese liquor. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118990] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Sousa RR, Silva AS, Fernandez-Lafuente R, Ferreira-Leitão VS. Solvent-free esterifications mediated by immobilized lipases: a review from thermodynamic and kinetic perspectives. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00696g] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Esters are a highly relevant class of compounds in the industrial context, and biocatalysis applied to ester syntheses is already a reality for some chemical companies.
Collapse
Affiliation(s)
- Ronaldo Rodrigues Sousa
- Biocatalysis Laboratory, National Institute of Technology, Ministry of Science, Technology, and Innovations, 20081-312, Rio de Janeiro, RJ, Brazil
| | - Ayla Sant'Ana Silva
- Biocatalysis Laboratory, National Institute of Technology, Ministry of Science, Technology, and Innovations, 20081-312, Rio de Janeiro, RJ, Brazil
- Federal University of Rio de Janeiro, Department of Biochemistry, 21941-909, Rio de Janeiro, RJ, Brazil
| | - Roberto Fernandez-Lafuente
- Biocatalysis Department, ICP-CSIC, Campus UAM-CSIC, Madrid 28049, Spain
- Center of Excellence in Bionanoscience Research, External Scientific Advisory Academics, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Viridiana Santana Ferreira-Leitão
- Biocatalysis Laboratory, National Institute of Technology, Ministry of Science, Technology, and Innovations, 20081-312, Rio de Janeiro, RJ, Brazil
- Federal University of Rio de Janeiro, Department of Biochemistry, 21941-909, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
31
|
Tacin MV, Costa-Silva TA, de Paula AV, Palomo JM, Santos-Ebinuma VDC. Microbial lipase: a new approach for a heterogeneous biocatalyst. Prep Biochem Biotechnol 2020; 51:749-760. [PMID: 33315537 DOI: 10.1080/10826068.2020.1855442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Lipases are enzymes employed in several industrial process and their applicability can be increased if these biocatalysts are in the immobilize form. The objective of this work was to study the immobilization of lipase produced by submerged cultivation of Aspergillus sp. by hydrophobic interaction, evaluating its stability and reuse capacity. The immobilization process on octyl-sepharose (C8) and octadecyl-sepabeads (C18) carriers was possible after the removal of oil excess presented in the fermented broth. The results showed that the enzyme was isolated and concentrated in octyl-sepharose with 22% of the initial activity. To increase the amount of enzyme adsorbed on the carrier, 4 immobilization cycles were performed in a row, on the same carrier, with a final immobilization yield of 151.32% and an increase in the specific activity of 136%. The activity test with immobilized lipase showed that the immobilized enzyme maintained 75% of the initial activity after 20 cycles.
Collapse
Affiliation(s)
- Mariana Vendrasco Tacin
- Department of Engineering Bioprocesses and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil.,Department of Biocatalysis, Institute of Catalysis (ICP-CSIC), Cantoblanco, Spain
| | - Tales A Costa-Silva
- Department of Pharmacy, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Ariela Veloso de Paula
- Department of Engineering Bioprocesses and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Jose M Palomo
- Department of Biocatalysis, Institute of Catalysis (ICP-CSIC), Cantoblanco, Spain
| | - Valéria de Carvalho Santos-Ebinuma
- Department of Engineering Bioprocesses and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
32
|
Okura NS, Sabi GJ, Crivellenti MC, Gomes RA, Fernandez-Lafuente R, Mendes AA. Improved immobilization of lipase from Thermomyces lanuginosus on a new chitosan-based heterofunctional support: Mixed ion exchange plus hydrophobic interactions. Int J Biol Macromol 2020; 163:550-561. [DOI: 10.1016/j.ijbiomac.2020.07.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/29/2020] [Accepted: 07/03/2020] [Indexed: 12/17/2022]
|
33
|
Kurtovic I, Nalder TD, Cleaver H, Marshall SN. Immobilisation of Candida rugosa lipase on a highly hydrophobic support: A stable immobilised lipase suitable for non-aqueous synthesis. ACTA ACUST UNITED AC 2020; 28:e00535. [PMID: 33088731 PMCID: PMC7566202 DOI: 10.1016/j.btre.2020.e00535] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 09/26/2020] [Accepted: 09/28/2020] [Indexed: 12/21/2022]
Abstract
Lipase from Candida rugosa (CrL) was immobilised on highly hydrophobic, octadecyl methacrylate resin (Lifetech™ ECR8806M) via interfacial adsorption. The aim was to produce a stable biocatalyst suitable for use in a range of lipid-modifying reactions. Immobilisation was carried out in 10 mM phosphate buffer (pH 6.0) over 24 h at 21 °C. High protein binding of 58.7 ± 4.9 mg/g dry support accounted for ∼53 % of the applied protein. The activity recovery against tributyrin was 74.0 ± 1.1 %. The specific activity of immobilised CrL against tributyrin was considerably higher than that of Novozym® 435, at 1.79 ± 0.05 and 1.08 ± 0.04 U/mg bound protein, respectively. Incubation with high concentrations (10 % w/v) of both Triton X-100 and SDS resulted in only a small reduction in immobilised lipase activity. Solvent-free synthesis of glycerides by the FFA-saturated immobilised CrL was successful over 6 reaction cycles, with no apparent loss of activity.
Collapse
Affiliation(s)
- Ivan Kurtovic
- Nelson Research Centre, The New Zealand Institute for Plant and Food Research Limited, 293-297 Akersten Street, Nelson, 7010, New Zealand
| | - Tim D Nalder
- Nelson Research Centre, The New Zealand Institute for Plant and Food Research Limited, 293-297 Akersten Street, Nelson, 7010, New Zealand.,School of Life and Environmental Sciences, Deakin University, 75 Pigdons Road, Waurn Ponds, 3216, Victoria, Australia
| | - Helen Cleaver
- Nelson Research Centre, The New Zealand Institute for Plant and Food Research Limited, 293-297 Akersten Street, Nelson, 7010, New Zealand
| | - Susan N Marshall
- Nelson Research Centre, The New Zealand Institute for Plant and Food Research Limited, 293-297 Akersten Street, Nelson, 7010, New Zealand
| |
Collapse
|
34
|
Deon M, Carminatti Ricardi N, Carvalho de Andrade R, Hertz PF, Nicolodi S, Costa TMH, Bussamara R, Benvenutti EV, de Menezes EW. Designing a Support for Lipase Immobilization Based On Magnetic, Hydrophobic, and Mesoporous Silica. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:10147-10155. [PMID: 32787062 DOI: 10.1021/acs.langmuir.0c01594] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A mesoporous, magnetic, and hydrophobic material was designed step by step to act as a support for lipase immobilization. Its pore size (8.0 nm) is compatible with the size of lipase from Thermomyces lanuginosus (TLL), and its hydrophobic surface (contact angle of a water drop = 125°) was planned to interact with lipase on its interfacially activated form (open conformation). The presence of magnetite particles provides magnetic retrieval of the material and enables recyclability of the biocatalysts. Regarding immobilization parameters, the hydrophobic support was tested in comparison to the unmodified hydrophilic support in phosphate buffer solution (50 mmol L-1, pH 7.5) at 25 °C. Hydrophobicity was found to be critical for the amount of immobilized TLL (immobilization yield of 97% versus 36% for the hydrophilic support), whereas the hydrophilic support favors the native conformational state and substrate access to the enzyme's catalytic site (specific activity of 5.7 versus 4.7 U g-1 for the hydrophobic support, even when it has higher TLL content). Therefore, the hydrophobic support immobilizes higher amounts of TLL and the hydrophilic support keeps the enzyme hyperactivated. Last, due to the stronger interactions of TLL with hydrophobic surfaces, the hydrophobic support offers better preservation of enzyme activity in repeated cycles (76% of activity retained after three cycles versus 50% for the hydrophilic support).
Collapse
Affiliation(s)
- Monique Deon
- Instituto de Quı́mica, UFRGS, CP 15003, CEP 91501-970 Porto Alegre, RS, Brazil
| | | | | | - Plinho Francisco Hertz
- Instituto de Ciência e Tecnologia de Alimentos, UFRGS, CP 15015, CEP 91501-970 Porto Alegre, RS, Brazil
| | - Sabrina Nicolodi
- Instituto de Fı́sica, UFRGS, CP 15051, CEP 91501-970 Porto Alegre, RS, Brazil
| | | | - Roberta Bussamara
- Instituto de Quı́mica, UFRGS, CP 15003, CEP 91501-970 Porto Alegre, RS, Brazil
| | | | | |
Collapse
|
35
|
Evaluation of Designed Immobilized Catalytic Systems: Activity Enhancement of Lipase B from Candida antarctica. Catalysts 2020. [DOI: 10.3390/catal10080876] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Immobilized enzymatic catalysts are widely used in the chemical and pharmaceutical industries. As Candida antarctica lipase B (CALB) is one of the more commonly used biocatalysts, we attempted to design an optimal lipase-catalytic system. In order to do that, we investigated the enantioselectivity and lipolytic activity of CALB immobilized on 12 different supports. Immobilization of lipase on IB-D152 allowed us to achieve hyperactivation (178%) in lipolytic activity tests. Moreover, the conversion in enantioselective esterification increased 43-fold, when proceeding with lipase-immobilized on IB-S861. The immobilized form exhibited a constant high catalytic activity in the temperature range of 25 to 55 °C. Additionally, the lipase immobilized on IB-D152 exhibited a higher lipolytic activity in the pH range of 6 to 9 compared with the native form. Interestingly, our investigations showed that IB-S500 and IB-S60S offered a possibility of application in catalysis in both organic and aqueous solvents. A significant link between the reaction media, the substrates, the supports and the lipase was confirmed. In our enzymatic investigations, high-performance liquid chromatography (HPLC) and the titrimetric method, as well as the Bradford method were employed.
Collapse
|
36
|
Kornecki JF, Carballares D, Morellon-Sterling R, Siar EH, Kashefi S, Chafiaa M, Arana-Peña S, Rios NS, Gonçalves LR, Fernandez-Lafuente R. Influence of phosphate anions on the stability of immobilized enzymes. Effect of enzyme nature, immobilization protocol and inactivation conditions. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.02.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
37
|
Binhayeeding N, Yunu T, Pichid N, Klomklao S, Sangkharak K. Immobilisation of Candida rugosa lipase on polyhydroxybutyrate via a combination of adsorption and cross-linking agents to enhance acylglycerol production. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.02.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
38
|
Moreira KDS, de Oliveira ALB, Júnior LSDM, Monteiro RRC, da Rocha TN, Menezes FL, Fechine LMUD, Denardin JC, Michea S, Freire RM, Fechine PBA, Souza MCM, Dos Santos JCS. Lipase From Rhizomucor miehei Immobilized on Magnetic Nanoparticles: Performance in Fatty Acid Ethyl Ester (FAEE) Optimized Production by the Taguchi Method. Front Bioeng Biotechnol 2020; 8:693. [PMID: 32695765 PMCID: PMC7338345 DOI: 10.3389/fbioe.2020.00693] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022] Open
Abstract
In this communication, it was evaluated the production of fatty acid ethyl ester (FAAE) from the free fatty acids of babassu oil catalyzed by lipase from Rhizomucor miehei (RML) immobilized on magnetic nanoparticles (MNP) coated with 3-aminopropyltriethoxysilane (APTES), Fe3O4@APTES-RML or RML-MNP for short. MNPs were prepared by co-precipitation coated with 3-aminopropyltriethoxysilane and used as a support to immobilize RML (immobilization yield: 94.7 ± 1.0%; biocatalyst activity: 341.3 ± 1.2 Up–NPB/g), which were also activated with glutaraldehyde and then used to immobilize RML (immobilization yield: 91.9 ± 0.2%; biocatalyst activity: 199.6 ± 3.5 Up–NPB/g). RML-MNP was characterized by X-Ray Powder Diffraction (XRPD), Fourier Transform-Infrared (FTIR) spectroscopy and Scanning Electron Microscope (SEM), proving the incorporation and immobilization of RML on the APTES matrix. In addition, the immobilized biocatalyst presented at 60°C a half-life 16–19 times greater than that of the soluble lipase in the pH range 5–10. RML and RML-MNP showed higher activity at pH 7; the immobilized enzyme was more active than the free enzyme in the pH range (5–10) analyzed. For the production of fatty acid ethyl ester, under optimal conditions [40°C, 6 h, 1:1 (FFAs/alcohol)] determined by the Taguchi method, it was possible to obtain conversion of 81.7 ± 0.7% using 5% of RML-MNP.
Collapse
Affiliation(s)
- Katerine da S Moreira
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza, Brazil
| | - André L B de Oliveira
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza, Brazil
| | - Lourembergue S de M Júnior
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção, Brazil
| | - Rodolpho R C Monteiro
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza, Brazil
| | - Thays N da Rocha
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza, Brazil
| | - Fernando L Menezes
- Group of Chemistry of Advanced Materials (GQMat) - Department of Analytical Chemistry and Physic-chemistry, Federal University of Ceará - UFC, Fortaleza, Brazil
| | - Lillian M U D Fechine
- Group of Chemistry of Advanced Materials (GQMat) - Department of Analytical Chemistry and Physic-chemistry, Federal University of Ceará - UFC, Fortaleza, Brazil
| | - Juliano C Denardin
- Departamento de Física/Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Sebastian Michea
- Institute of Applied Chemical Sciences, Universidad Autónoma de Chile, Santiago, Chile
| | - Rafael M Freire
- Institute of Applied Chemical Sciences, Universidad Autónoma de Chile, Santiago, Chile
| | - Pierre B A Fechine
- Group of Chemistry of Advanced Materials (GQMat) - Department of Analytical Chemistry and Physic-chemistry, Federal University of Ceará - UFC, Fortaleza, Brazil
| | - Maria C M Souza
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção, Brazil
| | - José C S Dos Santos
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza, Brazil.,Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção, Brazil
| |
Collapse
|
39
|
Recent Trends in Biomaterials for Immobilization of Lipases for Application in Non-Conventional Media. Catalysts 2020. [DOI: 10.3390/catal10060697] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The utilization of biomaterials as novel carrier materials for lipase immobilization has been investigated by many research groups over recent years. Biomaterials such as agarose, starch, chitin, chitosan, cellulose, and their derivatives have been extensively studied since they are non-toxic materials, can be obtained from a wide range of sources and are easy to modify, due to the high variety of functional groups on their surfaces. However, although many lipases have been immobilized on biomaterials and have shown potential for application in biocatalysis, special features are required when the biocatalyst is used in non-conventional media, for example, in organic solvents, which are required for most reactions in organic synthesis. In this article, we discuss the use of biomaterials for lipase immobilization, highlighting recent developments in the synthesis and functionalization of biomaterials using different methods. Examples of effective strategies designed to result in improved activity and stability and drawbacks of the different immobilization protocols are discussed. Furthermore, the versatility of different biocatalysts for the production of compounds of interest in organic synthesis is also described.
Collapse
|
40
|
Zhou XJ, Zhu CT, Hu Y, You S, Wu FA, Wang J. A novel microfluidic aqueous two-phase system with immobilized enzyme enhances cyanidin-3-O-glucoside content in red pigments from mulberry fruits. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107556] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
41
|
One Pot Use of Combilipases for Full Modification of Oils and Fats: Multifunctional and Heterogeneous Substrates. Catalysts 2020. [DOI: 10.3390/catal10060605] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Lipases are among the most utilized enzymes in biocatalysis. In many instances, the main reason for their use is their high specificity or selectivity. However, when full modification of a multifunctional and heterogeneous substrate is pursued, enzyme selectivity and specificity become a problem. This is the case of hydrolysis of oils and fats to produce free fatty acids or their alcoholysis to produce biodiesel, which can be considered cascade reactions. In these cases, to the original heterogeneity of the substrate, the presence of intermediate products, such as diglycerides or monoglycerides, can be an additional drawback. Using these heterogeneous substrates, enzyme specificity can promote that some substrates (initial substrates or intermediate products) may not be recognized as such (in the worst case scenario they may be acting as inhibitors) by the enzyme, causing yields and reaction rates to drop. To solve this situation, a mixture of lipases with different specificity, selectivity and differently affected by the reaction conditions can offer much better results than the use of a single lipase exhibiting a very high initial activity or even the best global reaction course. This mixture of lipases from different sources has been called “combilipases” and is becoming increasingly popular. They include the use of liquid lipase formulations or immobilized lipases. In some instances, the lipases have been coimmobilized. Some discussion is offered regarding the problems that this coimmobilization may give rise to, and some strategies to solve some of these problems are proposed. The use of combilipases in the future may be extended to other processes and enzymes.
Collapse
|
42
|
Zhang X, Wang Y, Zhong T, Feng X. Optimal spacer arm microenvironment for the immobilization of recombinant Protein A on heterofunctional amino-epoxy agarose supports. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.11.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
43
|
|
44
|
Sustainable Enzymatic Synthesis of a Solketal Ester—Process Optimization and Evaluation of Its Antimicrobial Activity. Catalysts 2020. [DOI: 10.3390/catal10020218] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The present study aims the enzymatic synthesis of solketal palmitate by esterification between solketal and palmitic acid using heptane as solvent. Lipases from Thermomyces lanuginosus (TLL), Candida rugosa type VII (CRL), and Pseudomonas fluorescens (PFL) were immobilized via interfacial activation on rice husk silica functionalized with triethoxy(octyl)silane (Octyl–SiO2) and used as biocatalysts. A loading of 20–22 mg of lipase/g of support was immobilized independently of the studied enzyme. TLL–Octyl–SiO2 was the most active biocatalyst in oil hydrolysis (656.0 ± 23.9 U/g) and ester synthesis (productivity of 6.8 mmol/min.gbiocat), and it has been chosen for further ester synthesis optimization. The effect of some important parameters such as biocatalyst concentration, reaction temperature and acid:alcohol molar ratio on the reaction has been evaluated using a central composite rotatable design at fixed mechanical stirring (240 rpm) and reaction time (15 min). Subsequently, the effect of reactants concentration and molecular sieve concentration has also been examined. Under optimal conditions (56 °C, acid:alcohol molar ratio of 1:3 with a palmitic acid concentration of 1 M, and 20% wt. of TLL–Octyl–SiO2 per volume of reaction mixture), 83% acid conversion was obtained after 150 min of reaction. The biocatalyst retained 87% of its initial activity after seven successive reaction batches. The product was identified by nuclear magnetic resonance analysis. Antimicrobial activity studies showed that the synthesized ester demonstrated antifungal activity against Candida albicans and Candida parapsilosis, with minimum inhibitory concentration (MIC) between 200 and 400 µg/mL, and bacteriostatic/fungistatic action—minimum microbicial concentration (MMC) > 400 µg/mL.
Collapse
|
45
|
Wang J, Yu W, Zhang X, Zhang T, Wang H, Shu W, Liu L, Zhao B, Li B. Two-step modification of silica for efficient adsorption of phosphatidylcholine in water and application in phospholipase D-catalyzed transphosphatidylation. Biotechnol Prog 2019; 36:e2949. [PMID: 31845503 DOI: 10.1002/btpr.2949] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 12/08/2019] [Accepted: 12/10/2019] [Indexed: 11/09/2022]
Abstract
An efficient and green aqueous-solid system was introduced for phospholipase D-mediated transphosphatidylation. γ-(2,3-epoxypropoxy) propytrimethoxysilane was covalently bound to silica and esterified by acetic acid, which acted as an anchor molecule to facilitate the adsorption of phosphatidylcholine (PC) in aqueous solutions. Obtained silica-adsorbed PC was successfully used for transphosphatidylation to produce phosphatidylserine (PS). The PC loading and PS yield reached 98.8 and 98.3%, respectively. A new model was proposed to illustrate the adsorption and enzymatic processes. Moreover, this aqueous-solid system provides a promising way for the continuous production. Four kinds of phospholipids were biosynthesized in the pack-bed reactor. The stability of the aqueous-solid system was excellent, as demonstrated by its use 30 times without any loss of the productivity. The product was eluted by coconut oil and manufactured into microcapsules. Toxic agents were completely avoided in the whole production process.
Collapse
Affiliation(s)
- Jiao Wang
- School of Chemical Engineering, Northwest University, Xi'an, Shaanxi, China
| | - Wenyu Yu
- School of Chemical Engineering, Northwest University, Xi'an, Shaanxi, China
| | - Xiaoli Zhang
- College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi, China
| | - Tiantian Zhang
- College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi, China
| | - Huan Wang
- School of Chemical Engineering, Northwest University, Xi'an, Shaanxi, China
| | - Wenfang Shu
- School of Chemical Engineering, Northwest University, Xi'an, Shaanxi, China
| | - Li Liu
- School of Chemical Engineering, Northwest University, Xi'an, Shaanxi, China
| | - Binxia Zhao
- School of Chemical Engineering, Northwest University, Xi'an, Shaanxi, China
| | - Binglin Li
- College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi, China
| |
Collapse
|
46
|
Rios NS, Morais EG, dos Santos Galvão W, Andrade Neto DM, dos Santos JCS, Bohn F, Correa MA, Fechine PBA, Fernandez-Lafuente R, Gonçalves LRB. Further stabilization of lipase from Pseudomonas fluorescens immobilized on octyl coated nanoparticles via chemical modification with bifunctional agents. Int J Biol Macromol 2019; 141:313-324. [DOI: 10.1016/j.ijbiomac.2019.09.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/26/2019] [Accepted: 09/02/2019] [Indexed: 12/27/2022]
|
47
|
Preparation, functionalization and characterization of rice husk silica for lipase immobilization via adsorption. Enzyme Microb Technol 2019; 128:9-21. [DOI: 10.1016/j.enzmictec.2019.05.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/18/2019] [Accepted: 05/02/2019] [Indexed: 01/13/2023]
|
48
|
Rodrigues RC, Virgen-Ortíz JJ, dos Santos JC, Berenguer-Murcia Á, Alcantara AR, Barbosa O, Ortiz C, Fernandez-Lafuente R. Immobilization of lipases on hydrophobic supports: immobilization mechanism, advantages, problems, and solutions. Biotechnol Adv 2019; 37:746-770. [DOI: 10.1016/j.biotechadv.2019.04.003] [Citation(s) in RCA: 287] [Impact Index Per Article: 57.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 12/13/2022]
|
49
|
Immobilization of lipase from Pseudomonas fluorescens on glyoxyl-octyl-agarose beads: Improved stability and reusability. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:741-747. [DOI: 10.1016/j.bbapap.2019.06.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/04/2019] [Accepted: 06/06/2019] [Indexed: 01/26/2023]
|
50
|
|